Research Article
BibTex RIS Cite

The Response of Forage Pea to Zinc and Boron Fertilizers during Germination

Year 2022, Volume: 11 Issue: 1, 99 - 110, 10.06.2022
https://doi.org/10.55007/dufed.1079539

Abstract

Forage pea (Pisum sativum spp. arvense L.) is a forage crop with a high grass yield and a crude protein content of around 20%. Although everyone knows that forage peas require microelements throughout the growing season, the role of these elements during the most sensitive period of plant growth, germination and seedling development, has received little attention. The effects of boron and zinc microelements to forage pea seed on germination and seedling growth were investigated in this study. The experiment was set up with three replications in a completely randomized plot design. In the study, 6 different doses of boric acid (H3BO3) (0, 0.2, 0.4, 0.8, 1.6, 3.2 ppm) and 5 different doses of zinc (ZnSO4 • 7H2O) (control, 2mM, 4mM, 6mM, 8Mm) were applied to cv. Kiraz pea variety. Germination rate, seedling emergence rate, root length and seedling height were shown to be significantly affected by zinc application, according to the results of a statistical analysis. Boron application had a significant effect on germination rate and germination vigour. The doses following 0.8 ppm of boron treatment were found to have a reducing effect for germination vigour.

References

  • I. Cakmak, Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil, vol. 247, pp. 3-24, 2002.
  • C. Akıncı, I. Doran, M. Yıldırım and I. Gül, Effects of zinc doses on zinc and protein contents of barley, Asian J. Chem, vol. 20, no. 3, pp. 2293-2301, 2008.
  • Q. L. Wang, L. D. Lu, X. Q. Wu, Y. Q. Li, and J. X. Lin, Boron influences pollen germination and pollen tube growth in Picea meyeri, Tree Physiol., vol. 23, pp. 345-351, 2003.
  • S. Lordkaew, S. Konsaeng, J. Jongjaidee, B. Dell, B. Rerkasem, and S. Jamjod, Variation in responses to boron in rice. Plant Soil. vol. 363, pp. 287-295, 2013.
  • A. A. Boşgelmez, İ. Boşgelmez, S. Savaşçı and N. Paslı, Ekoloji – II (Toprak), Başkent Klişe Matbaacılık, Kızılay-Ankara, 2001.
  • A. McCauley, C. Jones, and J. Jacobsen, Nutrient Management. Nutrient management module, Montana State University Extension Service. Publication, vol. 4449, no. 9, pp.1–16, 2009.
  • D. T. Gardiner and R. W. Miller, Soils in Our Environment. 11th Edition, Pearson/Prentice Hall, Upper Saddle Hill, New Jersey, USA. 2008.
  • J. J. Camacho-Cristóbal, E. M. Martín-Rejano, M. B. Herrera-Rodríguez, M. T. Navarro-Gochicoa, J. Rexach, and A. González-Fontes, Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings, J. Exp. Bot. vol. 66, pp. 3831-3840, 2015.
  • S. M. A. Basra, M. Farooq, and A. Khaliq, Comparative study of pre sowing seed enhancement treatments in fine rice (Oryza sativa L.). Pak J Life Soc Sci. vol. 1, pp. 21–25, 2003.
  • A. Rashid, and J. Ryan, Micronutrient constraint to crop production in soils with mediterranen type characteristics: A review. Journal of Plant Nutrition, vol. 27, pp. 959–975, 2004.
  • I. Doran, C. Akıncı, M. Yıldırım, I. Gül and Z. Kaya, Effects of different zinc application methods on agronomic traits of durum wheat in a semi-arid anatolian environment, Asian J. Chem, vol. 21, no. 5, pp. 2293-2301, 2009.
  • M. D. Kantarcı, Toprak İlmi Ders Kitabı (2. baskı), İ.Ü. Yayın No: 4261, Orman Fakültesi Yayın No: 462, (XII+420), Çantay Basımevi, ISBN: 975-505-588 -7, İstanbul, 2000.
  • I. Cakmak, Enrichment of cereal grains with zinc: agronomic or genetic biofortification, Plant Soil, vol. 302, pp. 1–17, 2008.
  • M. Farooq, A. Wahid, and K. H. M. Siddique, Micronutrient application through seed treatments a review. J. Soil Sci. Plant Nutr. vol. 12, pp. 125–142, 2012.
  • Z. Rengel, and R. D. Graham, Importance of seed zinc content for wheat growth on zinc- deficient soil. I. Vegetative growth. Plant Soil, vol. 173, pp. 259–266,1995.
  • D. Harris, A. Rashid, G. Miraj, M. Arif, and H. Shah, ‘Onfarm’seed priming with zinc sulphate solution—A cost-effective way to increase the maize yields of resource-poor farmers. Field Crop. Res. vol. 102, pp. 119–127, 2007.
  • M. Imran, D. Garbe-Schönberg, G. Neumann, B. Boelt, and K. H. Mühling, Zinc distribution and localization in primed maize seeds and its translocation during early seedling development. Environ. Exp. Bot. vol. 143, pp. 91–98, 2017.
  • A. Prom-u-thai, B. Rerkasem, A. Yazici, and I. Cakmak, Zinc priming promotes seed germination and seedling vigor of rice. J. Plant Nutr. Soil Sci. vol. 175, pp. 482–488, 2012.
  • D. Harris, A. Rashid, G. Miraj, M. Arif, and M. Yunas, On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil, vol. 306, pp. 3–10, 2008.
  • A. Rehman, M. Farooq, R. Ahmad, and S. M. A. Basra, Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci. Technol. vol. 43, pp. 262–268. 2015.
  • A. Ajouri, H. Asgedom, and M. Becker, Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J. Plant Nutr. Soil Sci., vol. 167, pp. 630–636, 2004.
  • M. Kunjam, H. Govada, N. Mididoddi, and R.S.L.N. Kota, Studies on selected heavy metals on seed germination and plant growth in pea plant (Pisum sativum L.) grown in solid medium, Journal of Pharmacognosy and Phytochemistry, vol. 3, no. 5, pp. 85-87, 2015.
  • S. M. A. frayeem, and A. Chaurasia, Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.), Journal of Pharmacognosy and Phytochemistry, vol. 6, no. 5, pp. 1564-1566, 2017.
  • D. Karan, and S. B. Singh, Ramkewal, Effect of zinc and boron application on yield of lentil and nutrient balance in the soil under Indo-Gangetic plain zones. Journal of Agri Search, vol. 4, pp. 206-209, 2014.
  • M. A. Quddus, M. H. Rashid, M. A. Hossain, and H. M. Naser, Effect of zinc and boron on yield and yield contributing characters of mungbean in low Ganges river floodplain soil at madaripur, Bangladesh. Bangladesh Journal of Agricultural Research, vol. 36, no. 1, pp. 75-85, 2011.
  • N. Ebrahim Pour Mokhtari and F. Kızılgeçi, ‘‘Effect of different boron concentrations on germination and seedling stage of soybean [Glycine max (L.) Merr]’’. 2nd International Baku Conference on Scientific Research, Baku Odlar Yurdu University, Azerbaijan, April pp. 28-30, 2021a.
  • M. Imran, B. Boelt, and K. H. Mühling, Zinc seed priming improves salt resistance in maize. J. Agron. Crop Sci. vol. 204, pp. 390-3999, 2018.
  • K. Rudani, V. Patel, and P. Kalavati, The importance of zinc in plant growth-A review. Int. Res. J. Nat. App. Sci. vol. 5, no. 2, pp. 38-48, 2018.
  • V. M. Shorrocks, The Occurrence and Correction of Boron Deficiency. Plant and Soil, vol. 193, pp. 121-148, 1997.
  • M. Farooq, K. H. M. Siddique, H. Rehman, T. Aziz, D. J. Lee, and A. Wahid, Rice direct seeding: experiences, challenges and opportunities. Soil Till. Res. vol.111, pp. 87-98, 2011.
  • N. Ebrahim Pour Mokhtari and F. Kızılgeçi, Wheat germination and early seedling period are affected by different doses of boron fertilizer. EUROASIA Congress on Scientific Researches and Recent Trends-VIII, The Merchant Marine Academy, Philippine, August 2-4, pp. 470-474, 2021b.
  • C. F. Cresswell, and H. Nelson, The Influence of boron on the RNA level, 6-amylase activity, and level of sugars in germinating Themeda triandra Forsk Seed. Ann. Bot. vol. 37, no. 3, pp. 427–438, 1973.
  • H. R. S. Muhammad, Z. B. Tasveer, and Y. Uzma, Boron irrigation effect on germination and morphological attributes of Zea mays cultivars (Cv. Afghoee & Cv. Composite). Int. J. Sci. Engin. Res. vol. 4, pp. 1563-1569, 2013.
  • H. Ashagre, I. A. Hamza, U. Fita, and W. Nedesa, Influence of boron on seed germination and seedling growth of wheat (Triticum aestivum L.). African Journal of Plant Science, vol. 8, no. 2, pp. 133-139, 2014.
  • A. S. Prathima, N. M. Rohini, and H. S. Shivaramu, Influence of boron seed treatment on seed germination, seedlig length and seedling vigor in sunflower (Helianthus annuus L.). International Journal of Science and Nature, vol. 7, no. 2, pp. 273- 276, 2016.
  • V. Todeschini, G. Lingua, G. D’Agostino, F. Carniato, E. Roccotiello, and G. Berta, Effects of high Zn concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot. vol. 71, pp. 50-56, 2011.
  • M. G. Mallikarjuna, N. Thirunavukkarasu, R. Sharma, K. Shiriga, F. Hossain, J. S. Bhat, A. C. R. Mithra, S. S. Marla, K. M. Manjaiah, and A. R. Rao, Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants, vol. 9, pp. 1812, 2020.

Yem Bezelyesinin Çimlenme Döneminde Çinko ve Bor Gübrelerine Tepkileri

Year 2022, Volume: 11 Issue: 1, 99 - 110, 10.06.2022
https://doi.org/10.55007/dufed.1079539

Abstract

Yem bezelyesi (Pisum sativum spp. arvense L.), yüksek ot verimi ve içeriğinde %20 civarında ham proteine sahip bir yem bitkisidir. Yem bezelyesi tüm yetişme dönemlerinde mikro elementlere ihtiyaç duyduğu herkes tarafından bilinse de bu elementlerin bitki yetiştirmenin en hassas dönemi yani çimlenme ve fide gelişim dönemindeki rolü pek fazla araştırılmamıştır. Bu çalışmada, bor ve çinko mikro elementlerinin yem bezeleyesi tohumuna uygulanmasının çimlenme ve fide gelişimi üzerine etkileri araştırılmıştır. Deneme tesadüf parseller deneme desenine göre üç tekerrürlü olarak kurulmuştur. Çalışmada Kiraz yem bezelyesi çeşidine 6 farklı dozda (0, 0.2, 0.4, 0.8, 1.6, 3.2 ppm) borik asit (H3BO3) ve 5 farklı dozda (kontrol, 2mM, 4mM, 6mM, 8Mm) çinko (ZnSO4 • 7H2O) uygulanmıştır. Varyans analizi sonuçlarına göre, çinko uygulamasının kök uzunluğu, çimlenme hızı, sürme hızı ve fide uzunluğuna etkisinin önemli olduğu görülmüştür. Bor uygulamasının ise çimlenme hızı ve çimlenme gücü üzerindeki etkisi önemli bulunmuştur. Uygulanan çinko dozlarının incelenen özellikler üzerinde benzer etki gösterdiği görülmüştür. Bor uygulamasında ise 0.8 ppm uygulamasından sonraki dozların çimlenme hızında azaltıcı etkiye neden olduğu görülmüştür. 

References

  • I. Cakmak, Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil, vol. 247, pp. 3-24, 2002.
  • C. Akıncı, I. Doran, M. Yıldırım and I. Gül, Effects of zinc doses on zinc and protein contents of barley, Asian J. Chem, vol. 20, no. 3, pp. 2293-2301, 2008.
  • Q. L. Wang, L. D. Lu, X. Q. Wu, Y. Q. Li, and J. X. Lin, Boron influences pollen germination and pollen tube growth in Picea meyeri, Tree Physiol., vol. 23, pp. 345-351, 2003.
  • S. Lordkaew, S. Konsaeng, J. Jongjaidee, B. Dell, B. Rerkasem, and S. Jamjod, Variation in responses to boron in rice. Plant Soil. vol. 363, pp. 287-295, 2013.
  • A. A. Boşgelmez, İ. Boşgelmez, S. Savaşçı and N. Paslı, Ekoloji – II (Toprak), Başkent Klişe Matbaacılık, Kızılay-Ankara, 2001.
  • A. McCauley, C. Jones, and J. Jacobsen, Nutrient Management. Nutrient management module, Montana State University Extension Service. Publication, vol. 4449, no. 9, pp.1–16, 2009.
  • D. T. Gardiner and R. W. Miller, Soils in Our Environment. 11th Edition, Pearson/Prentice Hall, Upper Saddle Hill, New Jersey, USA. 2008.
  • J. J. Camacho-Cristóbal, E. M. Martín-Rejano, M. B. Herrera-Rodríguez, M. T. Navarro-Gochicoa, J. Rexach, and A. González-Fontes, Boron deficiency inhibits root cell elongation via an ethylene/auxin/ROS-dependent pathway in Arabidopsis seedlings, J. Exp. Bot. vol. 66, pp. 3831-3840, 2015.
  • S. M. A. Basra, M. Farooq, and A. Khaliq, Comparative study of pre sowing seed enhancement treatments in fine rice (Oryza sativa L.). Pak J Life Soc Sci. vol. 1, pp. 21–25, 2003.
  • A. Rashid, and J. Ryan, Micronutrient constraint to crop production in soils with mediterranen type characteristics: A review. Journal of Plant Nutrition, vol. 27, pp. 959–975, 2004.
  • I. Doran, C. Akıncı, M. Yıldırım, I. Gül and Z. Kaya, Effects of different zinc application methods on agronomic traits of durum wheat in a semi-arid anatolian environment, Asian J. Chem, vol. 21, no. 5, pp. 2293-2301, 2009.
  • M. D. Kantarcı, Toprak İlmi Ders Kitabı (2. baskı), İ.Ü. Yayın No: 4261, Orman Fakültesi Yayın No: 462, (XII+420), Çantay Basımevi, ISBN: 975-505-588 -7, İstanbul, 2000.
  • I. Cakmak, Enrichment of cereal grains with zinc: agronomic or genetic biofortification, Plant Soil, vol. 302, pp. 1–17, 2008.
  • M. Farooq, A. Wahid, and K. H. M. Siddique, Micronutrient application through seed treatments a review. J. Soil Sci. Plant Nutr. vol. 12, pp. 125–142, 2012.
  • Z. Rengel, and R. D. Graham, Importance of seed zinc content for wheat growth on zinc- deficient soil. I. Vegetative growth. Plant Soil, vol. 173, pp. 259–266,1995.
  • D. Harris, A. Rashid, G. Miraj, M. Arif, and H. Shah, ‘Onfarm’seed priming with zinc sulphate solution—A cost-effective way to increase the maize yields of resource-poor farmers. Field Crop. Res. vol. 102, pp. 119–127, 2007.
  • M. Imran, D. Garbe-Schönberg, G. Neumann, B. Boelt, and K. H. Mühling, Zinc distribution and localization in primed maize seeds and its translocation during early seedling development. Environ. Exp. Bot. vol. 143, pp. 91–98, 2017.
  • A. Prom-u-thai, B. Rerkasem, A. Yazici, and I. Cakmak, Zinc priming promotes seed germination and seedling vigor of rice. J. Plant Nutr. Soil Sci. vol. 175, pp. 482–488, 2012.
  • D. Harris, A. Rashid, G. Miraj, M. Arif, and M. Yunas, On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil, vol. 306, pp. 3–10, 2008.
  • A. Rehman, M. Farooq, R. Ahmad, and S. M. A. Basra, Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci. Technol. vol. 43, pp. 262–268. 2015.
  • A. Ajouri, H. Asgedom, and M. Becker, Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J. Plant Nutr. Soil Sci., vol. 167, pp. 630–636, 2004.
  • M. Kunjam, H. Govada, N. Mididoddi, and R.S.L.N. Kota, Studies on selected heavy metals on seed germination and plant growth in pea plant (Pisum sativum L.) grown in solid medium, Journal of Pharmacognosy and Phytochemistry, vol. 3, no. 5, pp. 85-87, 2015.
  • S. M. A. frayeem, and A. Chaurasia, Effect of zinc oxide nanoparticles on seed germination and seed vigour in chilli (Capsicum annuum L.), Journal of Pharmacognosy and Phytochemistry, vol. 6, no. 5, pp. 1564-1566, 2017.
  • D. Karan, and S. B. Singh, Ramkewal, Effect of zinc and boron application on yield of lentil and nutrient balance in the soil under Indo-Gangetic plain zones. Journal of Agri Search, vol. 4, pp. 206-209, 2014.
  • M. A. Quddus, M. H. Rashid, M. A. Hossain, and H. M. Naser, Effect of zinc and boron on yield and yield contributing characters of mungbean in low Ganges river floodplain soil at madaripur, Bangladesh. Bangladesh Journal of Agricultural Research, vol. 36, no. 1, pp. 75-85, 2011.
  • N. Ebrahim Pour Mokhtari and F. Kızılgeçi, ‘‘Effect of different boron concentrations on germination and seedling stage of soybean [Glycine max (L.) Merr]’’. 2nd International Baku Conference on Scientific Research, Baku Odlar Yurdu University, Azerbaijan, April pp. 28-30, 2021a.
  • M. Imran, B. Boelt, and K. H. Mühling, Zinc seed priming improves salt resistance in maize. J. Agron. Crop Sci. vol. 204, pp. 390-3999, 2018.
  • K. Rudani, V. Patel, and P. Kalavati, The importance of zinc in plant growth-A review. Int. Res. J. Nat. App. Sci. vol. 5, no. 2, pp. 38-48, 2018.
  • V. M. Shorrocks, The Occurrence and Correction of Boron Deficiency. Plant and Soil, vol. 193, pp. 121-148, 1997.
  • M. Farooq, K. H. M. Siddique, H. Rehman, T. Aziz, D. J. Lee, and A. Wahid, Rice direct seeding: experiences, challenges and opportunities. Soil Till. Res. vol.111, pp. 87-98, 2011.
  • N. Ebrahim Pour Mokhtari and F. Kızılgeçi, Wheat germination and early seedling period are affected by different doses of boron fertilizer. EUROASIA Congress on Scientific Researches and Recent Trends-VIII, The Merchant Marine Academy, Philippine, August 2-4, pp. 470-474, 2021b.
  • C. F. Cresswell, and H. Nelson, The Influence of boron on the RNA level, 6-amylase activity, and level of sugars in germinating Themeda triandra Forsk Seed. Ann. Bot. vol. 37, no. 3, pp. 427–438, 1973.
  • H. R. S. Muhammad, Z. B. Tasveer, and Y. Uzma, Boron irrigation effect on germination and morphological attributes of Zea mays cultivars (Cv. Afghoee & Cv. Composite). Int. J. Sci. Engin. Res. vol. 4, pp. 1563-1569, 2013.
  • H. Ashagre, I. A. Hamza, U. Fita, and W. Nedesa, Influence of boron on seed germination and seedling growth of wheat (Triticum aestivum L.). African Journal of Plant Science, vol. 8, no. 2, pp. 133-139, 2014.
  • A. S. Prathima, N. M. Rohini, and H. S. Shivaramu, Influence of boron seed treatment on seed germination, seedlig length and seedling vigor in sunflower (Helianthus annuus L.). International Journal of Science and Nature, vol. 7, no. 2, pp. 273- 276, 2016.
  • V. Todeschini, G. Lingua, G. D’Agostino, F. Carniato, E. Roccotiello, and G. Berta, Effects of high Zn concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot. vol. 71, pp. 50-56, 2011.
  • M. G. Mallikarjuna, N. Thirunavukkarasu, R. Sharma, K. Shiriga, F. Hossain, J. S. Bhat, A. C. R. Mithra, S. S. Marla, K. M. Manjaiah, and A. R. Rao, Comparative Transcriptome Analysis of Iron and Zinc Deficiency in Maize (Zea mays L.). Plants, vol. 9, pp. 1812, 2020.
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Botany
Journal Section Research Articles
Authors

Negar Ebrahım Pour Mokhtarı 0000-0002-2307-5756

Ferhat Kızılgeçi 0000-0002-7884-5463

Early Pub Date April 1, 2022
Publication Date June 10, 2022
Submission Date February 26, 2022
Published in Issue Year 2022 Volume: 11 Issue: 1

Cite

IEEE N. Ebrahım Pour Mokhtarı and F. Kızılgeçi, “Yem Bezelyesinin Çimlenme Döneminde Çinko ve Bor Gübrelerine Tepkileri”, DUFED, vol. 11, no. 1, pp. 99–110, 2022, doi: 10.55007/dufed.1079539.


DUFED is indexed/abstracted/enlisted in

Google Scholar | CABI - CAB Abstracts and Global Health | CAS Chemical Abstracts Service | ROAD Directory of Open Access Scholarly Resources | Index Copernicus | CiteFactor Academic Scientific Journals | BASE Bielefeld Academic Search Engine | Open AIRE | IJIFACTOR | ASOS Index | Paperity Open Science Aggregated | I2OR International Institute of Organized Research | SJIF Scientific Journal Impact Factor | Advanced Science Index | DRJI Directory of Research Journals Indexing | SOBİAD | AcarIndex | SIS Scientific Indexing Services | Crossref | Harman Türkiye Akademik Arşivi | AccessOn | Dimensions | Wizdom | OUCI The Open Ukrainian Citation Index | WorldCat | Scilit | ASCI Asian Science Citation Index

  cc.logo.large.png       Creative Commons License

28576
DUFED is a diamond open-access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access. In addition, authors are not charged article processing fees or publication fees - no fees whatsoever. Importantly, authors retain the copyright of their work and allow it to be shared and reused, provided that it is correctly cited.

1024px-DOI_logo.svg.png https://doi.org/10.55007/dufed.xxxxxxx