Research Article
BibTex RIS Cite

Chen kaotik sisteminin adaptif kontrolü

Year 2025, Volume: 16 Issue: 3, 633 - 641
https://doi.org/10.24012/dumf.1713168

Abstract

Bu çalışmada, Chen kaotik sisteminin dinamik davranışları incelenmiş ve bu sistem için adaptif bir kontrol stratejisi geliştirilmiştir. Adaptif kontrol teknikleri, sistem parametrelerindeki belirsizlikleri ve dış bozucuları telafi ederek sistemin kararlı bir duruma ulaşmasını sağlar. Kontrol algoritması Chen kaotik sisteminin başlangıç parametlerinde oynama yaparak sistemi istenilen referans durumlarına yönlendirir. Chen kaotik sisteminde adaptif kontrol, sistemin kaotik dinamiklerini bastırmak veya belirli bir referans durumuna yönlendirmek amacıyla kullanılan etkili bir yöntemdir. Böylece Chen sisteminin kaotik davranışı kontrol altına alınarak mühendislik ve güvenlik uygulamalarında kullanılmak üzere daha kararlı bir yapı elde edilir. Geliştirilen adaptif kontrol algoritması ile x, y ve z durum değişkenleri belirlenen referans noktalarında stabilize edilmiştir. Başlangıçta yüksek genlikli ve düzensiz salınımlar sergileyen sistem, zamanla adaptif kontrol etkisiyle sönümlenmiş ve her üç durum değişkeni referans değer seçilen sıfıra doğru yönelmiştir. Bu durum, sistemin kaotik davranışının bastırıldığını ve kontrol algoritmasının etkin biçimde çalıştığını göstermektedir. Simülasyon sonuçlarında, geliştirilen adaptif kontrol yapısı, Chen sistemini kararlı hale getirmiş ve istenilen dinamik davranışı başarıyla sağlamıştır.

References

  • [1] G. Chen and T. Ueta, "Yet another chaotic attractor," Int. J. Bifurcation Chaos, vol. 9, no. 7, pp. 1465–1466, Jul. 1999.
  • [2] X. P. She, "Two synchronization schemes for Chen chaotic system," in Appl. Mech. Mater., vols. 385–386, pp. 915–918, Aug. 2013, doi: 10.4028/www.scientific.net/AMM.385-386.915.
  • [3] T. Liu and T. Chen, "Network synchronization with an adaptive coupling strength," arXiv preprint, Oct. 2006.
  • [4] H.-T. Yau and C.-L. Chen, "Adaptive sliding mode control for uncertain chaotic systems," Chaos, Solitons and Fractals, vol. 32, no. 4, pp. 1453–1461, May 2007, doi: 10.1016/j.chaos.2005.11.092.
  • [5] X. Zhang, X. Li, and X. Han, "Design of hybrid controller for synchronization control of Chen chaotic system," J. Nonlinear Sci. Appl., vol. 10, no. 6, pp. 3320–3327, Jun. 2017. en.wikipedia.org+6isr-publications.com+6scientific.net+6
  • [6] H.-T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos Solitons & Fractals, vol. 22, no. 2, pp. 341–347, Oct. 2004, doi: 10.1016/j.chaos.2004.02.004.
  • [7] P. Guang and W. Jing, "Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems," Acta Phys. Sin., vol. 64, no. 4, Apr. 2015, doi:10.7498/aps.64.040505.
  • [8] L. Du, F. Wang, J. Pian, and Z. Han, "Adaptive switching control for projected synchronization of chaotic systems with uncertainties," Adv. Mater. Res., vol. 499, pp. 360–365, Apr. 2012, doi:10.4028/www.scientific.net/AMR.499.360.
  • [9] Q. Ye et al., "Adaptive feedback control for synchronization of chaotic neural systems with parameter mismatches," Complexity, vol. 2018, Article 5431987, Jan. 2018.
  • [10] T. Yang, C. M. Yang, and L.-B. Yang, “A detailed study of adaptive control of chaotic systems with unknown parameters,” Dynamics and Control, vol. 8, pp. 255–267, Jul. 1998, doi:10.1023/A:1008258403620.
  • [11] E. Ott, C. Grebogi, and J.A. Yorke, Controlling Chaos. Physical Review Letters, 64, 1196-1199, 1990.
  • [12] K. Pyragas, Continuous control of chaos by self-controlling feedback. Physics letters A, 170(6), 421-428, 1992.
  • [13] G. V. Emel'yanov, a queuing system with apparatus which can go out of service and be restored. Problemy Peredachi Informatsii, 3(3), 59-63, 1967.
  • [14] C. Hua and X. Guan, "Adaptive control for chaotic systems," Chaos, Solitons & Fractals, vol. 22, no. 1, pp. 55–60, 2004, doi: 10.1016/j.chaos.2003.12.071.
  • [15] Khan, Ayub, and Ram Prasad, "Adaptive Control for Synchronization of Identical and Non-Identical Chaotic Systems with Unknown Parameters," J. Eng. Technol. Appl. Sci., vol. 5, no. 2, pp. 77–92, 2020, doi: 10.30931/jetas.756968.
  • [16] S. Vaidyanathan and C. Volos, "Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system," Archives of Control Sciences, vol. 25, no. 3, pp. 333–353, 2015, doi: 10.1515/acsc-2015-0022.
  • [17] S. Eshaghi, N. Kadkhoda, and M. Inc, "Chaos control and synchronization of a new fractional laser chaotic system," Qualitative Theory of Dynamical Systems, vol. 23, no. 5, 2024, doi: 10.1007/s12346-024-01097-7.
  • [18] H. Ding, J. Qian, D. Tian, & Y. Zeng, Norm-Based Adaptive Control with a Novel Practical Predefined-Time Sliding Mode for Chaotic System Synchronization. Mathematics (2227-7390), 13(5), 2025.
  • [19] J. Gleick, Chaos: Making a New Science. New York, NY, USA: Penguin Books, 1987.
  • [20] G. Boeing, "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self Similarity and the Limits of Prediction," Systems, vol. 4, no. 4, pp. 1–15, Nov. 2016, doi: 10.3390/systems4040037.
  • [21] A.-B. A. Al-Hussein, "Chaos phenomenon in power systems: A review," Iraqi Journal for Electrical and Electronic Engineering, vol. 17, no. 2, pp. 219–240, 2021.
  • [22] E. N. Lorenz, "Deterministic nonperiodic flow," J. Atmos. Sci., vol. 20, no. 2, pp. 130–141, 1963.
  • [23] L. E. X. Zhou, “Chen system: relations with Lorenz and dynamic properties,” Chaos, vol. XX, no. Y, pp. ZZ–ZZ, 20AA.
  • [24] G. Qi, G. Chen, S. Du, Z. Chen, and Z. Yuan, "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, vol. 352, no. 2, pp. 295–308, 2005.
  • [25] K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2010.
  • [26] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Mineola, NY, USA: Dover Publications, 2013.

Adaptive control of Chen chaotic system

Year 2025, Volume: 16 Issue: 3, 633 - 641
https://doi.org/10.24012/dumf.1713168

Abstract

In this study, the dynamic behavior of the Chen chaotic system is investigated and an adaptive control strategy is developed for this system. Adaptive control techniques compensate for uncertainties in the system parameters and external disturbances to achieve a steady state. The control algorithm manipulates the initial parameters of the Chen chaotic system to steer the system to the desired reference states. Adaptive control in the Chen chaotic system is an effective method to suppress the chaotic dynamics of the system or to steer it to a specific reference state. Thus, the chaotic behavior of the Chen system is controlled and a more stable structure is obtained for use in engineering and security applications. With the developed adaptive control algorithm, the state variables x, y and z are stabilized at specified reference points. The system, which initially exhibits high amplitude and irregular oscillations, is damped over time by the adaptive control effect and all three state variables tend towards zero, which is chosen as the reference value. This shows that the chaotic behavior of the system is suppressed and the control algorithm works effectively. In the simulation results, the developed adaptive control structure stabilized the Chen system and successfully achieved the desired dynamic behavior.

References

  • [1] G. Chen and T. Ueta, "Yet another chaotic attractor," Int. J. Bifurcation Chaos, vol. 9, no. 7, pp. 1465–1466, Jul. 1999.
  • [2] X. P. She, "Two synchronization schemes for Chen chaotic system," in Appl. Mech. Mater., vols. 385–386, pp. 915–918, Aug. 2013, doi: 10.4028/www.scientific.net/AMM.385-386.915.
  • [3] T. Liu and T. Chen, "Network synchronization with an adaptive coupling strength," arXiv preprint, Oct. 2006.
  • [4] H.-T. Yau and C.-L. Chen, "Adaptive sliding mode control for uncertain chaotic systems," Chaos, Solitons and Fractals, vol. 32, no. 4, pp. 1453–1461, May 2007, doi: 10.1016/j.chaos.2005.11.092.
  • [5] X. Zhang, X. Li, and X. Han, "Design of hybrid controller for synchronization control of Chen chaotic system," J. Nonlinear Sci. Appl., vol. 10, no. 6, pp. 3320–3327, Jun. 2017. en.wikipedia.org+6isr-publications.com+6scientific.net+6
  • [6] H.-T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos Solitons & Fractals, vol. 22, no. 2, pp. 341–347, Oct. 2004, doi: 10.1016/j.chaos.2004.02.004.
  • [7] P. Guang and W. Jing, "Design of an adaptive sliding mode controller for synchronization of fractional-order chaotic systems," Acta Phys. Sin., vol. 64, no. 4, Apr. 2015, doi:10.7498/aps.64.040505.
  • [8] L. Du, F. Wang, J. Pian, and Z. Han, "Adaptive switching control for projected synchronization of chaotic systems with uncertainties," Adv. Mater. Res., vol. 499, pp. 360–365, Apr. 2012, doi:10.4028/www.scientific.net/AMR.499.360.
  • [9] Q. Ye et al., "Adaptive feedback control for synchronization of chaotic neural systems with parameter mismatches," Complexity, vol. 2018, Article 5431987, Jan. 2018.
  • [10] T. Yang, C. M. Yang, and L.-B. Yang, “A detailed study of adaptive control of chaotic systems with unknown parameters,” Dynamics and Control, vol. 8, pp. 255–267, Jul. 1998, doi:10.1023/A:1008258403620.
  • [11] E. Ott, C. Grebogi, and J.A. Yorke, Controlling Chaos. Physical Review Letters, 64, 1196-1199, 1990.
  • [12] K. Pyragas, Continuous control of chaos by self-controlling feedback. Physics letters A, 170(6), 421-428, 1992.
  • [13] G. V. Emel'yanov, a queuing system with apparatus which can go out of service and be restored. Problemy Peredachi Informatsii, 3(3), 59-63, 1967.
  • [14] C. Hua and X. Guan, "Adaptive control for chaotic systems," Chaos, Solitons & Fractals, vol. 22, no. 1, pp. 55–60, 2004, doi: 10.1016/j.chaos.2003.12.071.
  • [15] Khan, Ayub, and Ram Prasad, "Adaptive Control for Synchronization of Identical and Non-Identical Chaotic Systems with Unknown Parameters," J. Eng. Technol. Appl. Sci., vol. 5, no. 2, pp. 77–92, 2020, doi: 10.30931/jetas.756968.
  • [16] S. Vaidyanathan and C. Volos, "Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system," Archives of Control Sciences, vol. 25, no. 3, pp. 333–353, 2015, doi: 10.1515/acsc-2015-0022.
  • [17] S. Eshaghi, N. Kadkhoda, and M. Inc, "Chaos control and synchronization of a new fractional laser chaotic system," Qualitative Theory of Dynamical Systems, vol. 23, no. 5, 2024, doi: 10.1007/s12346-024-01097-7.
  • [18] H. Ding, J. Qian, D. Tian, & Y. Zeng, Norm-Based Adaptive Control with a Novel Practical Predefined-Time Sliding Mode for Chaotic System Synchronization. Mathematics (2227-7390), 13(5), 2025.
  • [19] J. Gleick, Chaos: Making a New Science. New York, NY, USA: Penguin Books, 1987.
  • [20] G. Boeing, "Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self Similarity and the Limits of Prediction," Systems, vol. 4, no. 4, pp. 1–15, Nov. 2016, doi: 10.3390/systems4040037.
  • [21] A.-B. A. Al-Hussein, "Chaos phenomenon in power systems: A review," Iraqi Journal for Electrical and Electronic Engineering, vol. 17, no. 2, pp. 219–240, 2021.
  • [22] E. N. Lorenz, "Deterministic nonperiodic flow," J. Atmos. Sci., vol. 20, no. 2, pp. 130–141, 1963.
  • [23] L. E. X. Zhou, “Chen system: relations with Lorenz and dynamic properties,” Chaos, vol. XX, no. Y, pp. ZZ–ZZ, 20AA.
  • [24] G. Qi, G. Chen, S. Du, Z. Chen, and Z. Yuan, "Analysis of a new chaotic system," Physica A: Statistical Mechanics and its Applications, vol. 352, no. 2, pp. 295–308, 2005.
  • [25] K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, NJ, USA: Prentice Hall, 2010.
  • [26] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd ed. Mineola, NY, USA: Dover Publications, 2013.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Electrical Circuits and Systems
Journal Section Articles
Authors

Mehmet Güzel 0009-0006-4128-8225

Muhittin Bayram 0000-0002-9941-4347

Early Pub Date September 30, 2025
Publication Date October 10, 2025
Submission Date June 4, 2025
Acceptance Date September 6, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

IEEE M. Güzel and M. Bayram, “Chen kaotik sisteminin adaptif kontrolü”, DUJE, vol. 16, no. 3, pp. 633–641, 2025, doi: 10.24012/dumf.1713168.