Research Article
BibTex RIS Cite

Enerji hasadı için çok bantlı mikroşerit anten tasarımı ve uygulaması

Year 2024, , 569 - 580, 30.09.2024
https://doi.org/10.24012/dumf.1440939

Abstract

Enerji hasat sistemlerinde antenler büyük önem taşımaktadır. Çok bantlı antenler kullanılarak RF enerji toplama sistemleriyle daha fazla enerji toplamak mümkündür. Bu çalışmada 307 MHz, 1721 MHz ve 5447 MHz frekans bantlarında çalışacak şekilde bir mikroşerit anten tasarlanmış ve üretilmiştir. Tasarlanan 82.05x104.76x1.60 mm3 boyutlu çok bantlı anten, daha fazla enerji toplayacak şekilde optimize edilmiş ve daha sonra FR4 altlığı üzerine uygulanmıştır. Üretilen çok bantlı mikroşerit antenin geri dönüş kaybı, gerilim duran dalga oranı, sanal ve gerçek empedansları vektör network analizörü ile ölçülmüştür. Çok bantlı anten kazancı 2,02 dBi olarak hesaplandı. Ayrıca çok bantlı mikroşerit antenin ölçüm ve simülasyon sonuçları arasında iyi bir uyum olduğu görülmüştür. Sonuç olarak üretilen çok bantlı mikroşerit antenin RF enerji hasat devreleri için kullanışlı ve uygun bir anten olduğu belirlenmiştir.

Supporting Institution

Dicle Üniversitesi BAP Koordinatörlüğü

Project Number

Mühendislik.23.013

Thanks

This study was supported by Dicle University Scientific Research Projects Coordination Office. Project Number: Mühendislik.23.013

References

  • [1] B. S. Kranth, G. K. Dilip, and K. Bhagath Kumar, “Planar Patch Antenna for 2.4 GHz Wireless Applications,” Ver. II, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834, p- ISSN: 2278-8735.Volume 9, Issue 3, Ver. II (May - Jun. 2014), PP 61-64 www.iosrjournals.org. doi:10.9790/2834-09326164.
  • [2] J. A. Ansari, P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, “H-shaped stacked patch antenna for dual band operation,” Progress In Electromagnetics Research B, vol. 5, pp. 291–302, 2008, doi: 10.2528/pierb08031203.
  • [3] E. Levine, G. Malamud, and D. Treves, “A study of microstrip array antennas with the feed network,” IEEE Transactions on Antennas and Propagation, 37:4 (1989).
  • [4] A. Elhamraoui, E. Abdelmounim, J. Zbitou, H. Bennis, and M. Latrach, “A new design of a microstrip antenna with modified ground for RFID applications,” International Journal of Intelligent Engineering and Systems, vol. 11, no. 6, pp. 44–51, 2018, doi: 10.22266/IJIES2018.1231.05.
  • [5] H. F. Abutarboush and A. Shamim, “Paper-based inkjet-printed tri-band U-slot monopole antenna for wireless applications,” IEEE Antennas Wirel Propag Lett, vol. 11, pp. 1234–1237, 2012, doi: 10.1109/LAWP.2012.2223751.
  • [6] X. L. Sun, L. Liu, S. W. Cheung, and T. I. Yuk, “Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications,” IEEE Trans Antennas Propag, vol. 60, no. 12, pp. 5924–5931, 2012, doi: 10.1109/TAP.2012.2211322.
  • [7] G. Kumar and K. C. Gupta, “Trapezoidal shaped microstrip antennas for wider bandwidth and beamwidth,” Int. Conf. Commun. Circuits and Syst., Calcutta (India), p. 7, Dec. 1981.
  • [8] D. H. Schaubert and F. G. Farrar, “Some conformal printed circuit antenna designs,” in Proc. Workshop Printed Circuit Antennas, New Mexico State Univ., vol. 1-, pp. 5.1-5.21, Oct. 1979.
  • [9] C. Wood, “Improved bandwidth of microstrip antennas using parasitic elements,” Proc. Inst. Elec. Eng., MOA, vol. 127, no. 4, pp. 231–234, Aug. 1980.
  • [10] P. S. Hall, C. Wood, and and C. Garrett, “Wide bandwidth microstrip antennas for circuit integration,” Electron. Lett., vol. 15, no. 15, pp.,” Electron. Lett., vol. 15, no. 15, pp. 458–460, Jul. 1979.
  • [11] J. H. Pues, Vandensande, and and Van de Capelle, “Broadband microstrip resonator antennas,” in IEEE Antennas Propagat. Soc. Int. Symp. Digest, pp. 268–271, 1978.
  • [12] H. Pues et al., “Wideband quasi-log-periodic microstrip antenna,” Proc. Inst. Elec. Eng., MOA, vol. 128, no. 3, pp. 159–163, Jun. 1981.
  • [13] G. Kumar and and K. C. Gupta, “Broad-Band Microstrip Antennas Using Additional,” IEEE Trans. Antennas Propag., vol. 32, no. 12, pp. 1375–1379, 1984.
  • [14] S. H. Wi, Y. S. Lee, and J. G. Yook, “Wideband microstrip patch antenna with U-shaped parasitic elements,” IEEE Trans Antennas Propag, vol. 55, no. 4, pp. 1196–1199, Apr. 2007, doi: 10.1109/TAP.2007.893427.
  • [15] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas,” 1998.
  • [16] Nasimuddin and Z. N. Chen, “Wideband microstrip antennas with sandwich substrate,” IET Microwaves, Antennas and Propagation, vol. 2, no. 6, pp. 538–546, 2008, doi: 10.1049/iet-map:20070284.
  • [17] R. Z. Wu, P. Wang, Q. Zheng, and R. P. Li, “Compact CPW-fed triple-band antenna for diversity applications,” Electron Lett, vol. 51, no. 10, pp. 735–736, May 2015, doi: 10.1049/el.2015.0466.
  • [18] B. R. Piper and M. E. Bialkowski, “Electromagnetic modeling of conformal wideband and multi-band patch antennas by bridging a solid-object modeler with MoM software,” IEEE Antennas Propag Mag, vol. 46, no. 5, pp. 42–52, Oct. 2004, doi: 10.1109/MAP.2004.1388825.
  • [19] M. Cansiz, D. Altinel, and G. K. Kurt, “Efficiency in RF energy harvesting systems: A comprehensive review,” Energy, vol. 174. Elsevier Ltd, pp. 292–309, May 01, 2019. doi: 10.1016/j.energy.2019.02.100.
  • [20] B. Dökmetaş, “5G Uygulamaları için DGS Kullanılarak Mikroşerit Yapıların Analizi Doktora Tezi,” Ankara, Dec. 2021.
  • [21] D. M. Pozar, “Microstrip Antennas Invited Paper Proceedings of the IEEE,” Jan. 1992.
  • [22] J. R. James and P. S. Hall, “Handbook of Microstrip Antennas,” london, 1988.
  • [23] İ. Ataş, “Yüksek Kazançlı Mikroşerit Antenlerin HFSS ile Modellenmesi ve Tasarımı Doktora Tezi,” Dec. 2019.
  • [24] R. Gang, P. Bhartia, I. Bahl, and A. Ittipiboon, “Microstrip Antenna Design Handbook,” 2001.
  • [25] Constantine A. Balanis, Antenna Theory and Analysis Design Third Edition. 2005.
  • [26] Yi Huang and Kevin Boyle, “Antennas From Theory To Practice,” 2008.
  • [27] H. F. Pues and A. R. Van de Capelle, “An Impedance matching technique for increasing the bandwidth of microstrip antennas.,” IEEE Trans. Antennas Propagat, pp. 1345–1354, 1989.
  • [28] J. J. Schuss, J. D. Hanfling, and R. L. Bauer, “Design of wideband patch radiator phased arrays in IEEE Antennas Propagation Symp. Dig,” 1989.
  • [29] A. Sabban, “A new broadband stacked two-layer microstrip antenna in IEEE Antennas and Propagation Symp,” 1983.
  • [30] C. H. Tsao, Y. M. Hwang, F. Kilburg, and and F. Dietrich, “Aperture-coupled patch antennas with wide-bandwidth and dual polarization capabilities,” in IEEE Antennas and Propagation Symp. Dig, pp. 936-939, 1988.
  • [31] A. Ittipiboon, B. Clarke, and and M. Cuhaci, “Slot-coupled stacked microstrip antennas,” IEEE Antennas and Propagation Symp. Dig, pp. 1108–1111, 1990.
  • [32] Yanyan Shi, Jianwei Jing, Yue Fan, Lan Yang, Yan Li, and Meng Wang, “A novel compact broadband rectenna for ambient RF energy harvesting,” International Journal of Electronics and Communications, pp. 264–270, Aug. 2018.
  • [33] “HFSS Ansys. Accessed: Nov. 16, 2023. [Online]. Avaible: https://www.ansys.com/products/electronics/ansys-hfss”.
  • [34] “Anritsu MS2028C. Accessed: Oct. 9, 2023. [Online]. Avaible: https://www.anritsu.com/en-US/test measurement / products / ms 2028c”.
  • [35] W. L. Stutzman and G. A. Thiele, “Antenna Fundamentals and Definitions,” New York: John Wiley &Sons, Inc, 1998.
  • [36] H. Yousefalturk and M. Cansiz, “Design and implementation of microstrip antenna at 915 MHz carrier frequency for RF energy harvesting,” Dicle University Journal of Engineering, vol. 13, no. 3, pp. 531–538, Sep. 2022, doi: 10.24012/dumf.1150600.
  • [37] H. Aslan, “RF Enerji Hasatlama İçin Mikroşerit Anten Tasarımı Uygulamaları Yüksek Lisans Tezi,” Batman, Nov. 2023.

Design and implementation of multiband microstrip antenna for energy harvesting

Year 2024, , 569 - 580, 30.09.2024
https://doi.org/10.24012/dumf.1440939

Abstract

Antennas are of great importance in energy harvesting systems. It is possible to collect more energy with RF energy harvesting systems by using multiband antennas. In this study, a microstrip antenna was designed and fabricated for operation at 307 MHz, 1721 MHz, and 5447 MHz frequency bands. The designed multiband antenna with size of 82.05x104.76x1.60 mm3 was optimized for collecting more energy and then, implemented on FR4 substrate. Return loss, voltage standing wave ratio, imaginary and real impedances of the manufactured multiband microstrip antenna were measured by vector network analyzer. The multiband antenna gain was calculated as 2.02 dBi. Furthermore, a good agreement was noted between the measurement and simulation results of the multiband microstrip antenna. As a result, it is determined that the produced multiband microstrip antenna is a useful and suitable antenna for RF energy harvesting circuits.

Project Number

Mühendislik.23.013

References

  • [1] B. S. Kranth, G. K. Dilip, and K. Bhagath Kumar, “Planar Patch Antenna for 2.4 GHz Wireless Applications,” Ver. II, IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-ISSN: 2278-2834, p- ISSN: 2278-8735.Volume 9, Issue 3, Ver. II (May - Jun. 2014), PP 61-64 www.iosrjournals.org. doi:10.9790/2834-09326164.
  • [2] J. A. Ansari, P. Singh, S. K. Dubey, R. U. Khan, and B. R. Vishvakarma, “H-shaped stacked patch antenna for dual band operation,” Progress In Electromagnetics Research B, vol. 5, pp. 291–302, 2008, doi: 10.2528/pierb08031203.
  • [3] E. Levine, G. Malamud, and D. Treves, “A study of microstrip array antennas with the feed network,” IEEE Transactions on Antennas and Propagation, 37:4 (1989).
  • [4] A. Elhamraoui, E. Abdelmounim, J. Zbitou, H. Bennis, and M. Latrach, “A new design of a microstrip antenna with modified ground for RFID applications,” International Journal of Intelligent Engineering and Systems, vol. 11, no. 6, pp. 44–51, 2018, doi: 10.22266/IJIES2018.1231.05.
  • [5] H. F. Abutarboush and A. Shamim, “Paper-based inkjet-printed tri-band U-slot monopole antenna for wireless applications,” IEEE Antennas Wirel Propag Lett, vol. 11, pp. 1234–1237, 2012, doi: 10.1109/LAWP.2012.2223751.
  • [6] X. L. Sun, L. Liu, S. W. Cheung, and T. I. Yuk, “Dual-band antenna with compact radiator for 2.4/5.2/5.8 GHz WLAN applications,” IEEE Trans Antennas Propag, vol. 60, no. 12, pp. 5924–5931, 2012, doi: 10.1109/TAP.2012.2211322.
  • [7] G. Kumar and K. C. Gupta, “Trapezoidal shaped microstrip antennas for wider bandwidth and beamwidth,” Int. Conf. Commun. Circuits and Syst., Calcutta (India), p. 7, Dec. 1981.
  • [8] D. H. Schaubert and F. G. Farrar, “Some conformal printed circuit antenna designs,” in Proc. Workshop Printed Circuit Antennas, New Mexico State Univ., vol. 1-, pp. 5.1-5.21, Oct. 1979.
  • [9] C. Wood, “Improved bandwidth of microstrip antennas using parasitic elements,” Proc. Inst. Elec. Eng., MOA, vol. 127, no. 4, pp. 231–234, Aug. 1980.
  • [10] P. S. Hall, C. Wood, and and C. Garrett, “Wide bandwidth microstrip antennas for circuit integration,” Electron. Lett., vol. 15, no. 15, pp.,” Electron. Lett., vol. 15, no. 15, pp. 458–460, Jul. 1979.
  • [11] J. H. Pues, Vandensande, and and Van de Capelle, “Broadband microstrip resonator antennas,” in IEEE Antennas Propagat. Soc. Int. Symp. Digest, pp. 268–271, 1978.
  • [12] H. Pues et al., “Wideband quasi-log-periodic microstrip antenna,” Proc. Inst. Elec. Eng., MOA, vol. 128, no. 3, pp. 159–163, Jun. 1981.
  • [13] G. Kumar and and K. C. Gupta, “Broad-Band Microstrip Antennas Using Additional,” IEEE Trans. Antennas Propag., vol. 32, no. 12, pp. 1375–1379, 1984.
  • [14] S. H. Wi, Y. S. Lee, and J. G. Yook, “Wideband microstrip patch antenna with U-shaped parasitic elements,” IEEE Trans Antennas Propag, vol. 55, no. 4, pp. 1196–1199, Apr. 2007, doi: 10.1109/TAP.2007.893427.
  • [15] S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, “Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas,” 1998.
  • [16] Nasimuddin and Z. N. Chen, “Wideband microstrip antennas with sandwich substrate,” IET Microwaves, Antennas and Propagation, vol. 2, no. 6, pp. 538–546, 2008, doi: 10.1049/iet-map:20070284.
  • [17] R. Z. Wu, P. Wang, Q. Zheng, and R. P. Li, “Compact CPW-fed triple-band antenna for diversity applications,” Electron Lett, vol. 51, no. 10, pp. 735–736, May 2015, doi: 10.1049/el.2015.0466.
  • [18] B. R. Piper and M. E. Bialkowski, “Electromagnetic modeling of conformal wideband and multi-band patch antennas by bridging a solid-object modeler with MoM software,” IEEE Antennas Propag Mag, vol. 46, no. 5, pp. 42–52, Oct. 2004, doi: 10.1109/MAP.2004.1388825.
  • [19] M. Cansiz, D. Altinel, and G. K. Kurt, “Efficiency in RF energy harvesting systems: A comprehensive review,” Energy, vol. 174. Elsevier Ltd, pp. 292–309, May 01, 2019. doi: 10.1016/j.energy.2019.02.100.
  • [20] B. Dökmetaş, “5G Uygulamaları için DGS Kullanılarak Mikroşerit Yapıların Analizi Doktora Tezi,” Ankara, Dec. 2021.
  • [21] D. M. Pozar, “Microstrip Antennas Invited Paper Proceedings of the IEEE,” Jan. 1992.
  • [22] J. R. James and P. S. Hall, “Handbook of Microstrip Antennas,” london, 1988.
  • [23] İ. Ataş, “Yüksek Kazançlı Mikroşerit Antenlerin HFSS ile Modellenmesi ve Tasarımı Doktora Tezi,” Dec. 2019.
  • [24] R. Gang, P. Bhartia, I. Bahl, and A. Ittipiboon, “Microstrip Antenna Design Handbook,” 2001.
  • [25] Constantine A. Balanis, Antenna Theory and Analysis Design Third Edition. 2005.
  • [26] Yi Huang and Kevin Boyle, “Antennas From Theory To Practice,” 2008.
  • [27] H. F. Pues and A. R. Van de Capelle, “An Impedance matching technique for increasing the bandwidth of microstrip antennas.,” IEEE Trans. Antennas Propagat, pp. 1345–1354, 1989.
  • [28] J. J. Schuss, J. D. Hanfling, and R. L. Bauer, “Design of wideband patch radiator phased arrays in IEEE Antennas Propagation Symp. Dig,” 1989.
  • [29] A. Sabban, “A new broadband stacked two-layer microstrip antenna in IEEE Antennas and Propagation Symp,” 1983.
  • [30] C. H. Tsao, Y. M. Hwang, F. Kilburg, and and F. Dietrich, “Aperture-coupled patch antennas with wide-bandwidth and dual polarization capabilities,” in IEEE Antennas and Propagation Symp. Dig, pp. 936-939, 1988.
  • [31] A. Ittipiboon, B. Clarke, and and M. Cuhaci, “Slot-coupled stacked microstrip antennas,” IEEE Antennas and Propagation Symp. Dig, pp. 1108–1111, 1990.
  • [32] Yanyan Shi, Jianwei Jing, Yue Fan, Lan Yang, Yan Li, and Meng Wang, “A novel compact broadband rectenna for ambient RF energy harvesting,” International Journal of Electronics and Communications, pp. 264–270, Aug. 2018.
  • [33] “HFSS Ansys. Accessed: Nov. 16, 2023. [Online]. Avaible: https://www.ansys.com/products/electronics/ansys-hfss”.
  • [34] “Anritsu MS2028C. Accessed: Oct. 9, 2023. [Online]. Avaible: https://www.anritsu.com/en-US/test measurement / products / ms 2028c”.
  • [35] W. L. Stutzman and G. A. Thiele, “Antenna Fundamentals and Definitions,” New York: John Wiley &Sons, Inc, 1998.
  • [36] H. Yousefalturk and M. Cansiz, “Design and implementation of microstrip antenna at 915 MHz carrier frequency for RF energy harvesting,” Dicle University Journal of Engineering, vol. 13, no. 3, pp. 531–538, Sep. 2022, doi: 10.24012/dumf.1150600.
  • [37] H. Aslan, “RF Enerji Hasatlama İçin Mikroşerit Anten Tasarımı Uygulamaları Yüksek Lisans Tezi,” Batman, Nov. 2023.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics
Journal Section Articles
Authors

Muhammed Süzgün 0009-0009-6663-3920

Mustafa Cansiz 0000-0003-2534-9770

Project Number Mühendislik.23.013
Early Pub Date September 30, 2024
Publication Date September 30, 2024
Submission Date February 21, 2024
Acceptance Date July 4, 2024
Published in Issue Year 2024

Cite

IEEE M. Süzgün and M. Cansiz, “Design and implementation of multiband microstrip antenna for energy harvesting”, DÜMF MD, vol. 15, no. 3, pp. 569–580, 2024, doi: 10.24012/dumf.1440939.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456