Research Article
BibTex RIS Cite

Kompozit Malzemeler için İlerlemeli Hasar Analizinde Çözümü Etkileyen Faktörler

Year 2019, , 581 - 589, 20.06.2019
https://doi.org/10.24012/dumf.414218

Abstract

Fiber takviyeli kompozit malzemelerin hasarları anizotropik yapıları gereği geleneksel malzemelere göre daha karmaşık ve ayrıntılıdır. Matris ve fiberin ayrı ayrı çekme, basma ve kayma hasarlarının belirlenmesine olanak sağlayan Hashin hasar kriteri, ilerlemeli hasar analizi için kullanılır. İlerlemeli hasar analizinde; her bir elemandaki yükleme sonrası elde edilen gerilme değerleri, ilgili malzeme dayanım değerlerine göre hasar formülünde kullanılarak hasar kontrolü yapılır. Eğer elemanda hasar elde edilirse o elemana ait mekanik özellikler sıfıra yakın değerler ile çarpılarak, malzeme özellikleri indirgenir. Devamında indirgenmiş elemanlar içeren model tekrar yüklenerek hasarın ilerlemesi sağlanır. Hasar analizinde uygulanacak yüklemenin veya yer değiştirmenin belirli bir oranda artırılması gereklidir. Sonlu eleman modelindeki eleman sayısının da ayrıca optimizasyonu yapılmalıdır. Her iki durum da hasar ilerlemesini etkileyebilen faktörlerdir. Bu çalışmada çekme yükü etkisinde, ortasında dairesel delik bulunan fiber takviyeli kompozit levhalarda hasar ilerlemesini etkileyen faktörler incelenmiştir. Hashin hasar kriteri kullanılarak yapılan çalışmada levha kenarına üniform yer değiştirme uygulanarak levhada oluşan reaksiyon kuvvetleri hesaplanmıştır. Kompozit levhanın sonlu eleman sıklığı ve ilerleme adımına karşılık levhada oluşan reaksiyon kuvvetleri yer değiştirme değerleri ile birlikte grafikler halinde sunulmuştur. Uzama artışı miktarının artırılması levhada meydana gelen maksimum reaksiyon kuvvetini artırmıştır. Delik çevresinde eleman boyutunun artırılması da reaksiyon kuvvetini artırmıştır. Ancak bu artış uzama adımı sayısının artışı kadar etkili değildir.

References

  • Bai, J.B., Shenoi, R.A., Yun, X.Y. ve Xiong J.J., (2017). Progressive damage modelling of hybrid RTM-made composite P-joint under four-point flexure using mixed failure criteria, Composite Structures, 159, 327-334.
  • Bai, Y. ve Zhang, X.Z., (2016). Progressive failure analysis of open-hole composite hoops under radial loading, Composites Part B, 97, 336-343.
  • Cheng, X., Wang, S., Zhang, J., Huang, W., Cheng, Y. ve Zhang, J., (2017). Effect of damage on failure mode of multi-bolt composite joints using failure envelope method, Composite Structures, 160, 8-15.
  • Coelho, A.M.G., Mottram, J.T. ve Harries, K.A., (2015). Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies, Composite Structures, 126, 299-313.
  • Duarte, A.P.C., Díaz Sáez, A. ve Silvestre, N., (2017). Comparative study between XFEM and Hashin damage criterion applied to failure of composites, Thin-Walled Structures, 115, 277-28.
  • Gu, J. ve Chen, P., (2017). Some modifications of Hashin’s failure criteria for unidirectional compositeMaterials, Composite Structures, 182, 143-152.
  • Hashin, Z., (1980). Failure criteria for unidirectional composites, Journal of Applied Mechanics, 47, 2, 329-334.
  • Kaw, A.K., (2006). Mechanics of composite materials, Second Edition, 466, CRC Press, Taylor &Francis Group, Boca Raton.
  • Lee, C.S., Kim, J. H., Kim, S.K., Ryu, D.M. ve Lee, J.M., (2015). Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method, Composite Structures, 121, 406-419.
  • Liu P., Cheng, X., Wang, S., Liu, S., Cheng, Y., (2016). Numerical analysis of bearing failure in countersunk composite joints using 3D explicit simulation method, Composite Structures, 138, 30–39.
  • Liu, P.F., Xing, L.J. ve Zheng J.Y., (2014). Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method, Composites: Part B, 56, 54-61.
  • Mandal, B. ve Chakrabarti, A., (2018). Numerical failure assessment of multi-bolt FRP composite joints with varying sizes and preloads of bolts, Composite Structures, 187, 169-178.
  • Riccio, A., Costanzo, C.D., Gennaro, P.D., Sellitto, A., Raimondo, A., (2017). Intra-laminar progressive failure analysis of composite laminates with a large notch damage, Engineering Failure Analysis, 73, 97-112.
  • Sharma, A.P., Khan, S.H. ve Parameswaran, V., (2017). Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates, Composites Part B, 125, 259-274.
  • Shen, W., Yan, R., Luo, B., Zhu, Y. ve Zeng, H., (2017). Ultimate strength analysis of composite typical joints for ship structures, Composite Structures, 171, 32-42.
  • Sola, C., Castanié, B., Michel, L., Lachaud, F., Delabie, A. ve Mermoz, E., (2016). On the role of kinking in the bearing failure of composite laminates, Composite Structures, 141, 184-193.
  • Turan, K., Kaman, M.O. ve Gur, M., (2015). Progressive failure analysis of laminated composite plates with two serial pinned joints, Mechanics of Advanced Materials and Structures, 22, 839-849.
  • Turan, K. ve Orcen, G., (2017). Failure analysis of adhesive-patch-repaired edge notched composite plates, Journal of Adhesion, 93, 328-341.
  • Warren, K.C., Lopez-Anido, R.A., Vel, S.S., ve Bayraktar, H.H., (2016). Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing, Composites Part B, 84, 266-276.
  • Xiao, M., Yongbo, Z., Zhihua, W. ve Huimin, F., (2017). Tensile failure analysis and residual strength prediction of CFRP laminates with open hole, Composites Part B, 126, 49-59.
  • Yang, Y., Liu, X., Wang, Y.Q. ve Gao, H., Li, R., Bao, Y., (2017). A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending, Composites Science and Technology, 151, 85-93.
  • Zhang J., Qi, D., Zhou, L., Zhao, L., Hua, N., (2015). A progressive failure analysis model for composite structures in hygrothermal environments, Composite Structures, 133, 331-342.
Year 2019, , 581 - 589, 20.06.2019
https://doi.org/10.24012/dumf.414218

Abstract

References

  • Bai, J.B., Shenoi, R.A., Yun, X.Y. ve Xiong J.J., (2017). Progressive damage modelling of hybrid RTM-made composite P-joint under four-point flexure using mixed failure criteria, Composite Structures, 159, 327-334.
  • Bai, Y. ve Zhang, X.Z., (2016). Progressive failure analysis of open-hole composite hoops under radial loading, Composites Part B, 97, 336-343.
  • Cheng, X., Wang, S., Zhang, J., Huang, W., Cheng, Y. ve Zhang, J., (2017). Effect of damage on failure mode of multi-bolt composite joints using failure envelope method, Composite Structures, 160, 8-15.
  • Coelho, A.M.G., Mottram, J.T. ve Harries, K.A., (2015). Finite element guidelines for simulation of fibre-tension dominated failures in composite materials validated by case studies, Composite Structures, 126, 299-313.
  • Duarte, A.P.C., Díaz Sáez, A. ve Silvestre, N., (2017). Comparative study between XFEM and Hashin damage criterion applied to failure of composites, Thin-Walled Structures, 115, 277-28.
  • Gu, J. ve Chen, P., (2017). Some modifications of Hashin’s failure criteria for unidirectional compositeMaterials, Composite Structures, 182, 143-152.
  • Hashin, Z., (1980). Failure criteria for unidirectional composites, Journal of Applied Mechanics, 47, 2, 329-334.
  • Kaw, A.K., (2006). Mechanics of composite materials, Second Edition, 466, CRC Press, Taylor &Francis Group, Boca Raton.
  • Lee, C.S., Kim, J. H., Kim, S.K., Ryu, D.M. ve Lee, J.M., (2015). Initial and progressive failure analyses for composite laminates using Puck failure criterion and damage-coupled finite element method, Composite Structures, 121, 406-419.
  • Liu P., Cheng, X., Wang, S., Liu, S., Cheng, Y., (2016). Numerical analysis of bearing failure in countersunk composite joints using 3D explicit simulation method, Composite Structures, 138, 30–39.
  • Liu, P.F., Xing, L.J. ve Zheng J.Y., (2014). Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method, Composites: Part B, 56, 54-61.
  • Mandal, B. ve Chakrabarti, A., (2018). Numerical failure assessment of multi-bolt FRP composite joints with varying sizes and preloads of bolts, Composite Structures, 187, 169-178.
  • Riccio, A., Costanzo, C.D., Gennaro, P.D., Sellitto, A., Raimondo, A., (2017). Intra-laminar progressive failure analysis of composite laminates with a large notch damage, Engineering Failure Analysis, 73, 97-112.
  • Sharma, A.P., Khan, S.H. ve Parameswaran, V., (2017). Experimental and numerical investigation on the uni-axial tensile response and failure of fiber metal laminates, Composites Part B, 125, 259-274.
  • Shen, W., Yan, R., Luo, B., Zhu, Y. ve Zeng, H., (2017). Ultimate strength analysis of composite typical joints for ship structures, Composite Structures, 171, 32-42.
  • Sola, C., Castanié, B., Michel, L., Lachaud, F., Delabie, A. ve Mermoz, E., (2016). On the role of kinking in the bearing failure of composite laminates, Composite Structures, 141, 184-193.
  • Turan, K., Kaman, M.O. ve Gur, M., (2015). Progressive failure analysis of laminated composite plates with two serial pinned joints, Mechanics of Advanced Materials and Structures, 22, 839-849.
  • Turan, K. ve Orcen, G., (2017). Failure analysis of adhesive-patch-repaired edge notched composite plates, Journal of Adhesion, 93, 328-341.
  • Warren, K.C., Lopez-Anido, R.A., Vel, S.S., ve Bayraktar, H.H., (2016). Progressive failure analysis of three-dimensional woven carbon composites in single-bolt, double-shear bearing, Composites Part B, 84, 266-276.
  • Xiao, M., Yongbo, Z., Zhihua, W. ve Huimin, F., (2017). Tensile failure analysis and residual strength prediction of CFRP laminates with open hole, Composites Part B, 126, 49-59.
  • Yang, Y., Liu, X., Wang, Y.Q. ve Gao, H., Li, R., Bao, Y., (2017). A progressive damage model for predicting damage evolution of laminated composites subjected to three-point bending, Composites Science and Technology, 151, 85-93.
  • Zhang J., Qi, D., Zhou, L., Zhao, L., Hua, N., (2015). A progressive failure analysis model for composite structures in hygrothermal environments, Composite Structures, 133, 331-342.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mete Onur Kaman 0000-0003-0178-6079

Kadir Turan 0000-0002-4065-9649

Publication Date June 20, 2019
Submission Date April 10, 2018
Published in Issue Year 2019

Cite

IEEE M. O. Kaman and K. Turan, “Kompozit Malzemeler için İlerlemeli Hasar Analizinde Çözümü Etkileyen Faktörler”, DÜMF MD, vol. 10, no. 2, pp. 581–589, 2019, doi: 10.24012/dumf.414218.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456