Research Article
BibTex RIS Cite

Değişken cam elyaf dizilimli izolatörlerde mekanik özelliklerin incelenmesi

Year 2025, Volume: 16 Issue: 3, 707 - 715
https://doi.org/10.24012/dumf.1694736

Abstract

Bu çalışmada, el yatırma yöntemiyle üretilen kompozit numunelerin mekanik performansı üzerindeki lif yöneliminin etkisi incelenmiştir. E-Glass kumaşlar kullanılarak cam elyaf takviyeli epoksi kompozitler üretilmiştir. Lif yönelimi açısından dört farklı konfigürasyonda numuneler hazırlanmış ve lif hizalanmasının mekanik özelliklere etkisini değerlendirmek amacıyla çekme testine tabi tutulmuştur. Sonuçlar, numuneler arasında çekme dayanımı açısından önemli farklılıklar olduğunu göstermiş, lif yönelimindeki küçük değişimlerin bile mekanik davranış üzerinde dikkate değer etkiler yaratabileceğini ortaya koymuştur. Kopma modlarına ilişkin gözlemler, lif yöneliminin yük dağılımı ve yapısal bütünlük üzerindeki kritik rolünü daha da vurgulamıştır. Bu çalışma, el yatırma yöntemiyle üretilen kompozitlerde liflerin doğru konumlandırılmasının önemini vurgulamakta ve elle üretilen kompozit yapıların güvenilirliğini artırmaya yönelik önemli bulgular sunmaktadır.

References

  • [1] A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos Struct, vol. 53, no. 1, pp. 21–42, 2001, doi: 10.1016/S0263-8223(00)00175-6.
  • [2] P. Middendorf and C. Metzner, Aerospace applications of non-crimp fabric composites. Woodhead Publishing Limited, 2011. doi: 10.1016/B978-1-84569-762-4.50018-7.
  • [3] D. McLellan, “Corvette from the Inside,” 2002, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sae.org/publications/technical-papers/content/B-858/
  • [4] S. Van Hulle, “Preliminary Design of a Transverse Composite Leaf Spring for Electric Vehicles,” 2023.
  • [5] E. Tuncer, I. Sauers, D. R. James, and A. R. Ellis, “Electrical insulation characteristics of glass fiber reinforced resins,” in IEEE Transactions on Applied Superconductivity, Jun. 2009, pp. 2359–2362. doi: 10.1109/TASC.2009.2018748.
  • [6] Z. Wang, D. Zhang, M. Yang, J. Fang, S. Zhou, and W. Wang, “Study on Bending Stiffness of Solid Post Composite Insulator,” in 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Sep. 2020. doi: 10.1109/ICHVE49031.2020.9279975.
  • [7] H. Park, M. S. Ahn, T. JLee, and andD ILee, “Compressive Strength of FRP for Insulator,” 2004.
  • [8] V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, and S. O. Adeosun, “A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations,” Sep. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s00289-021-03846-z.
  • [9] P. Mallick, “Fiber Reinforced Composites Materials, Manufacturing, and Design.”
  • [10] A. Swapnil, B. SatheSandip, … P. C. today, and undefined 2017, “Experimental investigation of mechanical properties of glass fibre/epoxy composites with variable volume fraction,” ElsevierAS Swapnil, B SatheSandip, P ChaudhariBapu, SJ Vishalmaterials today: proceedings, 2017•Elsevier, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785317310040
  • [11] S. Li, H. H. Tsang, Y. Cheng, and Z. Lu, “Seismic testing and modeling of cylindrical electrical equipment with GFRP composite insulators,” Compos Struct, vol. 194, pp. 454–467, Jun. 2018, doi: 10.1016/j.compstruct.2018.02.036.
  • [12] C. H. Park, “A STUDY OF THE DIELECTRIC AND MECHANICAL PROPERTY INTERACTIONS OF GLASS-CLOTH/EPOXY COMPOSITES,” 1987.
  • [13] N. Mishra, U. A. Khan, A. Srivastava, and N. Asthana, “Effect of the Glass Fiber Orientation on Mechanical Performance of Epoxy based Composites,” Prabha Materials Science Letters, vol. 3, no. 2, pp. 175–190, Sep. 2024, doi: 10.33889/pmsl.2024.3.2.011.
  • [14] J. S. Kim, S. J. Kim, K. J. Min, J. C. Choi, H. S. Eun, and B. K. Song, “A Study on Tensile Behavior According to the Design Method for the CFRP/GFRP Grid for Reinforced Concrete,” Materials, vol. 15, no. 1, Jan. 2022, doi: 10.3390/ma15010357.
  • [15] S. Y. Kim, C. S. Shim, C. Sturtevant, D. D. W. Kim, and H. C. Song, “Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures,” International Journal of Naval Architecture and Ocean Engineering, vol. 6, no. 3, pp. 723–736, Sep. 2014, doi: 10.2478/IJNAOE-2013-0208.
  • [16] J. ; Z. H. Li, “Failure mechanisms of fiber-reinforced composites with varied orientations,” Materials Science and Engineering: A, vol. 789, pp. 1–20, 2020.
  • [17] “Evaluation of the electrical properties and mechanical behavior of”.
  • [18] “ISO 527-4 Plastics — Determination of tensile properties — Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites,” Geneva, Switzerland, 1997.
  • [19] “ISO 527-5 Plastics — Determination of tensile properties — Part 5: Test conditions for unidirectional fibre-reinforced plastic composites,” Geneva, Switzerland, 2009.
  • [20] “ISO 527-1 Plastics — Determination of tensile properties — Part 1: General principles,” Geneva, Switzerland, 2012.

Investigation of mechanical properties in variable oriented glass fiber reinforced insulators

Year 2025, Volume: 16 Issue: 3, 707 - 715
https://doi.org/10.24012/dumf.1694736

Abstract

This study investigates the influence of fiber orientation on the mechanical performance of composite insulators produced by the hand lay-up method. E-glass fiber-reinforced epoxy composites were fabricated using three types of glass fiber fabrics: unidirectional (L300), ±90° biaxial (LT600), and ±45° biaxial (X600). Additionally, silica sand-filled epoxy insulators were also evaluated—both factory-produced and commercially sourced—to benchmark performance differences with glass fiber-reinforced counterparts. The primary objective is to assess how varying fiber alignment and material configurations affect mechanical properties, particularly under tensile loading. Specimens were prepared in four distinct orientation configurations and subjected to tensile testing. The results demonstrated significant variations in tensile strength, highlighting that even minor differences in fiber orientation can substantially alter mechanical behavior. Failure mode analysis further emphasized the critical role of fiber orientation in load distribution and structural integrity. Overall, this study provides insights into enhancing the mechanical reliability of composite insulators by optimizing fiber placement and evaluating alternative filler systems such as silica sand.

References

  • [1] A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos Struct, vol. 53, no. 1, pp. 21–42, 2001, doi: 10.1016/S0263-8223(00)00175-6.
  • [2] P. Middendorf and C. Metzner, Aerospace applications of non-crimp fabric composites. Woodhead Publishing Limited, 2011. doi: 10.1016/B978-1-84569-762-4.50018-7.
  • [3] D. McLellan, “Corvette from the Inside,” 2002, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sae.org/publications/technical-papers/content/B-858/
  • [4] S. Van Hulle, “Preliminary Design of a Transverse Composite Leaf Spring for Electric Vehicles,” 2023.
  • [5] E. Tuncer, I. Sauers, D. R. James, and A. R. Ellis, “Electrical insulation characteristics of glass fiber reinforced resins,” in IEEE Transactions on Applied Superconductivity, Jun. 2009, pp. 2359–2362. doi: 10.1109/TASC.2009.2018748.
  • [6] Z. Wang, D. Zhang, M. Yang, J. Fang, S. Zhou, and W. Wang, “Study on Bending Stiffness of Solid Post Composite Insulator,” in 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Sep. 2020. doi: 10.1109/ICHVE49031.2020.9279975.
  • [7] H. Park, M. S. Ahn, T. JLee, and andD ILee, “Compressive Strength of FRP for Insulator,” 2004.
  • [8] V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, and S. O. Adeosun, “A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations,” Sep. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s00289-021-03846-z.
  • [9] P. Mallick, “Fiber Reinforced Composites Materials, Manufacturing, and Design.”
  • [10] A. Swapnil, B. SatheSandip, … P. C. today, and undefined 2017, “Experimental investigation of mechanical properties of glass fibre/epoxy composites with variable volume fraction,” ElsevierAS Swapnil, B SatheSandip, P ChaudhariBapu, SJ Vishalmaterials today: proceedings, 2017•Elsevier, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785317310040
  • [11] S. Li, H. H. Tsang, Y. Cheng, and Z. Lu, “Seismic testing and modeling of cylindrical electrical equipment with GFRP composite insulators,” Compos Struct, vol. 194, pp. 454–467, Jun. 2018, doi: 10.1016/j.compstruct.2018.02.036.
  • [12] C. H. Park, “A STUDY OF THE DIELECTRIC AND MECHANICAL PROPERTY INTERACTIONS OF GLASS-CLOTH/EPOXY COMPOSITES,” 1987.
  • [13] N. Mishra, U. A. Khan, A. Srivastava, and N. Asthana, “Effect of the Glass Fiber Orientation on Mechanical Performance of Epoxy based Composites,” Prabha Materials Science Letters, vol. 3, no. 2, pp. 175–190, Sep. 2024, doi: 10.33889/pmsl.2024.3.2.011.
  • [14] J. S. Kim, S. J. Kim, K. J. Min, J. C. Choi, H. S. Eun, and B. K. Song, “A Study on Tensile Behavior According to the Design Method for the CFRP/GFRP Grid for Reinforced Concrete,” Materials, vol. 15, no. 1, Jan. 2022, doi: 10.3390/ma15010357.
  • [15] S. Y. Kim, C. S. Shim, C. Sturtevant, D. D. W. Kim, and H. C. Song, “Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures,” International Journal of Naval Architecture and Ocean Engineering, vol. 6, no. 3, pp. 723–736, Sep. 2014, doi: 10.2478/IJNAOE-2013-0208.
  • [16] J. ; Z. H. Li, “Failure mechanisms of fiber-reinforced composites with varied orientations,” Materials Science and Engineering: A, vol. 789, pp. 1–20, 2020.
  • [17] “Evaluation of the electrical properties and mechanical behavior of”.
  • [18] “ISO 527-4 Plastics — Determination of tensile properties — Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites,” Geneva, Switzerland, 1997.
  • [19] “ISO 527-5 Plastics — Determination of tensile properties — Part 5: Test conditions for unidirectional fibre-reinforced plastic composites,” Geneva, Switzerland, 2009.
  • [20] “ISO 527-1 Plastics — Determination of tensile properties — Part 1: General principles,” Geneva, Switzerland, 2012.
There are 20 citations in total.

Details

Primary Language English
Subjects Composite and Hybrid Materials
Journal Section Articles
Authors

Selçuk İlhan Bilgin 0000-0001-9335-4307

Hakan Çetinel 0000-0001-5938-1213

Enver Yalçın 0000-0001-6171-1955

Early Pub Date September 30, 2025
Publication Date October 14, 2025
Submission Date May 7, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

IEEE S. İ. Bilgin, H. Çetinel, and E. Yalçın, “Investigation of mechanical properties in variable oriented glass fiber reinforced insulators”, DUJE, vol. 16, no. 3, pp. 707–715, 2025, doi: 10.24012/dumf.1694736.