Pasternak türü zemin üzerine oturan ince plakların statik analizi için yakınsama çalışmaları yapılmıştır. Plaklar, formülasyonları Kirchhoff ve Reissner-Mindlin plak teorilerine dayanan iki farklı sonlu eleman kullanılarak modellenmiştir. Reissner-Mindlin plak teorisinin sonlu elemanlar uygulamasında tam integrasyon kullanıldığında ortaya çıkan kayma kilitlenmesi sorunu, selektif integrasyon ile ortadan kaldırılmıştır. Pasternak zemini, mevcut bir zemin sonlu elemana ait parametre matrislerinin, plak sonlu elemanların çökmelere karşılık gelen rijitlik matrisi terimlerine eklenmesiyle tanımlanmıştır. Farklı sınır koşulları, plak kalınlıkları ve zemin parametreleri için yakınsama oranları elde edilmiş ve sayısal örneklerle karşılaştırmalı olarak verilmiştir.
[1] A.E.H. Love, “The small free vibration and
deformation of a thin elastic shell”. Philosophical
Transactions of the Royal Society of London A, vol.
179, pp. 491-546, 1888.
[2] G. Kirchhoff, “Über das Gleichgewicht und die
Bewegung einer elastischen Scheibe”, J. Reine Angew.
Math., vol. 40, pp. 51-88, 1850.
[3] E. Reissner, “The effect of transverse shear
deformation on the bending of elastic plates”,
Journal of Applied Mechanics, vol. 67, pp. A67-A77,
1945.
[4] R.D. Mindlin, “Influence of rotary inertia and
shear on flexural motion of isotropic elastic plates”,
Journal of Applied Mechanics, vol. 18, pp. 31-38,
1951.
[5] Ü.H. Çalık-Karaköse, “Static analysis of thin plates
using Kirchhoff and Reissner-Mindlin plate theories”,
The 15th International Scientific Research Congress-
Science and Engineering Sciences - (UBAK), 17-18
December 2022, Ankara.
[6] E. Winkler, “Theory of Elasticity and Strength of
Materials”. Dominicus, Prague, 1867.
[7] P.L. Pasternak, “On a new method of analysis of an
elastic foundation by means of two foundation
constants”. Cosudarstrennoe Izdatelstvo Literaturi po
Stroitelstvu i Arkhitekture, Moscow, USSR, pp. 1-56,
1954.
[8] C.V.G. Vallabhan, W.T. Straughan, Y.C. Das,
“Refined Model of Analysis of Plates of Elastic
Foundations”. Journal of Engineering Mechanics,
vol. 117, no. 12, pp. 2830-2844, 1994.
[9] M. Çelik, and A. Saygun, “A method for the
analysis of plates on a two-parameter
foundation”, International Journal of Solids and
Structures, vol. 36, pp. 2891-2915, 1999.
[10] A. Joodaky and I. Joodaky, “A semi-analytical study
on static behavior of thin skew plates on Winkler and
Pasternak foundations”, International Journal of
Mechanical Sciences, vol. 100, pp. 322-327, 2015.
[11] Gan, J., Yuan, H., Li, S., Peng, Q., Zhang, H., “A
computing method for bending problem of thin plate
on Pasternak foundation”, Advances in Mechanical
Engineering, vol. 12, no. 7, pp. 1-10, 2020.
[12] Y. Xiang, C.M. Wang, S. Kitipornchai, “Exact
vibration solution for initially stressed
Mindlin plates on Pasternak foundation”. Int. J.
Mech. Sci., vol. 36, no. 4, pp. 311-316, 1994.
[13] M.H. Omurtag, A. Ozutok, A.Y. Akoz, “Free
vibration analysis of Kirchhoff plates resting on
elastic foundation by mixed finite element
formulation based on Gateaux differential”. Int. J.
Numer. Methods Eng., vol. 40, no. 2, pp. 295-317,
1997.
[14] D. Zhou, Y.K. Cheung, S.H. Lo, F.T.K. Au, “Three-
dimensional vibration analysis of rectangular thick
plates on Pasternak foundations”. Int. J. Numer.
Methods. Eng., vol. 59, no. 10, pp. 1313-1334, 2004.
[15] MATLAB R2019a, Natick, Massachusetts: The
Mathworks, Inc.
[16] R.J. Melosh, “Structural analysis of solids”. J.
Structural Engineering, ASCE, vol. 4, pp. 205-223,
1963.
[17] O.C. Zienkiewicz, and Y.K. Cheung, “The finite
element method for analysis of elastic isotropic
and isotropic slabs”. Proc. Inst. Civ. Engng., vol. 28,
pp. 471-88, 1964.
[18] O.C. Zienkiewicz, and Y.K. Cheung, “Finite element
procedures in the solution of plate and
shell problems in Stress Analysis”, O.C. Zienkiewicz
and G.S. Holister (Eds.), Chapter 8. John
Wiley & Sons, Chichester, 1965.
[19] T.J.R. Hughes, R.L. Taylor, and W. Kanok-
Nukulchai, “A simple and efficient finite element for
plate bending”, Int. J. Numer. Meth. Engng., vol. 11,
pp. 1529-43, 1977.
[20] E.D.L. Pugh, E. Hinton, and O.C. Zienkiewicz, “A
study of quadrilateral plate bending elements with
reduced integration”. J. Appl. Mech., vol. 12, pp.
1059-1079, 1978.
[21] Ü.H. Çalık-Karaköse, “Influence Surface
Coefficients of Plates Resting on Pasternak
Foundation”, DUJE (Dicle University Journal of
Engineering), vol. 13, no. 2, pp. 371-377, 2022.
[22] K.Y. Lam, C.M. Wang, X.Q. He, “Canonical
exact solution for Levy-plates on two-parameter
foundation using Green’s functions”. Eng. Struct.,
vol. 22, no. 4, pp. 364-378, 2000.
Convergence studies for static analysis of thin plates on Pasternak Foundations
Convergence studies for the static analysis of thin plates resting on Pasternak foundations is performed. The plates are discretized using two different finite elements, the formulations of which are based on the Kirchhoff and Reissner-Mindlin plate theories. The shear locking problem which arises when full integration is used in the finite element implementation of Reissner-Mindlin plate theory is eliminated with selective integration. The Pasternak foundation is accounted for by adding the parameter matrices of an existing soil finite element to the stiffness matrix terms of the plate finite elements corresponding to deflections. Convergence rates for different boundary conditions, plate thicknesses and soil parameters are obtained and given comparatively through numerical examples.
[1] A.E.H. Love, “The small free vibration and
deformation of a thin elastic shell”. Philosophical
Transactions of the Royal Society of London A, vol.
179, pp. 491-546, 1888.
[2] G. Kirchhoff, “Über das Gleichgewicht und die
Bewegung einer elastischen Scheibe”, J. Reine Angew.
Math., vol. 40, pp. 51-88, 1850.
[3] E. Reissner, “The effect of transverse shear
deformation on the bending of elastic plates”,
Journal of Applied Mechanics, vol. 67, pp. A67-A77,
1945.
[4] R.D. Mindlin, “Influence of rotary inertia and
shear on flexural motion of isotropic elastic plates”,
Journal of Applied Mechanics, vol. 18, pp. 31-38,
1951.
[5] Ü.H. Çalık-Karaköse, “Static analysis of thin plates
using Kirchhoff and Reissner-Mindlin plate theories”,
The 15th International Scientific Research Congress-
Science and Engineering Sciences - (UBAK), 17-18
December 2022, Ankara.
[6] E. Winkler, “Theory of Elasticity and Strength of
Materials”. Dominicus, Prague, 1867.
[7] P.L. Pasternak, “On a new method of analysis of an
elastic foundation by means of two foundation
constants”. Cosudarstrennoe Izdatelstvo Literaturi po
Stroitelstvu i Arkhitekture, Moscow, USSR, pp. 1-56,
1954.
[8] C.V.G. Vallabhan, W.T. Straughan, Y.C. Das,
“Refined Model of Analysis of Plates of Elastic
Foundations”. Journal of Engineering Mechanics,
vol. 117, no. 12, pp. 2830-2844, 1994.
[9] M. Çelik, and A. Saygun, “A method for the
analysis of plates on a two-parameter
foundation”, International Journal of Solids and
Structures, vol. 36, pp. 2891-2915, 1999.
[10] A. Joodaky and I. Joodaky, “A semi-analytical study
on static behavior of thin skew plates on Winkler and
Pasternak foundations”, International Journal of
Mechanical Sciences, vol. 100, pp. 322-327, 2015.
[11] Gan, J., Yuan, H., Li, S., Peng, Q., Zhang, H., “A
computing method for bending problem of thin plate
on Pasternak foundation”, Advances in Mechanical
Engineering, vol. 12, no. 7, pp. 1-10, 2020.
[12] Y. Xiang, C.M. Wang, S. Kitipornchai, “Exact
vibration solution for initially stressed
Mindlin plates on Pasternak foundation”. Int. J.
Mech. Sci., vol. 36, no. 4, pp. 311-316, 1994.
[13] M.H. Omurtag, A. Ozutok, A.Y. Akoz, “Free
vibration analysis of Kirchhoff plates resting on
elastic foundation by mixed finite element
formulation based on Gateaux differential”. Int. J.
Numer. Methods Eng., vol. 40, no. 2, pp. 295-317,
1997.
[14] D. Zhou, Y.K. Cheung, S.H. Lo, F.T.K. Au, “Three-
dimensional vibration analysis of rectangular thick
plates on Pasternak foundations”. Int. J. Numer.
Methods. Eng., vol. 59, no. 10, pp. 1313-1334, 2004.
[15] MATLAB R2019a, Natick, Massachusetts: The
Mathworks, Inc.
[16] R.J. Melosh, “Structural analysis of solids”. J.
Structural Engineering, ASCE, vol. 4, pp. 205-223,
1963.
[17] O.C. Zienkiewicz, and Y.K. Cheung, “The finite
element method for analysis of elastic isotropic
and isotropic slabs”. Proc. Inst. Civ. Engng., vol. 28,
pp. 471-88, 1964.
[18] O.C. Zienkiewicz, and Y.K. Cheung, “Finite element
procedures in the solution of plate and
shell problems in Stress Analysis”, O.C. Zienkiewicz
and G.S. Holister (Eds.), Chapter 8. John
Wiley & Sons, Chichester, 1965.
[19] T.J.R. Hughes, R.L. Taylor, and W. Kanok-
Nukulchai, “A simple and efficient finite element for
plate bending”, Int. J. Numer. Meth. Engng., vol. 11,
pp. 1529-43, 1977.
[20] E.D.L. Pugh, E. Hinton, and O.C. Zienkiewicz, “A
study of quadrilateral plate bending elements with
reduced integration”. J. Appl. Mech., vol. 12, pp.
1059-1079, 1978.
[21] Ü.H. Çalık-Karaköse, “Influence Surface
Coefficients of Plates Resting on Pasternak
Foundation”, DUJE (Dicle University Journal of
Engineering), vol. 13, no. 2, pp. 371-377, 2022.
[22] K.Y. Lam, C.M. Wang, X.Q. He, “Canonical
exact solution for Levy-plates on two-parameter
foundation using Green’s functions”. Eng. Struct.,
vol. 22, no. 4, pp. 364-378, 2000.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir.