Araştırma Makalesi
BibTex RIS Kaynak Göster

Değişken cam elyaf dizilimli izolatörlerde mekanik özelliklerin incelenmesi

Yıl 2025, Cilt: 16 Sayı: 3, 707 - 715
https://doi.org/10.24012/dumf.1694736

Öz

Bu çalışmada, el yatırma yöntemiyle üretilen kompozit numunelerin mekanik performansı üzerindeki lif yöneliminin etkisi incelenmiştir. E-Glass kumaşlar kullanılarak cam elyaf takviyeli epoksi kompozitler üretilmiştir. Lif yönelimi açısından dört farklı konfigürasyonda numuneler hazırlanmış ve lif hizalanmasının mekanik özelliklere etkisini değerlendirmek amacıyla çekme testine tabi tutulmuştur. Sonuçlar, numuneler arasında çekme dayanımı açısından önemli farklılıklar olduğunu göstermiş, lif yönelimindeki küçük değişimlerin bile mekanik davranış üzerinde dikkate değer etkiler yaratabileceğini ortaya koymuştur. Kopma modlarına ilişkin gözlemler, lif yöneliminin yük dağılımı ve yapısal bütünlük üzerindeki kritik rolünü daha da vurgulamıştır. Bu çalışma, el yatırma yöntemiyle üretilen kompozitlerde liflerin doğru konumlandırılmasının önemini vurgulamakta ve elle üretilen kompozit yapıların güvenilirliğini artırmaya yönelik önemli bulgular sunmaktadır.

Kaynakça

  • [1] A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos Struct, vol. 53, no. 1, pp. 21–42, 2001, doi: 10.1016/S0263-8223(00)00175-6.
  • [2] P. Middendorf and C. Metzner, Aerospace applications of non-crimp fabric composites. Woodhead Publishing Limited, 2011. doi: 10.1016/B978-1-84569-762-4.50018-7.
  • [3] D. McLellan, “Corvette from the Inside,” 2002, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sae.org/publications/technical-papers/content/B-858/
  • [4] S. Van Hulle, “Preliminary Design of a Transverse Composite Leaf Spring for Electric Vehicles,” 2023.
  • [5] E. Tuncer, I. Sauers, D. R. James, and A. R. Ellis, “Electrical insulation characteristics of glass fiber reinforced resins,” in IEEE Transactions on Applied Superconductivity, Jun. 2009, pp. 2359–2362. doi: 10.1109/TASC.2009.2018748.
  • [6] Z. Wang, D. Zhang, M. Yang, J. Fang, S. Zhou, and W. Wang, “Study on Bending Stiffness of Solid Post Composite Insulator,” in 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Sep. 2020. doi: 10.1109/ICHVE49031.2020.9279975.
  • [7] H. Park, M. S. Ahn, T. JLee, and andD ILee, “Compressive Strength of FRP for Insulator,” 2004.
  • [8] V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, and S. O. Adeosun, “A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations,” Sep. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s00289-021-03846-z.
  • [9] P. Mallick, “Fiber Reinforced Composites Materials, Manufacturing, and Design.”
  • [10] A. Swapnil, B. SatheSandip, … P. C. today, and undefined 2017, “Experimental investigation of mechanical properties of glass fibre/epoxy composites with variable volume fraction,” ElsevierAS Swapnil, B SatheSandip, P ChaudhariBapu, SJ Vishalmaterials today: proceedings, 2017•Elsevier, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785317310040
  • [11] S. Li, H. H. Tsang, Y. Cheng, and Z. Lu, “Seismic testing and modeling of cylindrical electrical equipment with GFRP composite insulators,” Compos Struct, vol. 194, pp. 454–467, Jun. 2018, doi: 10.1016/j.compstruct.2018.02.036.
  • [12] C. H. Park, “A STUDY OF THE DIELECTRIC AND MECHANICAL PROPERTY INTERACTIONS OF GLASS-CLOTH/EPOXY COMPOSITES,” 1987.
  • [13] N. Mishra, U. A. Khan, A. Srivastava, and N. Asthana, “Effect of the Glass Fiber Orientation on Mechanical Performance of Epoxy based Composites,” Prabha Materials Science Letters, vol. 3, no. 2, pp. 175–190, Sep. 2024, doi: 10.33889/pmsl.2024.3.2.011.
  • [14] J. S. Kim, S. J. Kim, K. J. Min, J. C. Choi, H. S. Eun, and B. K. Song, “A Study on Tensile Behavior According to the Design Method for the CFRP/GFRP Grid for Reinforced Concrete,” Materials, vol. 15, no. 1, Jan. 2022, doi: 10.3390/ma15010357.
  • [15] S. Y. Kim, C. S. Shim, C. Sturtevant, D. D. W. Kim, and H. C. Song, “Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures,” International Journal of Naval Architecture and Ocean Engineering, vol. 6, no. 3, pp. 723–736, Sep. 2014, doi: 10.2478/IJNAOE-2013-0208.
  • [16] J. ; Z. H. Li, “Failure mechanisms of fiber-reinforced composites with varied orientations,” Materials Science and Engineering: A, vol. 789, pp. 1–20, 2020.
  • [17] “Evaluation of the electrical properties and mechanical behavior of”.
  • [18] “ISO 527-4 Plastics — Determination of tensile properties — Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites,” Geneva, Switzerland, 1997.
  • [19] “ISO 527-5 Plastics — Determination of tensile properties — Part 5: Test conditions for unidirectional fibre-reinforced plastic composites,” Geneva, Switzerland, 2009.
  • [20] “ISO 527-1 Plastics — Determination of tensile properties — Part 1: General principles,” Geneva, Switzerland, 2012.

Investigation of mechanical properties in variable oriented glass fiber reinforced insulators

Yıl 2025, Cilt: 16 Sayı: 3, 707 - 715
https://doi.org/10.24012/dumf.1694736

Öz

This study investigates the influence of fiber orientation on the mechanical performance of composite insulators produced by the hand lay-up method. E-glass fiber-reinforced epoxy composites were fabricated using three types of glass fiber fabrics: unidirectional (L300), ±90° biaxial (LT600), and ±45° biaxial (X600). Additionally, silica sand-filled epoxy insulators were also evaluated—both factory-produced and commercially sourced—to benchmark performance differences with glass fiber-reinforced counterparts. The primary objective is to assess how varying fiber alignment and material configurations affect mechanical properties, particularly under tensile loading. Specimens were prepared in four distinct orientation configurations and subjected to tensile testing. The results demonstrated significant variations in tensile strength, highlighting that even minor differences in fiber orientation can substantially alter mechanical behavior. Failure mode analysis further emphasized the critical role of fiber orientation in load distribution and structural integrity. Overall, this study provides insights into enhancing the mechanical reliability of composite insulators by optimizing fiber placement and evaluating alternative filler systems such as silica sand.

Kaynakça

  • [1] A. P. Mouritz, E. Gellert, P. Burchill, and K. Challis, “Review of advanced composite structures for naval ships and submarines,” Compos Struct, vol. 53, no. 1, pp. 21–42, 2001, doi: 10.1016/S0263-8223(00)00175-6.
  • [2] P. Middendorf and C. Metzner, Aerospace applications of non-crimp fabric composites. Woodhead Publishing Limited, 2011. doi: 10.1016/B978-1-84569-762-4.50018-7.
  • [3] D. McLellan, “Corvette from the Inside,” 2002, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sae.org/publications/technical-papers/content/B-858/
  • [4] S. Van Hulle, “Preliminary Design of a Transverse Composite Leaf Spring for Electric Vehicles,” 2023.
  • [5] E. Tuncer, I. Sauers, D. R. James, and A. R. Ellis, “Electrical insulation characteristics of glass fiber reinforced resins,” in IEEE Transactions on Applied Superconductivity, Jun. 2009, pp. 2359–2362. doi: 10.1109/TASC.2009.2018748.
  • [6] Z. Wang, D. Zhang, M. Yang, J. Fang, S. Zhou, and W. Wang, “Study on Bending Stiffness of Solid Post Composite Insulator,” in 7th IEEE International Conference on High Voltage Engineering and Application, ICHVE 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc., Sep. 2020. doi: 10.1109/ICHVE49031.2020.9279975.
  • [7] H. Park, M. S. Ahn, T. JLee, and andD ILee, “Compressive Strength of FRP for Insulator,” 2004.
  • [8] V. E. Ogbonna, A. P. I. Popoola, O. M. Popoola, and S. O. Adeosun, “A review on corrosion, mechanical, and electrical properties of glass fiber-reinforced epoxy composites for high-voltage insulator core rod applications: challenges and recommendations,” Sep. 01, 2022, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s00289-021-03846-z.
  • [9] P. Mallick, “Fiber Reinforced Composites Materials, Manufacturing, and Design.”
  • [10] A. Swapnil, B. SatheSandip, … P. C. today, and undefined 2017, “Experimental investigation of mechanical properties of glass fibre/epoxy composites with variable volume fraction,” ElsevierAS Swapnil, B SatheSandip, P ChaudhariBapu, SJ Vishalmaterials today: proceedings, 2017•Elsevier, Accessed: Apr. 24, 2025. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2214785317310040
  • [11] S. Li, H. H. Tsang, Y. Cheng, and Z. Lu, “Seismic testing and modeling of cylindrical electrical equipment with GFRP composite insulators,” Compos Struct, vol. 194, pp. 454–467, Jun. 2018, doi: 10.1016/j.compstruct.2018.02.036.
  • [12] C. H. Park, “A STUDY OF THE DIELECTRIC AND MECHANICAL PROPERTY INTERACTIONS OF GLASS-CLOTH/EPOXY COMPOSITES,” 1987.
  • [13] N. Mishra, U. A. Khan, A. Srivastava, and N. Asthana, “Effect of the Glass Fiber Orientation on Mechanical Performance of Epoxy based Composites,” Prabha Materials Science Letters, vol. 3, no. 2, pp. 175–190, Sep. 2024, doi: 10.33889/pmsl.2024.3.2.011.
  • [14] J. S. Kim, S. J. Kim, K. J. Min, J. C. Choi, H. S. Eun, and B. K. Song, “A Study on Tensile Behavior According to the Design Method for the CFRP/GFRP Grid for Reinforced Concrete,” Materials, vol. 15, no. 1, Jan. 2022, doi: 10.3390/ma15010357.
  • [15] S. Y. Kim, C. S. Shim, C. Sturtevant, D. D. W. Kim, and H. C. Song, “Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures,” International Journal of Naval Architecture and Ocean Engineering, vol. 6, no. 3, pp. 723–736, Sep. 2014, doi: 10.2478/IJNAOE-2013-0208.
  • [16] J. ; Z. H. Li, “Failure mechanisms of fiber-reinforced composites with varied orientations,” Materials Science and Engineering: A, vol. 789, pp. 1–20, 2020.
  • [17] “Evaluation of the electrical properties and mechanical behavior of”.
  • [18] “ISO 527-4 Plastics — Determination of tensile properties — Part 4: Test conditions for isotropic and orthotropic fibre-reinforced plastic composites,” Geneva, Switzerland, 1997.
  • [19] “ISO 527-5 Plastics — Determination of tensile properties — Part 5: Test conditions for unidirectional fibre-reinforced plastic composites,” Geneva, Switzerland, 2009.
  • [20] “ISO 527-1 Plastics — Determination of tensile properties — Part 1: General principles,” Geneva, Switzerland, 2012.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Makaleler
Yazarlar

Selçuk İlhan Bilgin 0000-0001-9335-4307

Hakan Çetinel 0000-0001-5938-1213

Enver Yalçın 0000-0001-6171-1955

Erken Görünüm Tarihi 30 Eylül 2025
Yayımlanma Tarihi 10 Ekim 2025
Gönderilme Tarihi 7 Mayıs 2025
Kabul Tarihi 10 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 16 Sayı: 3

Kaynak Göster

IEEE S. İ. Bilgin, H. Çetinel, ve E. Yalçın, “Investigation of mechanical properties in variable oriented glass fiber reinforced insulators”, DÜMF MD, c. 16, sy. 3, ss. 707–715, 2025, doi: 10.24012/dumf.1694736.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456