The Effect of Local Soil Conditions and Earthquake Zones on the Performance of High-Rise RC Buildings
Year 2025,
Volume: 16 Issue: 3, 777 - 788
Jülide Yüzbaşı
,
Fatih Avcil
,
Aydın Büyüksaraç
,
Mehmet Salih Keskin
,
Ercan Işık
,
Enes Arkan
Abstract
The rise in population density has accelerated urbanization, making reinforced concrete multi-story buildings a widely preferred choice for construction globally. The capacity of these structures to withstand dynamic loads depends on both their structural characteristics and non-structural factors, such as local soil conditions and earthquake levels. This article examines the performance of reinforced concrete multi-storey structures concerning the effects of different local soil conditions and earthquake zones. These effects are analyzed in the context of target displacements used to determine the earthquake performance of structures. For this purpose, structural analyses were conducted separately, considering four local soil classes and four earthquake levels on a selected 12-storey reinforced concrete structure model. In addition to ground-related damages, the study examines damages to multi-storey reinforced concrete structures in light of the 2023 Kahramanmaraş earthquakes. The study compares the target displacements obtained for various local soil conditions, earthquake levels, and earthquake exceedance probabilities and offers recommendations based on the findings. As the maximum ground acceleration increases and local ground conditions weaken, the target displacements expected from the structures increase. While the largest target displacements were obtained for Hatay province, the lowest target displacement values were obtained for Adıyaman province.
References
-
[1] R. Borcherdt, G. Glassmoyer, M. Andrews, and E. Cranswick, "Effect of Site Conditions on Ground Motion and Damage," Earthquake Spectra, vol.5, no.1_suppl, pp.23-42, 1989.
-
[2] S. L. Kramer and C. H. Wang, "Empirical model for estimation of the residual strength of liquefied soil," Journal of Geotechnical and Geoenvironmental Engineering, vol.141, no.9, pp.04015038, 2015.
-
[3] M. D. Trifunac, "How to model amplification of strong earthquake motions by local soil and geologic site conditions," Earthquake Engineering & Structural Dynamics, vol.19, no.6, pp.833–846, 1990.
-
[4] B. Siyahi, K. Ö. Çetin, and H. T. Bilge, "Geoteknik deprem mühendisliği açısından zemin-temel-yapı etkileşimine kritik bakış," Türkiye Mühendislik Haberleri, no.484, pp.41-50, 2013.
-
[5] İ. B. Karaşin and E. Işık, "Farklı yapı davranış katsayıları için zemin koşullarının yapı performansına etkisi," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.8, no.4, pp.661–673, 2017.
-
[6] R. İyisan and M. E. Haşal, "Zemin büyütmesi ve yerel koşulların spektral ivmeye etkisi," İTÜDERGİSİ/d, vol.10, no.4, pp.47-56, 2012.
-
[7] E. Yalçınkaya, "Bytnet (Bursa-Yalova-Türkiye ivme ölçer ağı) istasyonlarında yerel zemin etkilerinin incelenmesi," Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.7, no.2, pp.75–85, 2005.
-
[8] F. Ü. Peker and E. Işık, "TBDY-2018’deki yerel zemin koşullarının çelik yapı deprem davranışına etkisi üzerine bir çalışma," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.10, no.3, pp.1125–1139, 2021.
-
[9] F. Avcil, E. Işık, and A. Büyüksaraç, "The effect of local soil conditions on structure target displacements in different seismic zones," Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol. 12, no.4, pp.1000–1011, 2022.
-
[10] A. Dorum, Ö. Özkan, and M. Erdal, "Farklı deprem bölgeleri ve farklı zemin sınıflarının kaba yapı maliyetine etkisi," Selcuk University Journal of Engineering Sciences, vol.5, no.1, pp.1–9, 2006.
-
[11] K. Galal and M. Naimi, "Effect of soil conditions on the response of reinforced concrete tall structures to near‐fault earthquakes," The Structural Design of Tall and Special Buildings, vol.17, no.3, pp.541–562, 2008.
-
[12] R. Tabatabaiefar, B. Fatahi, and B. Samali, "Seismic behavior of building frames considering dynamic soil-structure interaction," International Journal of Geomechanics, vol.13, no.4, pp.409–420, 2013.
-
[13] B. Yön, M. E. Öncü, and Y. Calayır, "Effects of seismic zones and local soil conditions on response of RC buildings," Građevinar, vol.67, no.6, pp.585–596, 2015.
-
[14] B. Yön and Y. Calayır, "The soil effect on the seismic behaviour of reinforced concrete buildings," Earthquakes and Structures, vol.8, no. 1, pp.133–152, 2015.
-
[15] S. T. Karapetrou, S. D. Fotopoulou, and K. D. Pitilakis, "Seismic vulnerability assessment of high-rise non-ductile RC buildings considering soil–structure interaction effects," Soil Dynamics and Earthquake Engineering, vol.73, pp.42–57, 2015.
-
[16] B. Yeşil and A. Ateş, "Düzce ilindeki farklı zemin sınıfları dikkate alınarak zemin sınıfının yapı hasarı ve deprem performansına etkisi," İleri Teknoloji Bilimleri Dergisi, vol.7, no.3, pp.48–56, 2018.
-
[17] E. Özşahin and İ. Eroğlu, "Erzincan kentinde yerel zemin özelliklerinin deprem duyarlılığına etkisi," Doğal Afetler ve Çevre Dergisi, vol.5, no.1, pp.41-57, 2019.
-
[18] M. H. Akyıldız, A. E. Ulu, and K. Adar, "TBDY-2018’deki yerel zemin koşullarının deprem kesit tesirlerine etkisi," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.12, no.4, pp.679–687, 2021.
-
[19] Z. Aykaç, M. Akın, and A. F. Çabalar, "VS(30) tabanlı yerel zemin koşulları ve deprem hasar ilişkisi: Van-Abdurrahmangazi örneği," Jeoloji Mühendisliği Dergisi, vol.45, no.2, pp.181–198, 2021.
-
[20] D. Pitilakis and C. Petridis, "Fragility curves for existing reinforced concrete buildings, including soil–structure interaction and site amplification effects," Engineering Structures, vol.269, p.114733, 2022.
-
[21] M. Özgür and K.B. Bozdoğan, "Betonarme binalarda zemin-yapı etkileşiminin sismik tasarım parametrelerine etkileri," El-Cezeri, vol.9, no.2, pp.507–521, 2022.
-
[22] M. V. Requena-Garcia-Cruz, R. Bento, P. Durand-Neyra, and A. Morales-Esteban, "Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon," Structures, vol.38, pp.599–617, 2022.
-
[23] A. Fiamingo, M. Bosco, and M. R. Massimino, "The role of soil in structure response of a building damaged by the 26 December 2018 earthquake in Italy," Journal of Rock Mechanics and Geotechnical Engineering, vol.15, no.4, pp.937–953, 2023.
-
[24] İ. Eroğlu and C. İpek, "Deprem Yükleri Altında Yapı ve Zemin Etkileşimi," International Journal of New Horizons in the Sciences, pp.18–27, 2023.
-
[25] A. Büyüksaraç, B. Ateş, Ö. Bektaş, E. Pamuk, and E. Işık, "Bedrock investigation based on shear wave velocity (Vs) on the sites of high-rise buildings," OTO-2024, 2025.
-
[26] A.B. Ekmen, and Y. Avci, "Development of novel artificial intelligence functions based on 3D finite element method using February 6 Kahramanmaraş Seismic Records for earthquake effects prediction in various soils," Engineering Geology, vol.336, pp.107570, 2024.
-
[27] E. Işık, F. Avcil, A. Büyüksaraç, E. Arkan, and E. Harirchian, "Impact of local soil conditions on the seismic performance of reinforced concrete structures: in the context of the 2023 Kahramanmaraş earthquakes," Applied Sciences, vol.15, no.5, pp.2389, 2025.
-
[28] H. M. Algin, A. B. Ekmen, and E. Kaya, "3D seismic response assessment of barrette piled high-rise building with comprehensive subsurface modelling," Soil Dynamics and Earthquake Engineering, vol. 163, pp.107488, 2022.
-
[29] M.D. Trifunac, "Site conditions and earthquake ground motion–A review," Soil Dynamics and Earthquake Engineering, vol.90, pp.88-100, 2016.
-
[30] Y. Avcı and A. B. Ekmen, "Artificial intelligence assisted optimization of rammed aggregate pier supported raft foundation systems based on parametric three-dimensional finite element analysis," Structures, vol. 56, pp.105031, 2023.
-
[31] K.Ö. Cetin, S. Altun, A. Askan, M. Akgün, A. Sezer, C. Kıncal, C., ... and Karaali, E. (2022). The site effects in Izmir Bay of October 30 2020, M7. 0 Samos earthquake. Soil Dynamics and Earthquake Engineering, vol.152, pp.107051, 2022.
-
[32] E. Bol, A. Özocak, S. Sert, K.Ö. Çetin, E. Arslan, K. Kocaman, and B.U. Ayhan, "Evaluation of soil liquefaction in the city of Hatay triggered after the February 6, 2023 Kahramanmaraş-Türkiye earthquake sequence," Engineering Geology, vol.339, pp.107648, 2024.
-
[33] O. Sivrikaya, E. Türker, E. Cüre, E.E. Atmaca, Z. Angin, H.B. Başağa, and A.C. Altunişik, "Impact of soil conditions and seismic codes on collapsed structures during the 2023 Kahramanmaraş earthquakes: An in-depth study of 400 reinforced concrete buildings," Soil Dynamics and Earthquake Engineering, vol.190, pp.109119, 2025.
-
[34] M. Senkaya, E.F. Erkan, A. Silahtar, and H. Karaaslan, "Implementation of clustering algorithms for damage prediction through seismic local-site parameters: 2023 Kahramanmaraş earthquake sequence," Bulletin of Earthquake Engineering, vol.22, no.13, pp.6545-6566, 2024
-
[35] B. Đ. Bulajić, G. Pavić, and M. Hadzima-Nyarko, "PGA vertical estimates for deep soils and deep geological sediments–A case study of Osijek (Croatia)," Computers & Geosciences, vol.158, pp.104985, 2022
-
[36] S. Lozančić, B. Đ.Bulajić, G. Pavić, I. Bulajić, and M. Hadzima-Nyarko, "Spectral characteristics of strong ground motion time series for low to medium seismicity regions with deep soil atop deep geological sediments," Engineering Proceedings, vol.68, no.1, pp.32, 2024.
-
[37] Ö.F. Nemutlu, and B. Balun, "Evaluation of November 23, 2022, Duzce earthquake data with ground motion prediction equations," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.12, no.4, pp.1248-1260, 2023.
-
[38] Ö. Yıldız, and C. Kına, "Geotechnical and structural investigations in Malatya province after Kahramanmaraş Earthquake on February 6, 2023," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(3), 686-703, 2023.
-
[39] M. Çavuşlu, "Assessing seismic crack performance of Diyarbakır Çüngüş Masonry stone bridge considering 2023 Kahramanmaraş, Hatay, Malatya, Gaziantep earthquakes," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.12, no.2, pp.544-556, 2023.
-
[40] O. Akyürek, "Analysis of different cross-frame placements to enhance torsional irregular buildings against structural failure under earthquake bidirectional loadings: A case study," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.10, no.2, pp.480-491, 2021.
-
[41] K. Beyen, and M. Erdik, "Two-dimensional nonlinear site response analysis of Adapazarı plain and predictions inferred from aftershocks of the Kocaeli earthquake of 17 August 1999," Soil Dynamics and Earthquake Engineering, vol.24, no.3, pp.261-279, 2004.
-
[42] M. Batı, and K. Beyen, "8 katlı yapının dinamik yükler altında titreşim kontrolü," Kocaeli Üniversitesi Fen Bilimleri Dergisi, vol.3, no.1, pp.65-76, 2020.
-
[43] G. Eren, and K. Beyen, "Zemin davranışı ve mesnet koşullarının tarihi yapıların dinamik davranışına etkisi," Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, vol.6, pp.244-252, 2018.
-
[44] T. Ucar, O. Merter, and M. Duzgun, "A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept," Structural Engineering and Mechanics, vol.41, no.6, pp.759–773, 2012.
-
[45] B. Monavari, A. Massumi, and A. Kazem, "Estimation of displacement demand in RC Frames and comparing with target displacement provided by FEMA-356," in 15th World Conference on Earthquake Engineering, 2012.
-
[46] M. N. Fardis and T. B. Panagiotakos, "Displacement-based design of RC buildings: Proposed approach and application," in Seismic Design Methodologies for the Next Generation of Codes, Routledge, pp.195–206, 2019.
-
[47] E. Işık et al., "A comparative study of the effects of earthquakes in different countries on target displacement in mid-rise regular RC structures," Applied Sciences, vol.12, no.23, pp.12495, 2022.
-
[48] E. Işık et al., "Comparison of seismic and structural parameters of settlements in the East Anatolian Fault Zone in light of the 6 February Kahramanmaraş Earthquakes," Infrastructures, vol.9, no.12, pp.219, 2024.
-
[49] F. Akar et al., "Geotechnical and structural damages caused by the 2023 Kahramanmaraş Earthquakes in Gölbaşı (Adıyaman)," Applied Sciences, vol.14, no.5, pp.2165, 2024.
-
[50] O. İnce, "Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) Earthquakes on 6 February 2023," Engineering Failure Analysis, vol.156, pp.107799, 2024.
-
[51] E. Işık et al., "Field reconnaissance and earthquake vulnerability of the RC buildings in Adıyaman during 2023 Türkiye earthquakes," Applied Sciences, vol.14, no.7, pp. 2860, 2024.
-
[52] S. Avgın, M. M. Köse, and A. Özbek, "Damage assessment of structural and geotechnical damages in Kahramanmaraş during the February 6, 2023 earthquakes," Engineering Science and Technology, an International Journal, vol.57, pp.101811, 2024.
-
[53] M. Öztürk, M. H. Arslan, and H. H. Korkmaz, "Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design," Engineering Failure Analysis, vol.153, pp.107521, 2023.
-
[54] B. Binici et al., "Performance of RC buildings after Kahramanmaraş earthquakes: lessons toward performance-based design," Earthquake Engineering and Engineering Vibration, vol.22, no. 4, pp. 883–894, 2023.
-
[55] J. Yuzbasi, "Post-earthquake damage assessment: field observations and recent developments with recommendations from the Kahramanmaraş earthquakes in Türkiye on February 6th, 2023 (Pazarcık M7.8 and Elbistan M7.6)," Journal of Earthquake Engineering, pp.1–26, 2024.
-
[56] E. Işık et al., "Seismic performance and failure mechanisms of reinforced concrete structures subject to the earthquakes in Türkiye," Sustainability, vol.16, no.15, pp.6473, 2024.
-
[57] M. Tan, Ö. Avşar, F. Yıldızhan, and N. Atmaca, "Effect of infill walls on the seismic performance of a severely damaged substandard RC building during the February 6, 2023, Kahramanmaras earthquake sequence," Engineering Failure Analysis, pp.109117, 2024.
-
[58] C. Öser et al., "Geotechnical aspects and site investigations on Kahramanmaraş earthquakes, February 06, 2023," Natural Hazards, pp.1–32, 2024.
-
[59] B. Yön et al., "Evaluation of the seismic response of reinforced concrete buildings in the light of lessons learned from the February 6, 2023, Kahramanmaraş, Türkiye earthquake sequences," Natural Hazards, pp.1–37, 2024.
-
[60] H. Ulutaş, "Investigation of the causes of soft-storey and weak-storey formations in low-and mid-rise rc buildings in Türkiye," Buildings, vol.14, no.5, pp.1308, 2024.
-
[61] I. B. Karasin, "Comparative analysis of the 2023 Pazarcık and Elbistan Earthquakes in Diyarbakır," Buildings, vol.13, no.10, p.2474, 2023.
-
[62] E. Işık et al., "Study on effectiveness of regional risk prioritisation in reinforced concrete structures after earthquakes," Applied Sciences, vol.14, no.16, pp.6992, 2024.
-
[63] M. H. Arslan et al., "Code-based damage assessment of existing precast industrial buildings following the February 6th, 2023 Kahramanmaraş earthquakes (Pazarcık Mw 7.7 and Elbistan Mw 7.6)," Journal of Building Engineering, vol.86, p.108811, 2024.
-
[64] Seismostruct, "Seismic Analysis Software for Structures," [Online]. Available: https://www.seismosoft.com.
-
[65] Eurocode 3, "Design of steel structures – Part 1-1: General rules and rules for buildings," European Standard EN 1993-1-1, 2005.
-
[66] S. Antoniou, R. Pinho . "Seismostruct – Seismic Analysis program by Seismosoft. Technical manual and user manual", 2003.
-
[67] N. Ademovic, M. Hrasnica, D.V. Oliveira. "Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina, " Engineering Structures, vol.50, pp.13- 29, 2013.
-
[68] J.M. Estêvão, C.S. Oliveira, "A new analysis method for structural failure evaluation," Engineering Failure Analysis, vol.56, pp.573-584, 2015.
-
[69] A.K. Chopra, R.K. Goel. "A modal pushover analysis procedure for estimating seismic demands for buildings," Earthquake Engineering & Structural Dynamics, vol.31, no.3, pp.561-582, 2002.
-
[70] H. Krawinkler, G.D.P.K. Seneviratna, "Pros and cons of a pushover analysis of seismic performance evaluation," Engineering Structures, vol.20, no.4-6, pp.452-464, 1998.
-
[71] E. Işık et al., "Time-dependent model for earthquake occurrence and effects of design spectra on structural performance: a case study from the North Anatolian Fault Zone, Turkey," Turkish Journal of Earth Sciences, vol.30, no.2, pp.215–234, 2021.
-
[72] E. Işık and E. Harirchian, "A comparative probabilistic seismic hazard analysis for Eastern Turkey (Bitlis) based on updated hazard map and its effect on regular RC structures," Buildings, vol.12, no.10, pp. 1573, 2022.
-
[73] A. Antoniou and R. Pinho, "Displacement-based seismic design of structures," Journal of Earthquake Engineering, vol.7, no.S1, pp.1–25, 2003.
-
[74] P. Pinto and E. Franchin, "Performance-based seismic design: Concepts and implementation," in Seismic Design Methodologies for the Next Generation of Codes, Routledge, pp.259–280, 2011.
Yerel zemin koşullarının ve deprem ivmelerinin betonarme yüksek katlı binaların performansına etkisi
Year 2025,
Volume: 16 Issue: 3, 777 - 788
Jülide Yüzbaşı
,
Fatih Avcil
,
Aydın Büyüksaraç
,
Mehmet Salih Keskin
,
Ercan Işık
,
Enes Arkan
Abstract
Artan nüfus yoğunluğu kentleşmeyi hızlandırmış ve dünya genelinde çok katlı betonarme binaların yaygın olarak tercih edilen bir seçenek haline gelmesine neden olmuştur. Bu yapıların dinamik yükleri taşıyabilme kapasitesine sahip olmaları hem yapısal karakteristiklerine hem de yerel zemin koşulları ile deprem düzeyleri gibi yapısal olmayan faktörlere bağlıdır. Bu makale, betonarme çok katlı yapıların performansını, farklı yerel zemin koşulları ve deprem bölgelerinin etkileri açısından incelemektedir. Yapıların deprem performanslarının belirlenmesinde kullanılan hedef yer değiştirmeler bağlamında bu etkiler incelenmiştir. Bu amaç doğrultusunda seçilen 12 katlı betonarme yapı modeli üzerinden dört farklı yerel zemin sınıfı ve dört farklı deprem düzeyi dikkate alınarak yapısal analizler ayrı ayrı gerçekleştirilmiştir. Çalışmada, zemin kaynaklı hasarların yanı sıra çok katlı betonarme yapılarda oluşan hasarlar 2023 Kahramanmaraş depremleri ışığında incelenmiştir. Çalışma ile farklı yerel zemin koşulları ve farklı deprem düzeylerinin yanı sıra farklı deprem aşılma olasılıkları için elde edilen hedef yer değiştirmeler karşılaştırılarak öneriler yapılmıştır. Maksimum yer ivmesi arttıkça ve yerel zemin koşulları zayıfladıkça yapılardan beklenen hedef yer değiştirmeler artmaktadır. Hatay ili için en büyük hedef yer değiştirme değerleri elde edilirken, Adıyaman ilinde ise en küçük hedef yer değiştirme değerleri elde edilmiştir.
References
-
[1] R. Borcherdt, G. Glassmoyer, M. Andrews, and E. Cranswick, "Effect of Site Conditions on Ground Motion and Damage," Earthquake Spectra, vol.5, no.1_suppl, pp.23-42, 1989.
-
[2] S. L. Kramer and C. H. Wang, "Empirical model for estimation of the residual strength of liquefied soil," Journal of Geotechnical and Geoenvironmental Engineering, vol.141, no.9, pp.04015038, 2015.
-
[3] M. D. Trifunac, "How to model amplification of strong earthquake motions by local soil and geologic site conditions," Earthquake Engineering & Structural Dynamics, vol.19, no.6, pp.833–846, 1990.
-
[4] B. Siyahi, K. Ö. Çetin, and H. T. Bilge, "Geoteknik deprem mühendisliği açısından zemin-temel-yapı etkileşimine kritik bakış," Türkiye Mühendislik Haberleri, no.484, pp.41-50, 2013.
-
[5] İ. B. Karaşin and E. Işık, "Farklı yapı davranış katsayıları için zemin koşullarının yapı performansına etkisi," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.8, no.4, pp.661–673, 2017.
-
[6] R. İyisan and M. E. Haşal, "Zemin büyütmesi ve yerel koşulların spektral ivmeye etkisi," İTÜDERGİSİ/d, vol.10, no.4, pp.47-56, 2012.
-
[7] E. Yalçınkaya, "Bytnet (Bursa-Yalova-Türkiye ivme ölçer ağı) istasyonlarında yerel zemin etkilerinin incelenmesi," Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.7, no.2, pp.75–85, 2005.
-
[8] F. Ü. Peker and E. Işık, "TBDY-2018’deki yerel zemin koşullarının çelik yapı deprem davranışına etkisi üzerine bir çalışma," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.10, no.3, pp.1125–1139, 2021.
-
[9] F. Avcil, E. Işık, and A. Büyüksaraç, "The effect of local soil conditions on structure target displacements in different seismic zones," Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol. 12, no.4, pp.1000–1011, 2022.
-
[10] A. Dorum, Ö. Özkan, and M. Erdal, "Farklı deprem bölgeleri ve farklı zemin sınıflarının kaba yapı maliyetine etkisi," Selcuk University Journal of Engineering Sciences, vol.5, no.1, pp.1–9, 2006.
-
[11] K. Galal and M. Naimi, "Effect of soil conditions on the response of reinforced concrete tall structures to near‐fault earthquakes," The Structural Design of Tall and Special Buildings, vol.17, no.3, pp.541–562, 2008.
-
[12] R. Tabatabaiefar, B. Fatahi, and B. Samali, "Seismic behavior of building frames considering dynamic soil-structure interaction," International Journal of Geomechanics, vol.13, no.4, pp.409–420, 2013.
-
[13] B. Yön, M. E. Öncü, and Y. Calayır, "Effects of seismic zones and local soil conditions on response of RC buildings," Građevinar, vol.67, no.6, pp.585–596, 2015.
-
[14] B. Yön and Y. Calayır, "The soil effect on the seismic behaviour of reinforced concrete buildings," Earthquakes and Structures, vol.8, no. 1, pp.133–152, 2015.
-
[15] S. T. Karapetrou, S. D. Fotopoulou, and K. D. Pitilakis, "Seismic vulnerability assessment of high-rise non-ductile RC buildings considering soil–structure interaction effects," Soil Dynamics and Earthquake Engineering, vol.73, pp.42–57, 2015.
-
[16] B. Yeşil and A. Ateş, "Düzce ilindeki farklı zemin sınıfları dikkate alınarak zemin sınıfının yapı hasarı ve deprem performansına etkisi," İleri Teknoloji Bilimleri Dergisi, vol.7, no.3, pp.48–56, 2018.
-
[17] E. Özşahin and İ. Eroğlu, "Erzincan kentinde yerel zemin özelliklerinin deprem duyarlılığına etkisi," Doğal Afetler ve Çevre Dergisi, vol.5, no.1, pp.41-57, 2019.
-
[18] M. H. Akyıldız, A. E. Ulu, and K. Adar, "TBDY-2018’deki yerel zemin koşullarının deprem kesit tesirlerine etkisi," Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, vol.12, no.4, pp.679–687, 2021.
-
[19] Z. Aykaç, M. Akın, and A. F. Çabalar, "VS(30) tabanlı yerel zemin koşulları ve deprem hasar ilişkisi: Van-Abdurrahmangazi örneği," Jeoloji Mühendisliği Dergisi, vol.45, no.2, pp.181–198, 2021.
-
[20] D. Pitilakis and C. Petridis, "Fragility curves for existing reinforced concrete buildings, including soil–structure interaction and site amplification effects," Engineering Structures, vol.269, p.114733, 2022.
-
[21] M. Özgür and K.B. Bozdoğan, "Betonarme binalarda zemin-yapı etkileşiminin sismik tasarım parametrelerine etkileri," El-Cezeri, vol.9, no.2, pp.507–521, 2022.
-
[22] M. V. Requena-Garcia-Cruz, R. Bento, P. Durand-Neyra, and A. Morales-Esteban, "Analysis of the soil structure-interaction effects on the seismic vulnerability of mid-rise RC buildings in Lisbon," Structures, vol.38, pp.599–617, 2022.
-
[23] A. Fiamingo, M. Bosco, and M. R. Massimino, "The role of soil in structure response of a building damaged by the 26 December 2018 earthquake in Italy," Journal of Rock Mechanics and Geotechnical Engineering, vol.15, no.4, pp.937–953, 2023.
-
[24] İ. Eroğlu and C. İpek, "Deprem Yükleri Altında Yapı ve Zemin Etkileşimi," International Journal of New Horizons in the Sciences, pp.18–27, 2023.
-
[25] A. Büyüksaraç, B. Ateş, Ö. Bektaş, E. Pamuk, and E. Işık, "Bedrock investigation based on shear wave velocity (Vs) on the sites of high-rise buildings," OTO-2024, 2025.
-
[26] A.B. Ekmen, and Y. Avci, "Development of novel artificial intelligence functions based on 3D finite element method using February 6 Kahramanmaraş Seismic Records for earthquake effects prediction in various soils," Engineering Geology, vol.336, pp.107570, 2024.
-
[27] E. Işık, F. Avcil, A. Büyüksaraç, E. Arkan, and E. Harirchian, "Impact of local soil conditions on the seismic performance of reinforced concrete structures: in the context of the 2023 Kahramanmaraş earthquakes," Applied Sciences, vol.15, no.5, pp.2389, 2025.
-
[28] H. M. Algin, A. B. Ekmen, and E. Kaya, "3D seismic response assessment of barrette piled high-rise building with comprehensive subsurface modelling," Soil Dynamics and Earthquake Engineering, vol. 163, pp.107488, 2022.
-
[29] M.D. Trifunac, "Site conditions and earthquake ground motion–A review," Soil Dynamics and Earthquake Engineering, vol.90, pp.88-100, 2016.
-
[30] Y. Avcı and A. B. Ekmen, "Artificial intelligence assisted optimization of rammed aggregate pier supported raft foundation systems based on parametric three-dimensional finite element analysis," Structures, vol. 56, pp.105031, 2023.
-
[31] K.Ö. Cetin, S. Altun, A. Askan, M. Akgün, A. Sezer, C. Kıncal, C., ... and Karaali, E. (2022). The site effects in Izmir Bay of October 30 2020, M7. 0 Samos earthquake. Soil Dynamics and Earthquake Engineering, vol.152, pp.107051, 2022.
-
[32] E. Bol, A. Özocak, S. Sert, K.Ö. Çetin, E. Arslan, K. Kocaman, and B.U. Ayhan, "Evaluation of soil liquefaction in the city of Hatay triggered after the February 6, 2023 Kahramanmaraş-Türkiye earthquake sequence," Engineering Geology, vol.339, pp.107648, 2024.
-
[33] O. Sivrikaya, E. Türker, E. Cüre, E.E. Atmaca, Z. Angin, H.B. Başağa, and A.C. Altunişik, "Impact of soil conditions and seismic codes on collapsed structures during the 2023 Kahramanmaraş earthquakes: An in-depth study of 400 reinforced concrete buildings," Soil Dynamics and Earthquake Engineering, vol.190, pp.109119, 2025.
-
[34] M. Senkaya, E.F. Erkan, A. Silahtar, and H. Karaaslan, "Implementation of clustering algorithms for damage prediction through seismic local-site parameters: 2023 Kahramanmaraş earthquake sequence," Bulletin of Earthquake Engineering, vol.22, no.13, pp.6545-6566, 2024
-
[35] B. Đ. Bulajić, G. Pavić, and M. Hadzima-Nyarko, "PGA vertical estimates for deep soils and deep geological sediments–A case study of Osijek (Croatia)," Computers & Geosciences, vol.158, pp.104985, 2022
-
[36] S. Lozančić, B. Đ.Bulajić, G. Pavić, I. Bulajić, and M. Hadzima-Nyarko, "Spectral characteristics of strong ground motion time series for low to medium seismicity regions with deep soil atop deep geological sediments," Engineering Proceedings, vol.68, no.1, pp.32, 2024.
-
[37] Ö.F. Nemutlu, and B. Balun, "Evaluation of November 23, 2022, Duzce earthquake data with ground motion prediction equations," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.12, no.4, pp.1248-1260, 2023.
-
[38] Ö. Yıldız, and C. Kına, "Geotechnical and structural investigations in Malatya province after Kahramanmaraş Earthquake on February 6, 2023," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 12(3), 686-703, 2023.
-
[39] M. Çavuşlu, "Assessing seismic crack performance of Diyarbakır Çüngüş Masonry stone bridge considering 2023 Kahramanmaraş, Hatay, Malatya, Gaziantep earthquakes," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.12, no.2, pp.544-556, 2023.
-
[40] O. Akyürek, "Analysis of different cross-frame placements to enhance torsional irregular buildings against structural failure under earthquake bidirectional loadings: A case study," Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.10, no.2, pp.480-491, 2021.
-
[41] K. Beyen, and M. Erdik, "Two-dimensional nonlinear site response analysis of Adapazarı plain and predictions inferred from aftershocks of the Kocaeli earthquake of 17 August 1999," Soil Dynamics and Earthquake Engineering, vol.24, no.3, pp.261-279, 2004.
-
[42] M. Batı, and K. Beyen, "8 katlı yapının dinamik yükler altında titreşim kontrolü," Kocaeli Üniversitesi Fen Bilimleri Dergisi, vol.3, no.1, pp.65-76, 2020.
-
[43] G. Eren, and K. Beyen, "Zemin davranışı ve mesnet koşullarının tarihi yapıların dinamik davranışına etkisi," Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, vol.6, pp.244-252, 2018.
-
[44] T. Ucar, O. Merter, and M. Duzgun, "A study on determination of target displacement of RC frames using PSV spectrum and energy-balance concept," Structural Engineering and Mechanics, vol.41, no.6, pp.759–773, 2012.
-
[45] B. Monavari, A. Massumi, and A. Kazem, "Estimation of displacement demand in RC Frames and comparing with target displacement provided by FEMA-356," in 15th World Conference on Earthquake Engineering, 2012.
-
[46] M. N. Fardis and T. B. Panagiotakos, "Displacement-based design of RC buildings: Proposed approach and application," in Seismic Design Methodologies for the Next Generation of Codes, Routledge, pp.195–206, 2019.
-
[47] E. Işık et al., "A comparative study of the effects of earthquakes in different countries on target displacement in mid-rise regular RC structures," Applied Sciences, vol.12, no.23, pp.12495, 2022.
-
[48] E. Işık et al., "Comparison of seismic and structural parameters of settlements in the East Anatolian Fault Zone in light of the 6 February Kahramanmaraş Earthquakes," Infrastructures, vol.9, no.12, pp.219, 2024.
-
[49] F. Akar et al., "Geotechnical and structural damages caused by the 2023 Kahramanmaraş Earthquakes in Gölbaşı (Adıyaman)," Applied Sciences, vol.14, no.5, pp.2165, 2024.
-
[50] O. İnce, "Structural damage assessment of reinforced concrete buildings in Adıyaman after Kahramanmaraş (Türkiye) Earthquakes on 6 February 2023," Engineering Failure Analysis, vol.156, pp.107799, 2024.
-
[51] E. Işık et al., "Field reconnaissance and earthquake vulnerability of the RC buildings in Adıyaman during 2023 Türkiye earthquakes," Applied Sciences, vol.14, no.7, pp. 2860, 2024.
-
[52] S. Avgın, M. M. Köse, and A. Özbek, "Damage assessment of structural and geotechnical damages in Kahramanmaraş during the February 6, 2023 earthquakes," Engineering Science and Technology, an International Journal, vol.57, pp.101811, 2024.
-
[53] M. Öztürk, M. H. Arslan, and H. H. Korkmaz, "Effect on RC buildings of 6 February 2023 Turkey earthquake doublets and new doctrines for seismic design," Engineering Failure Analysis, vol.153, pp.107521, 2023.
-
[54] B. Binici et al., "Performance of RC buildings after Kahramanmaraş earthquakes: lessons toward performance-based design," Earthquake Engineering and Engineering Vibration, vol.22, no. 4, pp. 883–894, 2023.
-
[55] J. Yuzbasi, "Post-earthquake damage assessment: field observations and recent developments with recommendations from the Kahramanmaraş earthquakes in Türkiye on February 6th, 2023 (Pazarcık M7.8 and Elbistan M7.6)," Journal of Earthquake Engineering, pp.1–26, 2024.
-
[56] E. Işık et al., "Seismic performance and failure mechanisms of reinforced concrete structures subject to the earthquakes in Türkiye," Sustainability, vol.16, no.15, pp.6473, 2024.
-
[57] M. Tan, Ö. Avşar, F. Yıldızhan, and N. Atmaca, "Effect of infill walls on the seismic performance of a severely damaged substandard RC building during the February 6, 2023, Kahramanmaras earthquake sequence," Engineering Failure Analysis, pp.109117, 2024.
-
[58] C. Öser et al., "Geotechnical aspects and site investigations on Kahramanmaraş earthquakes, February 06, 2023," Natural Hazards, pp.1–32, 2024.
-
[59] B. Yön et al., "Evaluation of the seismic response of reinforced concrete buildings in the light of lessons learned from the February 6, 2023, Kahramanmaraş, Türkiye earthquake sequences," Natural Hazards, pp.1–37, 2024.
-
[60] H. Ulutaş, "Investigation of the causes of soft-storey and weak-storey formations in low-and mid-rise rc buildings in Türkiye," Buildings, vol.14, no.5, pp.1308, 2024.
-
[61] I. B. Karasin, "Comparative analysis of the 2023 Pazarcık and Elbistan Earthquakes in Diyarbakır," Buildings, vol.13, no.10, p.2474, 2023.
-
[62] E. Işık et al., "Study on effectiveness of regional risk prioritisation in reinforced concrete structures after earthquakes," Applied Sciences, vol.14, no.16, pp.6992, 2024.
-
[63] M. H. Arslan et al., "Code-based damage assessment of existing precast industrial buildings following the February 6th, 2023 Kahramanmaraş earthquakes (Pazarcık Mw 7.7 and Elbistan Mw 7.6)," Journal of Building Engineering, vol.86, p.108811, 2024.
-
[64] Seismostruct, "Seismic Analysis Software for Structures," [Online]. Available: https://www.seismosoft.com.
-
[65] Eurocode 3, "Design of steel structures – Part 1-1: General rules and rules for buildings," European Standard EN 1993-1-1, 2005.
-
[66] S. Antoniou, R. Pinho . "Seismostruct – Seismic Analysis program by Seismosoft. Technical manual and user manual", 2003.
-
[67] N. Ademovic, M. Hrasnica, D.V. Oliveira. "Pushover analysis and failure pattern of a typical masonry residential building in Bosnia and Herzegovina, " Engineering Structures, vol.50, pp.13- 29, 2013.
-
[68] J.M. Estêvão, C.S. Oliveira, "A new analysis method for structural failure evaluation," Engineering Failure Analysis, vol.56, pp.573-584, 2015.
-
[69] A.K. Chopra, R.K. Goel. "A modal pushover analysis procedure for estimating seismic demands for buildings," Earthquake Engineering & Structural Dynamics, vol.31, no.3, pp.561-582, 2002.
-
[70] H. Krawinkler, G.D.P.K. Seneviratna, "Pros and cons of a pushover analysis of seismic performance evaluation," Engineering Structures, vol.20, no.4-6, pp.452-464, 1998.
-
[71] E. Işık et al., "Time-dependent model for earthquake occurrence and effects of design spectra on structural performance: a case study from the North Anatolian Fault Zone, Turkey," Turkish Journal of Earth Sciences, vol.30, no.2, pp.215–234, 2021.
-
[72] E. Işık and E. Harirchian, "A comparative probabilistic seismic hazard analysis for Eastern Turkey (Bitlis) based on updated hazard map and its effect on regular RC structures," Buildings, vol.12, no.10, pp. 1573, 2022.
-
[73] A. Antoniou and R. Pinho, "Displacement-based seismic design of structures," Journal of Earthquake Engineering, vol.7, no.S1, pp.1–25, 2003.
-
[74] P. Pinto and E. Franchin, "Performance-based seismic design: Concepts and implementation," in Seismic Design Methodologies for the Next Generation of Codes, Routledge, pp.259–280, 2011.