Research Article
BibTex RIS Cite

Measurement Temperature Change In 1D Virtual Phantom Using Time of Flight Method

Year 2023, , 661 - 669, 31.12.2023
https://doi.org/10.24012/dumf.1321801

Abstract

In study, virtual acoustic phantom was created and acoustic simulation was performed for two
different temperature distributions. Local time-shifts were calculated by applying cross
correlation to ultrasonic signals obtained from simulation results. The temperature distribution
was estimated by multiplying the axial slopes of the time shift vector by the tissue constant. In
the temperature estimation, the back difference method and the linear fitting were used to find
the slopes of the time shifts, and the results of two methods were compared. In study, the first
temperature distribution, defines the tissue is uniform at 37°C, and in the second temperature
distribution, the temperature is reaching 45°C in the center of tissue in the shape of Gaussian
curve. The maximum deviation in the temperature estimation were found 1.99°C in the back
difference method and 0.75°C in the linear fitting method. Study shows that, time-shift based
temperature estimation is successful in on one-dimensional application. Thus, basis for future
multidimensional simulation and experimental studies has been established.

References

  • [1] Dewhirst, M.W., Abraham, J. ve Viglianti, B. "Evolution of Thermal Dosimetry for Application of Hyperthermia to Treat Cancer". Advances in Heat Transfer, 47: 397–421. (2015)
  • [2] Chu, K.F. ve Dupuy, D.E. "Thermal ablation of tumours: Biological mechanisms and advances in therapy". Nature Reviews Cancer, 14(3): 199–208. (2014)
  • [3] Smith, S. ve Gillams, A. "Imaging appearances following thermal ablation". Clinical Radiology, 63(1): 1–11. (2008)
  • [4] Lee, F.-F., He, Q., Gao, J., Pan, A., Sun, S., Liang, X. vd. "Evaluating HIFU-mediated local drug release using thermal strain imaging: Phantom and preliminary in-vivo studies". Medical Physics, 46(9): 3864–76. (2019)
  • [5] Rieke, V. ve Pauly, K.B. "MR thermometry". Journal of Magnetic Resonance Imaging, 27(2): 376–90. (2008)
  • [6] Blackwell, J., Kraśny, M.J., O’Brien, A., Ashkan, K., Galligan, J., Destrade, M. vd. "Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices". Journal of Magnetic Resonance Imaging, 55(2): 389–403. (2022)
  • [7] Lewis, M.A., Staruch, R.M. ve Chopra, R. "Thermometry and ablation monitoring with ultrasound". International Journal of Hyperthermia, 31(2): 163–81. (2015)
  • [8] Maass-Moreno, R., Damianou, C.A. ve Sanghvi, N.T. "Tissue temperature estimation in-vivo with pulse-echo". Proceedings of the IEEE Ultrasonics Symposium, Seattle. p. 1225–9. (1995)
  • [9] Simon, C., Vanbaren, P. ve Ebbini, E.S. "Two-dimensional temperature estimation using diagnostic ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4): 1088–99. (1998)
  • [10] Anand, A., Savéry, D. ve Hall, C. "Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(1): 23–30. (2007)
  • [11] Sakakibara, R., Shindo, Y., Kato, K., Choi, P.K. ve Takeuchi, A. "Basic study of 3-D non-invasive measurement of temperature distribution using ultrasound images during HIFU heating". Advances in Science, Technology and Engineering Systems, 5(6): 1306–11. (2020)
  • [12] Liu, D. ve Ebbini, E.S. "Real-time 2-D temperature imaging using ultrasound". IEEE Transactions on Biomedical Engineering, 57(1): 12–6. (2010)
  • [13] Varghese, T., Zagzebski, J.A., Chen, Q., Techavipoo, U., Frank, G., Johnson, C. vd. "Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results". Ultrasound in Medicine and Biology, 28(3): 321–9. (2002)
  • [14] Chiang, H.K., Liao, C.-K., Chou, Y.-H., Pan, T.-T. ve Pan, S.-C. "In-vitro ultrasound temperature monitoring in bovine liver during RF ablation therapy using autocorrelation". Proceedings of the IEEE Ultrasonics Symposium, Münih. p. 1439–42. (2002)
  • [15] Bayat, M. "Non-Invasive In Vivo Ultrasound Temperature Estimation", Doktora Tezi, The Faculty Of The Graduate School Of The University Of Minnesota. [Minneapolis]. (2014)
  • [16] Park, S., Hwang, J., Park, J.-E., Ahn, Y.-C. ve Kang, H.W. "Application of Ultrasound Thermal Imaging for Monitoring Laser Ablation in Ex Vivo Cardiac Tissue". Lasers in Surgery and Medicine, 52(3): 218–27. (2020)
  • [17] Foiret, J. ve Ferrara, K. "Advances in thermal strain imaging: 3D motion and tumor validation studies". 2015 IEEE International Ultrasonics Symposium, IUS 2015, Taipei. p. 1–4. (2015)
  • [18] Nguyen, M.M., Ding, X., Leers, S.A. ve Kim, K. "Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer". Ultrasound in Medicine and Biology, 43(6): 1263–74. (2017)
  • [19] Shah, J., Thomsen, S., Milner, T.E. ve Emelianov, S.Y. "Ultrasound guidance and monitoring of laser-based fat removal". Lasers in Surgery and Medicine, 40(10): 680–7. (2008)
  • [20] Yin, C., Wang, G., Yang, K., Tu, J., Guo, X. ve Zhang, D. "Thermal strain imaging in vivo using interpolated IQ-images". Ultrasonics, 110: 106292. (2021)
  • [21] Arthur, R.M., Straube, W.L., Starman, J.D. ve Moros, E.G. "Noninvasive temperature estimation based on the energy of backscattered ultrasound". Medical Physics, 30(6): 1021–9. (2003)
  • [22] Maraghechi, B., Kolios, M.C. ve Tavakkoli, J. "Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues". International Journal of Hyperthermia, 36(1): 964–74. (2019)
  • [23] Shaswary, E., Assi, H., Yang, C., Kumaradas, J.C., Kolios, M.C., Peyman, G. vd. "Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics". Ultrasonics, 114: 106406. (2021)
  • [24] Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K. vd. "Photoacoustic imaging and temperature measurement for photothermal cancer therapy". Journal of Biomedical Optics, 13(3): 034024. (2008)
  • [25] MATLAB. "R2020a". The MathWorks Inc., Natick, Massachusetts. (2020)
  • [26] Duck, F.A. "Physical properties of tissue: A comprehensive reference book". Academic Press Inc, ISBN 0-12-222800-6, Cambridge. (1990)
  • [27] Treeby, B.E., Budisky, J., Wise, E.S., Jaros, J. ve Cox, B.T. "Rapid calculation of acoustic fields from arbitrary continuous-wave sources". Journal of the Acoustical Society of America, 143(1): 529–37. (2018)
  • [28] k -Wave. "A MATLAB toolbox for the time-domain simulation of acoustic wave fields". http://k-wave.org.
  • [29] Viola, F. ve Walker, W.F. "A comparison of the performance of time-delay estimators in medical ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(4): 392–401. (2003)

BİR BOYUTLU SANAL DOKU ORTAMINDAKİ SICAKLIK DEĞİŞİMİNİN UÇUŞ ZAMANI YÖNTEMİ İLE HESAPLANMASI

Year 2023, , 661 - 669, 31.12.2023
https://doi.org/10.24012/dumf.1321801

Abstract

Bu çalışmada bilgisayar ortamında akustik fantom oluşturulmuş ve fantom üzerinde iki farklı
sıcaklık dağılımı için akustik simülasyon gerçekleştirilmiştir. İki farklı sıcaklık dağılımı için
elde edilen dönüş sinyallerine çapraz korelasyon uygulanarak yerel noktalardaki zaman
kaymaları hesaplanmıştır. Zaman kayması vektörünün eksenel eğimlerinin doku sabiti ile
çarpılmasıyla her noktadaki sıcaklık değişimi hesaplanmıştır. Sıcaklık tahmininde, analiz
sonucunda bulunan zaman kaymalarının yatay eksene göre eğimlerinin bulunması için geri fark
yöntemi ve doğru uydurma yöntemi kullanılmış ve sonuçlar karşılaştırılmıştır. Sıcaklık dağılımı
ilk durumda doku 37°C’de üniform sıcaklıkta ve ikinci durumda doku merkezi 45°C ve
etrafında çan eğrisi yaparak azalan şekilde tanımlanmıştır. Sıcaklık ölçümündeki maksimum
sapmaların, geri fark yönteminde 1.99°C, doğru uydurma yönteminde 0.75°C olduğu ve
kullanılan modelin tek boyutlu uygulamada yeterli olduğu görülmüştür. Bu çalışma ile birlikte
ileride yapılacak çok boyutlu simülasyon ve deneysel çalışmalar için taban oluşturulmuştur.

References

  • [1] Dewhirst, M.W., Abraham, J. ve Viglianti, B. "Evolution of Thermal Dosimetry for Application of Hyperthermia to Treat Cancer". Advances in Heat Transfer, 47: 397–421. (2015)
  • [2] Chu, K.F. ve Dupuy, D.E. "Thermal ablation of tumours: Biological mechanisms and advances in therapy". Nature Reviews Cancer, 14(3): 199–208. (2014)
  • [3] Smith, S. ve Gillams, A. "Imaging appearances following thermal ablation". Clinical Radiology, 63(1): 1–11. (2008)
  • [4] Lee, F.-F., He, Q., Gao, J., Pan, A., Sun, S., Liang, X. vd. "Evaluating HIFU-mediated local drug release using thermal strain imaging: Phantom and preliminary in-vivo studies". Medical Physics, 46(9): 3864–76. (2019)
  • [5] Rieke, V. ve Pauly, K.B. "MR thermometry". Journal of Magnetic Resonance Imaging, 27(2): 376–90. (2008)
  • [6] Blackwell, J., Kraśny, M.J., O’Brien, A., Ashkan, K., Galligan, J., Destrade, M. vd. "Proton Resonance Frequency Shift Thermometry: A Review of Modern Clinical Practices". Journal of Magnetic Resonance Imaging, 55(2): 389–403. (2022)
  • [7] Lewis, M.A., Staruch, R.M. ve Chopra, R. "Thermometry and ablation monitoring with ultrasound". International Journal of Hyperthermia, 31(2): 163–81. (2015)
  • [8] Maass-Moreno, R., Damianou, C.A. ve Sanghvi, N.T. "Tissue temperature estimation in-vivo with pulse-echo". Proceedings of the IEEE Ultrasonics Symposium, Seattle. p. 1225–9. (1995)
  • [9] Simon, C., Vanbaren, P. ve Ebbini, E.S. "Two-dimensional temperature estimation using diagnostic ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 45(4): 1088–99. (1998)
  • [10] Anand, A., Savéry, D. ve Hall, C. "Three-dimensional spatial and temporal temperature imaging in gel phantoms using backscattered ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 54(1): 23–30. (2007)
  • [11] Sakakibara, R., Shindo, Y., Kato, K., Choi, P.K. ve Takeuchi, A. "Basic study of 3-D non-invasive measurement of temperature distribution using ultrasound images during HIFU heating". Advances in Science, Technology and Engineering Systems, 5(6): 1306–11. (2020)
  • [12] Liu, D. ve Ebbini, E.S. "Real-time 2-D temperature imaging using ultrasound". IEEE Transactions on Biomedical Engineering, 57(1): 12–6. (2010)
  • [13] Varghese, T., Zagzebski, J.A., Chen, Q., Techavipoo, U., Frank, G., Johnson, C. vd. "Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results". Ultrasound in Medicine and Biology, 28(3): 321–9. (2002)
  • [14] Chiang, H.K., Liao, C.-K., Chou, Y.-H., Pan, T.-T. ve Pan, S.-C. "In-vitro ultrasound temperature monitoring in bovine liver during RF ablation therapy using autocorrelation". Proceedings of the IEEE Ultrasonics Symposium, Münih. p. 1439–42. (2002)
  • [15] Bayat, M. "Non-Invasive In Vivo Ultrasound Temperature Estimation", Doktora Tezi, The Faculty Of The Graduate School Of The University Of Minnesota. [Minneapolis]. (2014)
  • [16] Park, S., Hwang, J., Park, J.-E., Ahn, Y.-C. ve Kang, H.W. "Application of Ultrasound Thermal Imaging for Monitoring Laser Ablation in Ex Vivo Cardiac Tissue". Lasers in Surgery and Medicine, 52(3): 218–27. (2020)
  • [17] Foiret, J. ve Ferrara, K. "Advances in thermal strain imaging: 3D motion and tumor validation studies". 2015 IEEE International Ultrasonics Symposium, IUS 2015, Taipei. p. 1–4. (2015)
  • [18] Nguyen, M.M., Ding, X., Leers, S.A. ve Kim, K. "Multi-Focus Beamforming for Thermal Strain Imaging Using a Single Ultrasound Linear Array Transducer". Ultrasound in Medicine and Biology, 43(6): 1263–74. (2017)
  • [19] Shah, J., Thomsen, S., Milner, T.E. ve Emelianov, S.Y. "Ultrasound guidance and monitoring of laser-based fat removal". Lasers in Surgery and Medicine, 40(10): 680–7. (2008)
  • [20] Yin, C., Wang, G., Yang, K., Tu, J., Guo, X. ve Zhang, D. "Thermal strain imaging in vivo using interpolated IQ-images". Ultrasonics, 110: 106292. (2021)
  • [21] Arthur, R.M., Straube, W.L., Starman, J.D. ve Moros, E.G. "Noninvasive temperature estimation based on the energy of backscattered ultrasound". Medical Physics, 30(6): 1021–9. (2003)
  • [22] Maraghechi, B., Kolios, M.C. ve Tavakkoli, J. "Feasibility of detecting change in backscattered energy of acoustic harmonics in locally heated tissues". International Journal of Hyperthermia, 36(1): 964–74. (2019)
  • [23] Shaswary, E., Assi, H., Yang, C., Kumaradas, J.C., Kolios, M.C., Peyman, G. vd. "Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics". Ultrasonics, 114: 106406. (2021)
  • [24] Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K. vd. "Photoacoustic imaging and temperature measurement for photothermal cancer therapy". Journal of Biomedical Optics, 13(3): 034024. (2008)
  • [25] MATLAB. "R2020a". The MathWorks Inc., Natick, Massachusetts. (2020)
  • [26] Duck, F.A. "Physical properties of tissue: A comprehensive reference book". Academic Press Inc, ISBN 0-12-222800-6, Cambridge. (1990)
  • [27] Treeby, B.E., Budisky, J., Wise, E.S., Jaros, J. ve Cox, B.T. "Rapid calculation of acoustic fields from arbitrary continuous-wave sources". Journal of the Acoustical Society of America, 143(1): 529–37. (2018)
  • [28] k -Wave. "A MATLAB toolbox for the time-domain simulation of acoustic wave fields". http://k-wave.org.
  • [29] Viola, F. ve Walker, W.F. "A comparison of the performance of time-delay estimators in medical ultrasound". IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50(4): 392–401. (2003)
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Biomedical Sciences and Technology, Biomedical Imaging, Biomechanical Engineering, Medical Devices
Journal Section Articles
Authors

Mustafa Uyğun 0000-0002-4486-6223

Serhan Küçüka 0000-0002-2281-561X

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Submission Date July 3, 2023
Published in Issue Year 2023

Cite

IEEE M. Uyğun and S. Küçüka, “BİR BOYUTLU SANAL DOKU ORTAMINDAKİ SICAKLIK DEĞİŞİMİNİN UÇUŞ ZAMANI YÖNTEMİ İLE HESAPLANMASI”, DÜMF MD, vol. 14, no. 4, pp. 661–669, 2023, doi: 10.24012/dumf.1321801.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456