Research Article
BibTex RIS Cite

HIIT Antrenmanlarının Laktat Dehidrogenaz ve Hemogram Parametrelerine Akut Etkisi

Year 2025, Volume: 5 Issue: 2, 29 - 35, 31.10.2025

Abstract

Bu çalışma, yüksek yoğunluklu aralıklı antrenmanın laktat dehidrogenaz ve Hemogram parametrelerine akut etkisini incelemektedir. Çalışmaya 15kadın katılımcı dahil edilmiş ve bu çalışmaya katılabilmek için Covid 19 testleri sonucu negatif olmak, sigara kullanmamak ve egzersiz yapmasını engelleyecek kardiyolojik, metabolik ve ortopedik rahatsızlığı bulunmamak şartları aranmıştır. Katılımcılara yüksek yoğunluklu antrenman modellerinden Tabata protokolüyle bir birim antrenman yaptırılmıştır. Antrenman süresi tam dinlenme ilkesine bağlı olarak 42 dk sürmüştür. Yapılan antrenmanın öncesi ve hemen sonrası katılımcılardan kan numuneleri alınmıştır. Alınan numuneler laboratuar ortamında incelenmiştir, Elde edilen laktat dehidrogenaz ve hemogram verilerinin istatiksel analizleri için SPSS 26.0 paket programı kullanılmıştır. Verilerin normallik varsayımı Shapiro-Wilk test ile, Paired Samples t-testi uygulanarak da istatiksel analizleri yapılmıştır. Bulgular, laktat dehidrogenazve hemogram parametrelerinden eritrosit (kırmızı kan hücreleri) ve trombosit değerlerinde istatistiksel olarak anlamlı değişiklikler olduğunu göstermektedir (p<0,05). Bu sonuçlar, yüksek yoğunluklu aralıklı antrenmanlarının metabolik stres ve hematolojik yanıtlar üzerindeki etkisini vurgulamaktadır. Örneklem sayısının daha fazla olduğu gruplarla bu çalışmalar desteklenebilir ve farklı sonuçlarla spor profesyonellerine ışık olabilir.

References

  • 1. Ashraf, M. M., & Rea, R. (2017). Effect of dehydration on blood tests. Practical Diabetes, 34(5), 169-171.
  • 2. Billat, L. V. (2001). Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Medicine, 31, 13–31.
  • 3. Ertekin, K., & Erişgen, G. (2016). Akut submaksimal egzersizin trombosit aktivasyonu ve endotel üzerine etkisi. Spor Bilimleri Dergisi, 26(4), 129-135.
  • 4. Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36, 58–63.
  • 5. Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R., & Hoff J. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine & Science in Sports & Exercise, 39, 665–671. https://doi.org/10.1249/mss.0b013e31802c1350
  • 6. Hosseinzadeh, M., Taheri Chadorneshin, H., Ajam-Zibad, M., & Abtahi-Eivary, S. H. (2017). Pre-supplementation of Crocus Sativus Linn (saffron) attenuates inflammatory and lipid peroxidation markers induced by intensive exercise in sedentary women. Journal of Applied Pharmaceutical Science, 7(5), 147-151.
  • 7. Kafkas, M. E. (2014). The effect of strength exercises at different angular velocities on muscular LDH and CK. Isokinetics and Exercise Science, 22(1), 63-68.
  • 8. Ignaszewski, M., Lau, B., Wong, S., & Isserow, S. (2017). The science of exercise prescription: Martti Karvonen and his contributions.
  • 9. Megahed, M., Al-Torbany, M., Al-Ghool, M., & Tarek, Z. (2023). Effects of high-intensity interval training using “Tabata protocol” on respiratory parameters, special endurance, and 800-m runners’ performance. 18(4), 842-857. https://doi.org/10.14198/jhse.2023.184.09
  • 10. Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Medicine, 45, 1469–1481.
  • 11. Peters-Futre, E. M., Noakes, T. D., Raine, R. I., & Terblanche S. E. (1987). Muscle glycogen repletion during active post-exercise recovery. American Journal of Physiology, 253, E305-311. https://doi.org/10.1152/ajpendo.1987.253.3.E305
  • 12. Putra, K. P., Ardha, M. A. A., Kinasih, A., & Aji, R. S. (2017). Korelasi değişim değerleri VO2max, eritrosit, hemoglobin ve hematokrit sonrası yüksek yoğunluklu interval antrenman. Jurnal Keolahragaan, 5(2), 161-170.
  • 13. Marriott, C. F. S., Petrella, A. F. M., Marriott, E. C. S., Boa Sorte Silva, N. C., & Petrella, R. J. (2021). High-intensity interval training in older adults: A scoping review. Sports Medicine Open, 7(1), Article 49. https://doi.org/10.1186/s40798-021-00344-4
  • 14. Rahmanian, K., Hooshmand, F., Shakeri, M., Rahmanian, V., Jahromi, F. S., & Jahromi, A. S. (2022). Creatine kinase and lactate dehydrogenase enzymes response to lactate tolerance exercise test. Exercise Science, 31(2), 168-172.
  • 15. Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Medicine, 45, 679–692.
  • 16. Rønnestad, B. R., Hamarsland, H., Hansen, J., Holen, E., Montero, D., Whist, J. E., & Lundby, C. (2021). Five weeks of heat training increases haemoglobin mass in elite cyclists. Experimental Physiology, 106(1), 316-327.
  • 17. Rosenblat, M. A., Perrotta, A. S., & Thomas, S. G. (2020). Effect of high-intensity interval training versus sprint interval training on time-trial performance: A systematic review and meta-analysis. Sports Medicine, 50, 1145–1161.
  • 18. Ruegsegger, G. N., & Booth, F. W. (2018). Health benefits of exercise. Cold Spring Harbor Perspectives in Medicine, 8, a029694.
  • 19. Schumann, G., Bonora, R., Ceriotti, F., Clerc-Renaud, P., Ferrero, C. A., Férard, G., Franck, P.F., Gella, F. J., Hoelzel, W., Jørgensen, P. J., Kanno, T., Kessner, A., Klauke, R., Kristiansen, N., Lessinger, J. M., Linsinger, T. P., Misaki, H., Panteghini, M., Pauwels, J., ... Siekmann, L. (2002). IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase. Clinical Chemistry and Laboratory Medicine, 40(6), 643-648.
  • 20. Schwane, J. A., Johnson, S. R., Vandenakker, C. B., et al. (1983). Delayed onset muscular soreness and plasma CPK and LDH activities after downhill running. Medicine and Science in Sports and Exercise, 15, 51-56.
  • 21. Schuch, F. B., & Vancampfort, D. (2021). Physical activity, exercise, and mental disorders: It is time to move on. Trends in Psychiatry and Psychotherapy, 43, 177–184.
  • 22. Tabata, I. (2019). Tabata training: One of the most energetically effective high-intensity intermittent training methods. Journal of Physiological Sciences, 69, 559–572.
  • 23. World Health Organization. (2018). Global action plan on physical activity 2018-2030: More active people for a healthier world. Geneva, Switzerland: World Health Organization.
  • 24. Yan, Y., & Chen, Q. (2022). Energy expenditure estimation of Tabata by combining acceleration and heart rate. Frontiers in Public Health, 9, 804471.

The Acute Effect of HIIT Training on Lactate Dehydrogenase and Hemogram Parameters

Year 2025, Volume: 5 Issue: 2, 29 - 35, 31.10.2025

Abstract

This study investigated the effects of high-intensity interval training on lactate dehydrogenase and complete blood count parameters. Fifteen female participants were included in the study, and to participate, they were required to have a negative Covid-19 test, not be smokers, and not have any cardiological, metabolic, or orthopedic conditions that would prevent exercise. The participants performed one training session using the TABATA protocol from the HIIT models. The training duration was 42 minutes, based on the principle of full rest. Blood samples were taken from the participants before and immediately after the training. The collected samples were analyzed in a laboratory setting, and SPSS 26.0 software was used for statistical analysis of the obtained LDH and hemogram data. The normality assumption of the data was tested with the Shapiro-Wilk test, and statistical analysis was performed using the Paired Samples t-test. The results showed statistically significant changes in erythrocytes (red blood cells) and platelet values among the LDH and hemogram parameters (p < 0.05). These findings emphasize the impact of HIIT on metabolic stress and hematological responses. This study can be supported by groups with a larger sample size and may shed light on sports professionals with different results.

References

  • 1. Ashraf, M. M., & Rea, R. (2017). Effect of dehydration on blood tests. Practical Diabetes, 34(5), 169-171.
  • 2. Billat, L. V. (2001). Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. Sports Medicine, 31, 13–31.
  • 3. Ertekin, K., & Erişgen, G. (2016). Akut submaksimal egzersizin trombosit aktivasyonu ve endotel üzerine etkisi. Spor Bilimleri Dergisi, 26(4), 129-135.
  • 4. Gibala, M. J., & McGee, S. L. (2008). Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exercise and Sport Sciences Reviews, 36, 58–63.
  • 5. Helgerud, J., Høydal, K., Wang, E., Karlsen, T., Berg, P., Bjerkaas, M., Simonsen, T., Helgesen, C., Hjorth, N., Bach, R., & Hoff J. (2007). Aerobic high-intensity intervals improve VO2max more than moderate training. Medicine & Science in Sports & Exercise, 39, 665–671. https://doi.org/10.1249/mss.0b013e31802c1350
  • 6. Hosseinzadeh, M., Taheri Chadorneshin, H., Ajam-Zibad, M., & Abtahi-Eivary, S. H. (2017). Pre-supplementation of Crocus Sativus Linn (saffron) attenuates inflammatory and lipid peroxidation markers induced by intensive exercise in sedentary women. Journal of Applied Pharmaceutical Science, 7(5), 147-151.
  • 7. Kafkas, M. E. (2014). The effect of strength exercises at different angular velocities on muscular LDH and CK. Isokinetics and Exercise Science, 22(1), 63-68.
  • 8. Ignaszewski, M., Lau, B., Wong, S., & Isserow, S. (2017). The science of exercise prescription: Martti Karvonen and his contributions.
  • 9. Megahed, M., Al-Torbany, M., Al-Ghool, M., & Tarek, Z. (2023). Effects of high-intensity interval training using “Tabata protocol” on respiratory parameters, special endurance, and 800-m runners’ performance. 18(4), 842-857. https://doi.org/10.14198/jhse.2023.184.09
  • 10. Milanović, Z., Sporiš, G., & Weston, M. (2015). Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO2max improvements: A systematic review and meta-analysis of controlled trials. Sports Medicine, 45, 1469–1481.
  • 11. Peters-Futre, E. M., Noakes, T. D., Raine, R. I., & Terblanche S. E. (1987). Muscle glycogen repletion during active post-exercise recovery. American Journal of Physiology, 253, E305-311. https://doi.org/10.1152/ajpendo.1987.253.3.E305
  • 12. Putra, K. P., Ardha, M. A. A., Kinasih, A., & Aji, R. S. (2017). Korelasi değişim değerleri VO2max, eritrosit, hemoglobin ve hematokrit sonrası yüksek yoğunluklu interval antrenman. Jurnal Keolahragaan, 5(2), 161-170.
  • 13. Marriott, C. F. S., Petrella, A. F. M., Marriott, E. C. S., Boa Sorte Silva, N. C., & Petrella, R. J. (2021). High-intensity interval training in older adults: A scoping review. Sports Medicine Open, 7(1), Article 49. https://doi.org/10.1186/s40798-021-00344-4
  • 14. Rahmanian, K., Hooshmand, F., Shakeri, M., Rahmanian, V., Jahromi, F. S., & Jahromi, A. S. (2022). Creatine kinase and lactate dehydrogenase enzymes response to lactate tolerance exercise test. Exercise Science, 31(2), 168-172.
  • 15. Ramos, J. S., Dalleck, L. C., Tjonna, A. E., Beetham, K. S., & Coombes, J. S. (2015). The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: A systematic review and meta-analysis. Sports Medicine, 45, 679–692.
  • 16. Rønnestad, B. R., Hamarsland, H., Hansen, J., Holen, E., Montero, D., Whist, J. E., & Lundby, C. (2021). Five weeks of heat training increases haemoglobin mass in elite cyclists. Experimental Physiology, 106(1), 316-327.
  • 17. Rosenblat, M. A., Perrotta, A. S., & Thomas, S. G. (2020). Effect of high-intensity interval training versus sprint interval training on time-trial performance: A systematic review and meta-analysis. Sports Medicine, 50, 1145–1161.
  • 18. Ruegsegger, G. N., & Booth, F. W. (2018). Health benefits of exercise. Cold Spring Harbor Perspectives in Medicine, 8, a029694.
  • 19. Schumann, G., Bonora, R., Ceriotti, F., Clerc-Renaud, P., Ferrero, C. A., Férard, G., Franck, P.F., Gella, F. J., Hoelzel, W., Jørgensen, P. J., Kanno, T., Kessner, A., Klauke, R., Kristiansen, N., Lessinger, J. M., Linsinger, T. P., Misaki, H., Panteghini, M., Pauwels, J., ... Siekmann, L. (2002). IFCC primary reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C. Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase. Clinical Chemistry and Laboratory Medicine, 40(6), 643-648.
  • 20. Schwane, J. A., Johnson, S. R., Vandenakker, C. B., et al. (1983). Delayed onset muscular soreness and plasma CPK and LDH activities after downhill running. Medicine and Science in Sports and Exercise, 15, 51-56.
  • 21. Schuch, F. B., & Vancampfort, D. (2021). Physical activity, exercise, and mental disorders: It is time to move on. Trends in Psychiatry and Psychotherapy, 43, 177–184.
  • 22. Tabata, I. (2019). Tabata training: One of the most energetically effective high-intensity intermittent training methods. Journal of Physiological Sciences, 69, 559–572.
  • 23. World Health Organization. (2018). Global action plan on physical activity 2018-2030: More active people for a healthier world. Geneva, Switzerland: World Health Organization.
  • 24. Yan, Y., & Chen, Q. (2022). Energy expenditure estimation of Tabata by combining acceleration and heart rate. Frontiers in Public Health, 9, 804471.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Sports Training, Physical Activity and Health
Journal Section Research Articles
Authors

Cemile Olğaç Kesler 0009-0002-7162-5828

Önder Şemşek 0000-0002-1461-8560

Publication Date October 31, 2025
Submission Date August 16, 2025
Acceptance Date October 21, 2025
Published in Issue Year 2025 Volume: 5 Issue: 2

Cite

APA Olğaç Kesler, C., & Şemşek, Ö. (2025). HIIT Antrenmanlarının Laktat Dehidrogenaz ve Hemogram Parametrelerine Akut Etkisi. Düzce Üniversitesi Spor Bilimleri Dergisi, 5(2), 29-35.