Research Article
BibTex RIS Cite

Pasternak türü zemin üzerindeki ince plakların statik analizi için yakınsama çalışmaları

Year 2023, , 197 - 205, 23.03.2023
https://doi.org/10.24012/dumf.1228192

Abstract

Pasternak türü zemin üzerine oturan ince plakların statik analizi için yakınsama çalışmaları yapılmıştır. Plaklar, formülasyonları Kirchhoff ve Reissner-Mindlin plak teorilerine dayanan iki farklı sonlu eleman kullanılarak modellenmiştir. Reissner-Mindlin plak teorisinin sonlu elemanlar uygulamasında tam integrasyon kullanıldığında ortaya çıkan kayma kilitlenmesi sorunu, selektif integrasyon ile ortadan kaldırılmıştır. Pasternak zemini, mevcut bir zemin sonlu elemana ait parametre matrislerinin, plak sonlu elemanların çökmelere karşılık gelen rijitlik matrisi terimlerine eklenmesiyle tanımlanmıştır. Farklı sınır koşulları, plak kalınlıkları ve zemin parametreleri için yakınsama oranları elde edilmiş ve sayısal örneklerle karşılaştırmalı olarak verilmiştir.

References

  • [1] A.E.H. Love, “The small free vibration and deformation of a thin elastic shell”. Philosophical Transactions of the Royal Society of London A, vol. 179, pp. 491-546, 1888.
  • [2] G. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”, J. Reine Angew. Math., vol. 40, pp. 51-88, 1850.
  • [3] E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates”, Journal of Applied Mechanics, vol. 67, pp. A67-A77, 1945.
  • [4] R.D. Mindlin, “Influence of rotary inertia and shear on flexural motion of isotropic elastic plates”, Journal of Applied Mechanics, vol. 18, pp. 31-38, 1951.
  • [5] Ü.H. Çalık-Karaköse, “Static analysis of thin plates using Kirchhoff and Reissner-Mindlin plate theories”, The 15th International Scientific Research Congress- Science and Engineering Sciences - (UBAK), 17-18 December 2022, Ankara.
  • [6] E. Winkler, “Theory of Elasticity and Strength of Materials”. Dominicus, Prague, 1867.
  • [7] P.L. Pasternak, “On a new method of analysis of an elastic foundation by means of two foundation constants”. Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, USSR, pp. 1-56, 1954.
  • [8] C.V.G. Vallabhan, W.T. Straughan, Y.C. Das, “Refined Model of Analysis of Plates of Elastic Foundations”. Journal of Engineering Mechanics, vol. 117, no. 12, pp. 2830-2844, 1994.
  • [9] M. Çelik, and A. Saygun, “A method for the analysis of plates on a two-parameter foundation”, International Journal of Solids and Structures, vol. 36, pp. 2891-2915, 1999.
  • [10] A. Joodaky and I. Joodaky, “A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundations”, International Journal of Mechanical Sciences, vol. 100, pp. 322-327, 2015.
  • [11] Gan, J., Yuan, H., Li, S., Peng, Q., Zhang, H., “A computing method for bending problem of thin plate on Pasternak foundation”, Advances in Mechanical Engineering, vol. 12, no. 7, pp. 1-10, 2020.
  • [12] Y. Xiang, C.M. Wang, S. Kitipornchai, “Exact vibration solution for initially stressed Mindlin plates on Pasternak foundation”. Int. J. Mech. Sci., vol. 36, no. 4, pp. 311-316, 1994.
  • [13] M.H. Omurtag, A. Ozutok, A.Y. Akoz, “Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential”. Int. J. Numer. Methods Eng., vol. 40, no. 2, pp. 295-317, 1997.
  • [14] D. Zhou, Y.K. Cheung, S.H. Lo, F.T.K. Au, “Three- dimensional vibration analysis of rectangular thick plates on Pasternak foundations”. Int. J. Numer. Methods. Eng., vol. 59, no. 10, pp. 1313-1334, 2004.
  • [15] MATLAB R2019a, Natick, Massachusetts: The Mathworks, Inc.
  • [16] R.J. Melosh, “Structural analysis of solids”. J. Structural Engineering, ASCE, vol. 4, pp. 205-223, 1963.
  • [17] O.C. Zienkiewicz, and Y.K. Cheung, “The finite element method for analysis of elastic isotropic and isotropic slabs”. Proc. Inst. Civ. Engng., vol. 28, pp. 471-88, 1964.
  • [18] O.C. Zienkiewicz, and Y.K. Cheung, “Finite element procedures in the solution of plate and shell problems in Stress Analysis”, O.C. Zienkiewicz and G.S. Holister (Eds.), Chapter 8. John Wiley & Sons, Chichester, 1965.
  • [19] T.J.R. Hughes, R.L. Taylor, and W. Kanok- Nukulchai, “A simple and efficient finite element for plate bending”, Int. J. Numer. Meth. Engng., vol. 11, pp. 1529-43, 1977.
  • [20] E.D.L. Pugh, E. Hinton, and O.C. Zienkiewicz, “A study of quadrilateral plate bending elements with reduced integration”. J. Appl. Mech., vol. 12, pp. 1059-1079, 1978.
  • [21] Ü.H. Çalık-Karaköse, “Influence Surface Coefficients of Plates Resting on Pasternak Foundation”, DUJE (Dicle University Journal of Engineering), vol. 13, no. 2, pp. 371-377, 2022.
  • [22] K.Y. Lam, C.M. Wang, X.Q. He, “Canonical exact solution for Levy-plates on two-parameter foundation using Green’s functions”. Eng. Struct., vol. 22, no. 4, pp. 364-378, 2000.

Convergence studies for static analysis of thin plates on Pasternak Foundations

Year 2023, , 197 - 205, 23.03.2023
https://doi.org/10.24012/dumf.1228192

Abstract

Convergence studies for the static analysis of thin plates resting on Pasternak foundations is performed. The plates are discretized using two different finite elements, the formulations of which are based on the Kirchhoff and Reissner-Mindlin plate theories. The shear locking problem which arises when full integration is used in the finite element implementation of Reissner-Mindlin plate theory is eliminated with selective integration. The Pasternak foundation is accounted for by adding the parameter matrices of an existing soil finite element to the stiffness matrix terms of the plate finite elements corresponding to deflections. Convergence rates for different boundary conditions, plate thicknesses and soil parameters are obtained and given comparatively through numerical examples.

References

  • [1] A.E.H. Love, “The small free vibration and deformation of a thin elastic shell”. Philosophical Transactions of the Royal Society of London A, vol. 179, pp. 491-546, 1888.
  • [2] G. Kirchhoff, “Über das Gleichgewicht und die Bewegung einer elastischen Scheibe”, J. Reine Angew. Math., vol. 40, pp. 51-88, 1850.
  • [3] E. Reissner, “The effect of transverse shear deformation on the bending of elastic plates”, Journal of Applied Mechanics, vol. 67, pp. A67-A77, 1945.
  • [4] R.D. Mindlin, “Influence of rotary inertia and shear on flexural motion of isotropic elastic plates”, Journal of Applied Mechanics, vol. 18, pp. 31-38, 1951.
  • [5] Ü.H. Çalık-Karaköse, “Static analysis of thin plates using Kirchhoff and Reissner-Mindlin plate theories”, The 15th International Scientific Research Congress- Science and Engineering Sciences - (UBAK), 17-18 December 2022, Ankara.
  • [6] E. Winkler, “Theory of Elasticity and Strength of Materials”. Dominicus, Prague, 1867.
  • [7] P.L. Pasternak, “On a new method of analysis of an elastic foundation by means of two foundation constants”. Cosudarstrennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture, Moscow, USSR, pp. 1-56, 1954.
  • [8] C.V.G. Vallabhan, W.T. Straughan, Y.C. Das, “Refined Model of Analysis of Plates of Elastic Foundations”. Journal of Engineering Mechanics, vol. 117, no. 12, pp. 2830-2844, 1994.
  • [9] M. Çelik, and A. Saygun, “A method for the analysis of plates on a two-parameter foundation”, International Journal of Solids and Structures, vol. 36, pp. 2891-2915, 1999.
  • [10] A. Joodaky and I. Joodaky, “A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundations”, International Journal of Mechanical Sciences, vol. 100, pp. 322-327, 2015.
  • [11] Gan, J., Yuan, H., Li, S., Peng, Q., Zhang, H., “A computing method for bending problem of thin plate on Pasternak foundation”, Advances in Mechanical Engineering, vol. 12, no. 7, pp. 1-10, 2020.
  • [12] Y. Xiang, C.M. Wang, S. Kitipornchai, “Exact vibration solution for initially stressed Mindlin plates on Pasternak foundation”. Int. J. Mech. Sci., vol. 36, no. 4, pp. 311-316, 1994.
  • [13] M.H. Omurtag, A. Ozutok, A.Y. Akoz, “Free vibration analysis of Kirchhoff plates resting on elastic foundation by mixed finite element formulation based on Gateaux differential”. Int. J. Numer. Methods Eng., vol. 40, no. 2, pp. 295-317, 1997.
  • [14] D. Zhou, Y.K. Cheung, S.H. Lo, F.T.K. Au, “Three- dimensional vibration analysis of rectangular thick plates on Pasternak foundations”. Int. J. Numer. Methods. Eng., vol. 59, no. 10, pp. 1313-1334, 2004.
  • [15] MATLAB R2019a, Natick, Massachusetts: The Mathworks, Inc.
  • [16] R.J. Melosh, “Structural analysis of solids”. J. Structural Engineering, ASCE, vol. 4, pp. 205-223, 1963.
  • [17] O.C. Zienkiewicz, and Y.K. Cheung, “The finite element method for analysis of elastic isotropic and isotropic slabs”. Proc. Inst. Civ. Engng., vol. 28, pp. 471-88, 1964.
  • [18] O.C. Zienkiewicz, and Y.K. Cheung, “Finite element procedures in the solution of plate and shell problems in Stress Analysis”, O.C. Zienkiewicz and G.S. Holister (Eds.), Chapter 8. John Wiley & Sons, Chichester, 1965.
  • [19] T.J.R. Hughes, R.L. Taylor, and W. Kanok- Nukulchai, “A simple and efficient finite element for plate bending”, Int. J. Numer. Meth. Engng., vol. 11, pp. 1529-43, 1977.
  • [20] E.D.L. Pugh, E. Hinton, and O.C. Zienkiewicz, “A study of quadrilateral plate bending elements with reduced integration”. J. Appl. Mech., vol. 12, pp. 1059-1079, 1978.
  • [21] Ü.H. Çalık-Karaköse, “Influence Surface Coefficients of Plates Resting on Pasternak Foundation”, DUJE (Dicle University Journal of Engineering), vol. 13, no. 2, pp. 371-377, 2022.
  • [22] K.Y. Lam, C.M. Wang, X.Q. He, “Canonical exact solution for Levy-plates on two-parameter foundation using Green’s functions”. Eng. Struct., vol. 22, no. 4, pp. 364-378, 2000.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ülkü Hülya Çalık Karaköse 0000-0002-2944-7434

Publication Date March 23, 2023
Submission Date January 2, 2023
Published in Issue Year 2023

Cite

IEEE Ü. H. Çalık Karaköse, “Convergence studies for static analysis of thin plates on Pasternak Foundations”, DÜMF MD, vol. 14, no. 1, pp. 197–205, 2023, doi: 10.24012/dumf.1228192.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456