Research Article
BibTex RIS Cite

Titanya katkılı zirkonya seramiklerin aşınma özelliklerine mullit katkısının etkisi

Year 2022, , 43 - 50, 30.03.2022
https://doi.org/10.24012/dumf.1053347

Abstract

Bu çalışmada, yüksek sinterleme sıcaklıklarında zirkonya-titanya karışımında faz değişimi olup olmadığı ve mullit katkı maddesinin bu karışımın mekanik ve özellikle aşınma özelliklerine etkisi araştırılmıştır. Geleneksel seramik üretim yöntemiyle mullit ve %8 mol titanya katkılı zirkonyum dioksit (%8 mol titanya - %92 mol zirkonya) tozlarını sentezledik. Karışımları aseton ortamında mekanik alaşımlama tekniği ile hazırladık. Mullit sentezlemek için, Al2O3 ve SiO2 toz karışımını stokiyometrik oranlarda hazırladık ve 1600 oC'de 3 saat fırınladık. Daha sonra titanya katkılı zirkonya kompozitleri 1300 oC'de 2 saat fırınladık. Böylece titanya - zirkonya ve mullit kompozit fazlar elde edilmiş, öğütme ve eleme işlemleri gerçekleştirilmiştir. Daha sonra mullitsiz ve ağırlıkça %10 mullit takviyeli titanyum oksit katkılı zirkonya karışımları hazırladık. Tozlar kurutulduktan sonra tek eksenli presleme ile preslenmiştir. Oluşan numuneler hava şartlarında yüksek sıcaklıklı fırında 1500 ve 1600 oC sinterleme sıcaklıklarında 1 ve 5 saat sinterlenmiştir. Son olarak kompozitler üzerinde mikroyapı incelemeleri, faz analizi, 3 nokta eğilme, sertlik, aşınma testleri, su emme, gözeneklilik, büzülme ve yoğunluk sonuçları incelenmiştir. Zirkonya matrikse titanya ve mullit eklenmesi ile kompozit mikroyapısında yeni bir fazın tanımlanmadığı tespit edilmiştir. Ancak mullit katkısı, titanya-zirkonya kompozitlerinin aşınma direncini, sertliğini ve üç nokta eğilme mukavemetini artırdığı sonucuna ulaşılmıştır.

Supporting Institution

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Destek Fonu

Project Number

M-767

Thanks

Yazarlar, desteklerinden dolayı Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri Destek Fonu'na teşekkür ederler.

References

  • [1] T. Boyraz, “An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods,” Ph.D. dissertation, Dept. Metallurg. and Mat. Eng., Istanbul Technical Univ., İstanbul, 2008.
  • [2] A. D. Pekdemir, “Preparation and characterization of boron carbide at low-temperature from boric acid and polyols,” Ph.D. dissertation, Dept. Chem., Ankara Univ., Ankara, 2018.
  • [3] C. B. Abi, “An investigation on fracture toughness of traditional and technical ceramics,” Ph.D. dissertation, Dept. Metallurg. Eng., Afyon Kocatepe Univ., Afyon, 2009.
  • [4] S. Bhaduri, and S. B. Bhaduri, “Enhanced low temperature toughness of Al2O3-ZrO2 nano/nano composites,” Nanostructured Materials, 8(6), pp. 755-763, 1997.
  • [5] G. T. Dahl, S. Döring, T. Krekeler, R. Janssen, M. Ritter, H. Weller and T. Vossmeyer, “Alumina-doped zirconia submicro-particles: Synthesis, thermal stability, and microstructural characterization,” Materials, 12(18), 2856, 2019.
  • [6] C. Chen, Q. Shen, J. Li and L. Zhang, “Sintering and phase transformation of 7wt% calcia-stabilized zirconia ceramics,” Journal of Wuhan University of Technology-Mater. Sci. Ed., 24(2), pp. 304-307, 2009.
  • [7] S. C. Sharma, N. M. Gokhale, R. Dayal and R. Lal, “Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique,” Bulletin of Materials Science, 25(1), pp. 15-20, 2002.
  • [8] K. Tsukuma and M. Shimada, “Strength, fracture toughness and Vickers hardness of CeO 2-stabilized tetragonal ZrO 2 polycrystals (Ce-TZP),” Journal of materials science, 20(4), pp. 1178-1184, 1985.
  • [9] D. Chandra, G. Das and S. Maitra, “Comparison of the Role of M g O and C a O Additives on the Microstructures of Reaction‐Sintered Zirconia–Mullite Composite,” International Journal of Applied Ceramic Technology, 12(4), pp. 771-782, 2015.
  • [10] D. H. Aguilar, L. C. Torres-Gonzalez, L. M. Torres-Martinez, T. Lopez and P. Quintana, “A study of the crystallization of ZrO2 in the sol–gel system: ZrO2–SiO2,” Journal of Solid State Chemistry, 158(2), pp. 349-357, 2001.
  • [11] S. Vasanthavel, P. Nandha Kumar and S. Kannan, “Quantitative analysis on the influence of SiO 2 content on the phase behavior of ZrO 2,” Journal of the American Ceramic Society, 97(2), pp. 635-642, 2014.
  • [12] V. C. Pandolfelli, J. A. Rodrigues and R. Stevens, “Effects of TiO 2 addition on the sintering of ZrO 2· TiO 2 compositions and on the retention of the tetragonal phase of zirconia at room temperature,” Journal of materials science, 26(19), pp. 5327-5334, 1991.
  • [13] C. L. Lin, D. Gan and P. Shen, “Stabilization of zirconia sintered with titanium,” Journal of the American Ceramic Society, 71(8), 624-629, 1988.
  • [14] H. L. Chu, C. L. Wang, H. E. Lee, Y. Y. Sie, R. S. Chen, W. S. Hwang, and H. H. Huang, “Effect of sintering process parameters on the properties of 3Y-PSZ ceramics. In Advanced Materials Research (Vol. 749, pp. 44-48), 2013.
  • [15] B. Stawarczyk, M. Özcan, L. Hallmann, A. Ender, A. Mehl and C. H. Hämmerlet, “The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio,” Clinical oral investigations, 17(1), 269-274, 2013.
  • [16] R. K. Govila, “Strength characterization of yttria-partially stabilized zirconia,” Journal of materials science, 30(10), pp. 2656-2667, 1995.
  • [17] P. F. Liu, Z. Li, P. Xiao, H. Luo and T. H. Jiang, “Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting,” Ceramics International, 44(2), pp. 1394-1403, 2018.
  • [18] J. Moon, H. Choi, H. Kim, C. Lee, “The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coatings,” Surface and Coatings Technology, 155(1), pp. 1-10, 2002.
  • [19] Zhang, Y. L., Jin, X. J., Rong, Y. H., Hsu, T. Y., Jiang, D. Y., & Shi, J. L., On the t→ m martensitic transformation in Ce–Y-TZP ceramics. Acta materialia, 54(5), 1289-1295, 2006.
  • [20] A. Duszová, J. Dusza, K. Tomášek, G. Blugan, and J. Kuebler, “Microstructure and properties of carbon nanotube/zirconia composite,” Journal of the European Ceramic Society, 28(5), pp. 1023-1027, 2008.
  • [21] J. Sun, L. Gao, M. Iwasa, T. Nakayama and K. Niihara, “Failure investigation of carbon nanotube/3Y-TZP nanocomposites,” Ceramics International, 31(8), pp. 1131-1134, 2005.
  • [22] R. El Ouatib, S. Guillemet, B. Durand, A. Samdi, L. E. Rakho and R. Moussa, “Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite,” Journal of the European Ceramic Society, 25(1), pp. 73-80, 2005.
  • [23] I. Kucuk and T. Boyraz, “Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites,” Journal of Ceramic Processing Research, 20(1), pp. 73-79, 2019. [24] P. Kumar, M. Nath, A. Ghosh and H. S. Tripathi, “Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide,” Materials Characterization, 101, pp. 34-39, 2015.
  • [25] J. Roy, S. Das and S. Maitra, “Solgel‐processed mullite coating—a review. International Journal of Applied Ceramic Technology, 12, pp. E71-E77, 2015.
  • [26] Denry and J. R. Kelly, “State of the art of zirconia for dental applications,” Dental materials, 24(3), pp. 299-307, 2008.
  • [27] T. Boyraz and A. Akkuş, “Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics,” Journal of Ceramic Processing Research. Vol. 22, No. 2, pp. 226-231, 2021.
  • [28] Y. Q. Huang, Z. Li, P. F. Liu, T. X. Huang, Y. Li, and P. Xiao, “Tribological properties of Mullite/3Y-TZP ceramics with different content of mullite fabricated by gel-casting,” Applied Surface Science 476, pp. 232-241, 2019.
  • [29] T. Boyraz, “Thermal Properties and Microstructural Characterization of Aluminium Titanate (Al2TiO5)/La2O3-Stabilized Zirconia (ZrO2) Ceramics,” Cumhuriyet Science Journal 39.1: pp. 243-249, 2018.
  • [30] E. Çitak and T. Boyraz, “Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics,” Acta Physica Polonica A, 125(2), pp. 465-468, 2014.
  • [31] M. A. Hafızoğlu, T. Boyraz, A. Akkuş, “Fabrication, characterization and wear properties of mullite reinforced silica-doped zirconia ceramic composites”, in Proc. IMSMATEC’21, Nevşehir, Turkey, 2021, pp. 175-180.
  • [32] M. A. Hafızoğlu, A. Akkuş, T. Boyraz, “Fabrication, characterization and wear properties of mullite reinforced Al2O3-doped ZrO2 ceramic composites,” in Proc. GLOBCER’21, Bandırma, Balıkesir, Turkey, 2021, pp. 673-686.
  • [33] M. A. Hafızoğlu, T. Boyraz, A. Akkuş, “Fabrication and characterization of mullite reinforced TiO2 added ZrO2 ceramics,” in Proc. ISCMP’21, Burdur, Turkey, 2021, p. 61.

The effect of mullite addition on wear properties of titania doped zirconia ceramics

Year 2022, , 43 - 50, 30.03.2022
https://doi.org/10.24012/dumf.1053347

Abstract

In this study, whether there is a phase change in the zirconia-titania mixture at high sintering temperatures and the effect of mullite additive on the mechanical and especially wear properties of this mixture was investigated. We synthesized mullite and 8 mol % titania added zirconium dioxide (8 mol % titania - 92 mol % zirconia) powders by conventional ceramic production route. We prepared the mixtures in acetone environment by mechanical alloying technique. To synthesize mullite, we prepared Al2O3 and SiO2 powders mixture with stoichiometric proportions and fired in air at 1600 oC for 3 h. Then, we fired titania added zirconia composites at 1300 oC for 2 h. Thus, titania - zirconia and mullite composite phases were obtained and grinding and sieving processes were carried out. Then, we prepared mullite-free and 10% by weight mullite reinforced titanium oxide added zirconia mixtures. The powders were pressed by uniaxial pressing after drying. The formed samples were sintered in a high temperature furnace in air conditions for 1 and 5 h at 1500 and 1600 oC sintering temperatures. Finally, microstructure investigations, phase analysis, 3-point bending, hardness, wear tests, absorption of water, porosity, shrinkage and density results were examined on the composites. It was founded that with titania and mullite adding to zirconia matrix, there was not define a new phase in the composite microstructure. But mullite additive increased the wear resistance, hardness and three-point bending strength of the titania-zirconia composites.

Project Number

M-767

References

  • [1] T. Boyraz, “An investigation on physical and electrical properties of CaO/MgO-stabilized zirconia ceramics formed with different methods,” Ph.D. dissertation, Dept. Metallurg. and Mat. Eng., Istanbul Technical Univ., İstanbul, 2008.
  • [2] A. D. Pekdemir, “Preparation and characterization of boron carbide at low-temperature from boric acid and polyols,” Ph.D. dissertation, Dept. Chem., Ankara Univ., Ankara, 2018.
  • [3] C. B. Abi, “An investigation on fracture toughness of traditional and technical ceramics,” Ph.D. dissertation, Dept. Metallurg. Eng., Afyon Kocatepe Univ., Afyon, 2009.
  • [4] S. Bhaduri, and S. B. Bhaduri, “Enhanced low temperature toughness of Al2O3-ZrO2 nano/nano composites,” Nanostructured Materials, 8(6), pp. 755-763, 1997.
  • [5] G. T. Dahl, S. Döring, T. Krekeler, R. Janssen, M. Ritter, H. Weller and T. Vossmeyer, “Alumina-doped zirconia submicro-particles: Synthesis, thermal stability, and microstructural characterization,” Materials, 12(18), 2856, 2019.
  • [6] C. Chen, Q. Shen, J. Li and L. Zhang, “Sintering and phase transformation of 7wt% calcia-stabilized zirconia ceramics,” Journal of Wuhan University of Technology-Mater. Sci. Ed., 24(2), pp. 304-307, 2009.
  • [7] S. C. Sharma, N. M. Gokhale, R. Dayal and R. Lal, “Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique,” Bulletin of Materials Science, 25(1), pp. 15-20, 2002.
  • [8] K. Tsukuma and M. Shimada, “Strength, fracture toughness and Vickers hardness of CeO 2-stabilized tetragonal ZrO 2 polycrystals (Ce-TZP),” Journal of materials science, 20(4), pp. 1178-1184, 1985.
  • [9] D. Chandra, G. Das and S. Maitra, “Comparison of the Role of M g O and C a O Additives on the Microstructures of Reaction‐Sintered Zirconia–Mullite Composite,” International Journal of Applied Ceramic Technology, 12(4), pp. 771-782, 2015.
  • [10] D. H. Aguilar, L. C. Torres-Gonzalez, L. M. Torres-Martinez, T. Lopez and P. Quintana, “A study of the crystallization of ZrO2 in the sol–gel system: ZrO2–SiO2,” Journal of Solid State Chemistry, 158(2), pp. 349-357, 2001.
  • [11] S. Vasanthavel, P. Nandha Kumar and S. Kannan, “Quantitative analysis on the influence of SiO 2 content on the phase behavior of ZrO 2,” Journal of the American Ceramic Society, 97(2), pp. 635-642, 2014.
  • [12] V. C. Pandolfelli, J. A. Rodrigues and R. Stevens, “Effects of TiO 2 addition on the sintering of ZrO 2· TiO 2 compositions and on the retention of the tetragonal phase of zirconia at room temperature,” Journal of materials science, 26(19), pp. 5327-5334, 1991.
  • [13] C. L. Lin, D. Gan and P. Shen, “Stabilization of zirconia sintered with titanium,” Journal of the American Ceramic Society, 71(8), 624-629, 1988.
  • [14] H. L. Chu, C. L. Wang, H. E. Lee, Y. Y. Sie, R. S. Chen, W. S. Hwang, and H. H. Huang, “Effect of sintering process parameters on the properties of 3Y-PSZ ceramics. In Advanced Materials Research (Vol. 749, pp. 44-48), 2013.
  • [15] B. Stawarczyk, M. Özcan, L. Hallmann, A. Ender, A. Mehl and C. H. Hämmerlet, “The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio,” Clinical oral investigations, 17(1), 269-274, 2013.
  • [16] R. K. Govila, “Strength characterization of yttria-partially stabilized zirconia,” Journal of materials science, 30(10), pp. 2656-2667, 1995.
  • [17] P. F. Liu, Z. Li, P. Xiao, H. Luo and T. H. Jiang, “Microstructure and mechanical properties of in-situ grown mullite toughened 3Y-TZP zirconia ceramics fabricated by gelcasting,” Ceramics International, 44(2), pp. 1394-1403, 2018.
  • [18] J. Moon, H. Choi, H. Kim, C. Lee, “The effects of heat treatment on the phase transformation behavior of plasma-sprayed stabilized ZrO2 coatings,” Surface and Coatings Technology, 155(1), pp. 1-10, 2002.
  • [19] Zhang, Y. L., Jin, X. J., Rong, Y. H., Hsu, T. Y., Jiang, D. Y., & Shi, J. L., On the t→ m martensitic transformation in Ce–Y-TZP ceramics. Acta materialia, 54(5), 1289-1295, 2006.
  • [20] A. Duszová, J. Dusza, K. Tomášek, G. Blugan, and J. Kuebler, “Microstructure and properties of carbon nanotube/zirconia composite,” Journal of the European Ceramic Society, 28(5), pp. 1023-1027, 2008.
  • [21] J. Sun, L. Gao, M. Iwasa, T. Nakayama and K. Niihara, “Failure investigation of carbon nanotube/3Y-TZP nanocomposites,” Ceramics International, 31(8), pp. 1131-1134, 2005.
  • [22] R. El Ouatib, S. Guillemet, B. Durand, A. Samdi, L. E. Rakho and R. Moussa, “Reactivity of aluminum sulfate and silica in molten alkali-metal sulfates in order to prepare mullite,” Journal of the European Ceramic Society, 25(1), pp. 73-80, 2005.
  • [23] I. Kucuk and T. Boyraz, “Structural and mechanical characterization of mullite and aluminium titanate reinforced yttria stabilized zirconia ceramic composites,” Journal of Ceramic Processing Research, 20(1), pp. 73-79, 2019. [24] P. Kumar, M. Nath, A. Ghosh and H. S. Tripathi, “Enhancement of thermal shock resistance of reaction sintered mullite–zirconia composites in the presence of lanthanum oxide,” Materials Characterization, 101, pp. 34-39, 2015.
  • [25] J. Roy, S. Das and S. Maitra, “Solgel‐processed mullite coating—a review. International Journal of Applied Ceramic Technology, 12, pp. E71-E77, 2015.
  • [26] Denry and J. R. Kelly, “State of the art of zirconia for dental applications,” Dental materials, 24(3), pp. 299-307, 2008.
  • [27] T. Boyraz and A. Akkuş, “Investigation of wear properties of mullite and aluminium titanate added porcelain ceramics,” Journal of Ceramic Processing Research. Vol. 22, No. 2, pp. 226-231, 2021.
  • [28] Y. Q. Huang, Z. Li, P. F. Liu, T. X. Huang, Y. Li, and P. Xiao, “Tribological properties of Mullite/3Y-TZP ceramics with different content of mullite fabricated by gel-casting,” Applied Surface Science 476, pp. 232-241, 2019.
  • [29] T. Boyraz, “Thermal Properties and Microstructural Characterization of Aluminium Titanate (Al2TiO5)/La2O3-Stabilized Zirconia (ZrO2) Ceramics,” Cumhuriyet Science Journal 39.1: pp. 243-249, 2018.
  • [30] E. Çitak and T. Boyraz, “Microstructural characterization and thermal properties of aluminium titanate/YSZ Ceramics,” Acta Physica Polonica A, 125(2), pp. 465-468, 2014.
  • [31] M. A. Hafızoğlu, T. Boyraz, A. Akkuş, “Fabrication, characterization and wear properties of mullite reinforced silica-doped zirconia ceramic composites”, in Proc. IMSMATEC’21, Nevşehir, Turkey, 2021, pp. 175-180.
  • [32] M. A. Hafızoğlu, A. Akkuş, T. Boyraz, “Fabrication, characterization and wear properties of mullite reinforced Al2O3-doped ZrO2 ceramic composites,” in Proc. GLOBCER’21, Bandırma, Balıkesir, Turkey, 2021, pp. 673-686.
  • [33] M. A. Hafızoğlu, T. Boyraz, A. Akkuş, “Fabrication and characterization of mullite reinforced TiO2 added ZrO2 ceramics,” in Proc. ISCMP’21, Burdur, Turkey, 2021, p. 61.
There are 32 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mehmet Akif Hafızoğlu 0000-0002-9689-3004

Tahsin Boyraz 0000-0003-4404-6388

Ahmet Akkuş 0000-0002-6881-9333

Project Number M-767
Publication Date March 30, 2022
Submission Date January 4, 2022
Published in Issue Year 2022

Cite

IEEE M. A. Hafızoğlu, T. Boyraz, and A. Akkuş, “The effect of mullite addition on wear properties of titania doped zirconia ceramics”, DÜMF MD, vol. 13, no. 1, pp. 43–50, 2022, doi: 10.24012/dumf.1053347.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456