Review
BibTex RIS Cite

Bilgi Teknolojilerinin Çevresel Yüzü: Yeşil Bilişim

Year 2023, , 232 - 252, 31.12.2023
https://doi.org/10.55179/dusbed.1281865

Abstract

Teknolojik gelişmeler ışığında ortaya çıkan elektronik cihazlar sosyal hayatta ve iş hayatında yaygın bir şekilde kullanılmaktadır. Çeşitlenen elektronik cihazların yoğun kullanımı beraberinde enerji tüketimini ve e-atık sorununu da getirmektedir. Gerek enerji tüketimi gerek e-atıklar çevre ve doğal olarak insan sağlığı üzerinde olumsuz etkiye sahiptir. Teknolojik cihaz kullanımı ve üretimi sırasında ortaya çıkan sera gazı, üretim atıkları vb. olumsuz süreçler iklim değişiklikleri üzerinde etkili bir neden olurken kullanım ömrü dolan cihazların etkin bir geri dönüşüm sürecine dahil edilememesi de cihazların kullanım ömrü sonunda ortaya çıkan çeşitli elementlerin çevre ve insan sağlığı üzerindeki etkisini arttırmaktadır. Elektronik cihazların tasarımı, üretimi, kullanımı ve geri dönüşüm süreçlerini çevre dostu bir şekilde tasarlayan “yeşil bilişim” teknoloji yoğun kullanım neticesinde ortaya çıkan olumsuzlukları ortadan kaldırmayı amaçlamaktadır. Bu çalışmada yeşil bilişim ve eko etiket uygulamaları incelenirken konu kapsamında eko etiket uygulamalarının yeşil bilişim kavramının sosyal ve ekonomik boyutta karşılığını bulması açısından önemine atıfta bulunulmuştur. Buna ek olarak kişisel ve sektörel elektronik ve elektrikli cihaz alımlarında eko-etiketli ürünlerin tercih edilmesi hatta sektörel bazda kamu ve özel sektör ayrımı gözetilmeksizin alım ihalelerinin teknik şartnamelerine cihazların eko-etiket taşıma zorunluluğu eklenerek sürecin yönetilmesi yararlı olacağı önerilirken, toplumsal bilincin yaygınlaşması için çeşitli faktörlerin kullanılması, atık toplama süreçlerinin teşvik edilmesi, eğlenceli hale getirilmesinin de etkili bir yöntem olacağı sonuç olarak dikkat çekmektedir.

References

  • Agarwal, S., Datta, A. & Nath, A. (2022). Determining the impact of green computing in it industry to make eco friendly environment. Recent Advances in Mathematical Research and Computer Science, 8(11), 55-62.
  • Arya, M.S., Manjare, A., Naik, P. & Sheikh, K.H. (2020). A green computing technique for reducing energy consumption for desktops using proxy downloading. Information and Communication Technology for Sustainable Development, 933, 823-831.
  • Bagla, K. R., Trivedi, P. & Bagga, T. (2022). Awareness and adoption of green computing in India. Sustainable Computing: Informatics and System, 35.
  • Baldé, C.P., Forti V., Gray, V., Kuehr, R. & Stegmann, P. (2017). The Global E-waste Monitor – 2017, Quantities, Flows, and Resources. Bonn/Geneva/Vienna: United Nations University (UNU). International Telecommunication Union (ITU) & International Solid Waste Association (ISWA) Pub.
  • Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X. & Wu, J. (2015). Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment. Journal of Systems and Software, 99, 20-35.
  • Chou, J., Kim, J. & Rotem, D. (2012). Handbook of energy-aware and green computing. İçinde I. Ahmad & S. Ranka (Eds.), Energy-saving techniques for disk storage Systems, (pp. 3-30), New York: Chapman and Hall.
  • Cucchiella, F., D'Adamo, I., Koh, S.C.L. & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, 263-272.
  • Çetin, H. & Akgün, A. (2015). Yeşil bilişim teknolojileri bağlamında sanallaştırılmış ve klasik sistemlerin karşılaştırılması. Uluslararası Alanya İşletme Fakültesi Dergisi, 7(2), 131-142.
  • Dar, K.S., Asif, S. & Islam, A. (2015). Power management and green computing: an operating system prospective. Canadian International Journal Social Science Education, 2,164–183.
  • Diouani, S. & Medromi, H. (2018). Green cloud computing: efficient energy-aware and dynamic resources management in data centers. International Journal of Advanced Computer Science and Applications (IJACSA), 9(7), 124–127.
  • Epeat (2022). About EPEAT, https://www.epeat.net/about-epeat (E.T.: 12.07.2022)
  • Fu, J., Zhou, Q., Liu, J., Wang, T., Zhang, Q. & Jiang, G. (2008). High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere, 71(7), 1269-1275.
  • Fürjes, L.C. (2022). Performance analysis of low dimensional word embeddings to support green computing. Production Systems and Information Engineering, 10(2), 27-36.
  • Gil, C.R., Ruiz-Falcó, A. & Martínez, J.M. (2012). Optimization of energy consumption in hpc centers: energy efficiency project of castile and leon supercomputing Center FCSCL. In International Conference on Renewable energies and Power Quality, 28-30 March, Santiago de Compostela (Spain).
  • Gramatyka, P., Nowosielski, R. & Sakiewicz, P. (2007). Recycling of waste electrical and electronic equipment. Journal of Achievements in Materials and Manufacturing Engineering, (20), 535-538.
  • Barba-Gutierrez, Y., Adenso-Diaz, B. & Hopp, M. (2008). An analysis of some environmental consequences of european electrical and electronic waste regulation. Resources, Conservation and Recycling, 52, 481–495.
  • Hanne, F.Z. (2011). Green-IT: Why developing countries should care?. IJCSI International Journal of Computer Science Issues, 8(4), 424-427.
  • Hernandez, A.A. (2019). An empirical investigation on the awareness and practices of higher education students in green information technology: implications for sustainable computing practice, education and policy. International Journal of Social Ecology and Sustainable Development (IJSESD) 10(2).
  • Horn, D.A. (2015). New EPEAT® standards for computer servers: a review of new green procurement criteria for servers. 2015 IEEE Conference on Technologies for Sustainability (SusTech), Ogden, UT, USA
  • Jacob, J.S. & Preetha, K.G. (2012). A novel approach for green computing through event-driven power aware pervasive computing. İçinde: Meghanathan, N., Chaki, N., Nagamalai, D. (eds) Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp.81-88), Berlin, Heidelberg.
  • Jain, R., Chaudhary, S. & Kumar, R. (2017). Green approach for next generation computing: a survey. International Journal of Advanced Engineering Research and Science (IJAERS), 4(1), 78-82.
  • JRC, (2019). Mapping the role of raw materials in sustainable development goals, joint researchcenter. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112892/sustainable_development_goals_report_jrc112892.pdf (E.T.: 31.07.2022)
  • Karmankar, P.S. & Tadse, P. (2021). Application of IoT in green computing. Journal of Emerging Technologies and Innovative Research (JETIR), 8(1), 111-114.
  • Katz, J., Rifer, W. & Wilson, A.R. (2005). EPEAT: electronic product environmental tool -development of an environmental rating system of electronic products for governmental/institutional procurement. IEEE International Symposium on Electronics and the Environment, 2005, New Orleans, LA, USA
  • Kumar, S. (2022). Embracing green computing in molecular phylogenetics. Molecular Biology and Evolution, 39(3).
  • Lei, H., Wang, R., Zhang, T., Liu, Y. & Zha, Y. (2016). A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center. Computers & Operations Research, 75, 103-117.
  • Liao, Y., Zhang, G. & Chen, H. (2020). Cost-efficient outsourced decryption of attribute-based encryption schemes for both users and cloud server in green cloud computing. IEEE Access, 8: 20862-20869.
  • Mandal, R., Banerjee, S., Islam, M.B., Chatterjee, P. & Biswas, U. (2022). Intelligent internet of things for healthcare and industry İçinde Ghosh. U., Chakraborty, C., Garg, L., Srivastava, G. (eds). QoS and Energy Efficiency Using Green Cloud Computing (pp.287-305), Cham: Springer Pub.
  • Mandal, R., Mondal, M.K., Banerjee, S. & Biswas, U. (2020). An approach toward design and development of an energy-aware vm selection policy with ımproved SLA violation in the domain of green cloud computing. The Journal of Supercomputing, 76, 7374–7393.
  • Mohabuth, A.Q. (2022a). The practice of green computing for businesses. In: Paul, P.K., Choudhury, A., Biswas, A., Singh, B.K. (eds) Environmental Informatics (pp.31-51). Springer, Singapore.
  • Mohabuth, A.Q. (2022b). A framework for the implementation of green computing in universities. 5th International Conference on Energy Conservation and Efficiency (ICECE), 16-17 March, Lahore, Pakistan Monika, G. & Kishore, J. (2010). E-Waste management: as a challenge to public health in India. Indian Journal of Community Medicine. 35(3), 382-385.
  • Muniswamaiah, M., Agerwala, T. & Tappert, C.C. (2020). Green computing for Internet of Things. 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud),01-03 August, New York.
  • Mukherjee, T., Banarjee, A., Varsamopoulos, G., Gupta, S.K.S. & Rungta, S. (2009). Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Computer Networks, 53(17), 2888-2904.
  • Murtazaev, A. & Oh, S. (2011). Sercon: server consolidation algorithm using live migration of virtual machines for green computing. IETE Technical Review, 28(3), 212-231.
  • Murugesan, S. (2008). Harnessing Green IT: Principles and Practices. IT Professional, 24-33.
  • Nandyala, C.S. & Kim, H. (2016). Green IoT agriculture and healthcare application (GAHA). International Journal of Smart Home, 10(4), 289-300.
  • Ogala, E., Akoh, R., O., Ashiru, A. & Agbata, B., C. (2022). Green cloud-based computing architecture with ıntegrated green ınfrastructure. East African Scholars Journal of Engineering and Computer Sciences, 5(1).
  • Omelchuck, J., Katz, J., Salazar, V., Elwood H. & Rifer, W. (2006). The implementation of epeat: electronic product environmental assessment tool the implementation of an environmental rating system of electronic products for governmental/institutional procurement. International Symposium on Electronics and the Environment, 08-11 May, Scottsdale.
  • Orgerie, A.C. (2016). Green computing and sustainability. Energie et radiosciences - Journées scientifiques URSI France, Mar 2016, Rennes, France
  • Parker, J., S. (2022). Is sufficient carbon footprint ınformation available to make sustainability focused computer procurement strategies meaningful?. Procedia Computer Science, 203, 280-289.
  • Patanaik, S. & Sahoo, S.P. (2011). Green Computing for Sustainable Development. International Conference on Informatics for Development 2011 (ICID 2011), 26 November – 01 December, Yogyakarta.
  • Podder, S.K. & Samanta, D. (2022). Green computing practice in ICT-based methods: ınnovation in web-based learning and teaching technologies. International Journal of Web-Based Learning and Teaching Technologies, 17(4).
  • Pruthviraj, B.M. & Kumar, M. (2022). A scrutiny on current trends to future trends in green computing. International Journal of Research in Engineering and Science (IJRES), 10(5), 85-91.
  • Rahman, N. (2022). Existing green computing techniques: an insight. In: Agarwal, P., Mittal, M., Ahmed, J., Idrees, S.M. (eds) Smart Technologies for Energy and Environmental Sustainability. Green Energy and Technology. Cham: Springer Pub.
  • Rajesh, R., Kanakadhurga, D. & Prabaharan, N. (2022). Electronic waste: a critical assessment on the unimaginable growing pollutant, legislations and environmental ımpacts. Environmental Challenges, 7.
  • Ray, P.P. (2010). The Green Grid Saga - A Green Initiative to Data Centers: A Review. Indian Journal of Computer Science and Engineering (IJCSE), 1(4), 333-339.
  • Rec. (2020). “Dünyada ve Türkiye’de Elektronik Atık Mevcut Durumu Araştırma Raporu. https://rec.org.tr/wp-content/uploads/2020/06/AtiginOtesinde2020.pdf (E.T.: 12.07.2022)
  • Reddy, K.G. & Suma, S. (2022). Green computing in cloud computing. International Journal of Research in Engineering and Science (IJRES), 10(5), 84-87.
  • Robinson, B., H. (2009). E-waste: an assessment of global production and environmental impacts. Science of the Total Environment, 408(2), 183-191.
  • Sarkar, N.I. & Gul, S. (2021). Green computing and internet of things for smart cities: technologies, challenges, and implementation. In: Balusamy, B., Chilamkurti, N., Kadry, S. (eds) Green Computing in Smart Cities: Simulation and Techniques. Green Energy and Technology. Springer, Cham.
  • Sharma, H. & Singh, J.B. (2020). The effectual real- time processing using green cloud computing: A Brief Review. 9th International Conference System Modeling and Advancement in Research Trends (SMART), 4-5 December, Moradabad.
  • Sharma, P.K., Kumar, N. & Park, J.H. (2020). Blockchain technology toward green IoT: opportunities and challenges. IEEE Network, 34(4), 263-269.
  • Shrivastava, P., O’Connell, S. & Whitley, A. (2005). Handheld x-ray fluorescence: practical application as a screening tool to detect the presence of environmentally-sensitive substances in electronic equipment. International Symposium on Electronics and the Environment, 16-19 May, New Orleans.
  • Stevens, G.C. & Goosey, M. (2009). Electronic waste management. İçinde R.R. Haster & R.M. Harrison (Eds.), Materials Used in Manufacturing Electrical and Electronic Products, Issues in Environmental Science and Technology (pp.40-74), London: RSC Pub.
  • Switzer, J., Siu, E., Ramesh, S., Hu, R., Zadorian, E. & Kastner, R. (2022). Renée: New Life for Old Phones. IEEE Embedded Systems Letters, 14(3), 135-138.
  • Taruna, S., Singh, P. & Joshi, S. (2014). Green computing in developed and developing countries. International Journal in Foundations of Computer Science & Technology (IJFCST), 4(3), 97-102.
  • Vale, Z., Gomes, L., Ramos, D. & Faria, P. (2022). Green computing: a realistic evaluation of energy consumption for building load forecasting computation. J Smart Environ Green Comput, 2, 34-45.
  • Visalakshi, P., Paul, S. & Mandal, M. (2013). Green computing. International Journal of Modern Engineering Research (IJMER) 63-69.
  • von Laszewski, G., Wang, L., Younge, A., J., He, X. (2009). Power-aware scheduling of virtual machines in DVFS-enabled clusters. IEEE International Conference on Cluster Computing and Workshops 31 August-4 September 2009. New Orleans.
  • Wang, L., Khan, S., U., Chen, D., Koodziej, J., Ranjan, R., Xu, C. & Zomaya, A. (2013). Energy-aware parallel task scheduling in a cluster. Future Generation Computer Systems, 29(7), 1661-1670.
  • Wheeler, J. (2022). Expanding worker voice and labor rights in global supply chains: standard setting, verification and traceability. Global Social Policy, 22(2), 385–391.
  • Widmer, R., Oswald-Krap, H., Khetriwal, D., S., Schnellmann, M. & Böni, H. (2005). Global perspectives on e-waste. Environmental Impact Assessment Review, 25(5), 436-458.
  • Wong, M.H., Wu, S.C., Deng, W.J., Yu, X.Z., Luo, Q., Leung, A.O.W, Wong, C.S.C., Luxemburg, W.J. & Wong, A.S. (2007). Export of toxic chemicals e A review of the case of uncontrolled electronic-waste recycling. Environmental Pollution 149, 131-140.
  • Yeow, P.H.P. & Loo, W.H. (2022a). Antecedents of green computer purchase behavior among malaysian consumers from the perspective of rational choice and moral norm factors. Sustainable Production and Consumption 32, 550–561.
  • Yeow, P.H.P., Lee, Y.L. & Yuen, Y.Y. (2022b). Personal and social norms in responsible computer acquisition. Marketing Intelligence & Planning, 40(7), 884-897.
  • Ylä-Mella J, Pongrácz E & Keiski R.L. (2004). Recovery of waste electrical and electronic equipment (WEEE) in Finland. In: Pongrácz E (eds) Waste Minimization and Resources Use Optimization, Oulu: Oulu University Press.
  • Yong, Y.S., Lim, Y.A. & Ilankoon, I.M.S.K. (2019). An analysis of electronic waste management strategies and recycling operations in Malaysia: Challenges and Future Prospects. Journal of Cleaner Production, 224, 151-166.

Environmental Face of Information Technologies: Green Computing

Year 2023, , 232 - 252, 31.12.2023
https://doi.org/10.55179/dusbed.1281865

Abstract

Electronic devices that emerged in the light of technological developments are widely used in social and business life. The intensive use of various electronic devices brings with it energy consumption and e-waste problem. Both energy consumption and e-waste have negative effects on the environment and naturally on human health. Greenhouse gas, production waste, etc., which arise during the use and production of technological devices. While adverse processes are an effective cause on climate changes, the inability to include devices that have expired in an effective recycling process increases the impact of various elements that occur at the end of the life of the devices on the environment and human health. “Green computing”, which designs the design, production, use and recycling processes of electronic devices in an environmentally friendly way, aims to eliminate the negativities that arise as a result of intensive use of technology. In this study, while examining green informatics and eco-label applications, the importance of eco-label applications in terms of finding the social and economic equivalent of the concept of green informatics has been referred to. In addition, it is suggested that eco-labeled products should be preferred in personal and sectoral electronic and electrical device purchases, and it would be beneficial to manage the process by adding the obligation to carry eco-labels to the technical specifications of the procurement tenders, regardless of the sectoral basis, regardless of the public and private sector, while using various factors to spread social awareness. As a result, it draws attention that encouraging waste collection processes and making them fun will be an effective method.

References

  • Agarwal, S., Datta, A. & Nath, A. (2022). Determining the impact of green computing in it industry to make eco friendly environment. Recent Advances in Mathematical Research and Computer Science, 8(11), 55-62.
  • Arya, M.S., Manjare, A., Naik, P. & Sheikh, K.H. (2020). A green computing technique for reducing energy consumption for desktops using proxy downloading. Information and Communication Technology for Sustainable Development, 933, 823-831.
  • Bagla, K. R., Trivedi, P. & Bagga, T. (2022). Awareness and adoption of green computing in India. Sustainable Computing: Informatics and System, 35.
  • Baldé, C.P., Forti V., Gray, V., Kuehr, R. & Stegmann, P. (2017). The Global E-waste Monitor – 2017, Quantities, Flows, and Resources. Bonn/Geneva/Vienna: United Nations University (UNU). International Telecommunication Union (ITU) & International Solid Waste Association (ISWA) Pub.
  • Chen, H., Zhu, X., Guo, H., Zhu, J., Qin, X. & Wu, J. (2015). Towards energy-efficient scheduling for real-time tasks under uncertain cloud computing environment. Journal of Systems and Software, 99, 20-35.
  • Chou, J., Kim, J. & Rotem, D. (2012). Handbook of energy-aware and green computing. İçinde I. Ahmad & S. Ranka (Eds.), Energy-saving techniques for disk storage Systems, (pp. 3-30), New York: Chapman and Hall.
  • Cucchiella, F., D'Adamo, I., Koh, S.C.L. & Rosa, P. (2015). Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renewable and Sustainable Energy Reviews, 51, 263-272.
  • Çetin, H. & Akgün, A. (2015). Yeşil bilişim teknolojileri bağlamında sanallaştırılmış ve klasik sistemlerin karşılaştırılması. Uluslararası Alanya İşletme Fakültesi Dergisi, 7(2), 131-142.
  • Dar, K.S., Asif, S. & Islam, A. (2015). Power management and green computing: an operating system prospective. Canadian International Journal Social Science Education, 2,164–183.
  • Diouani, S. & Medromi, H. (2018). Green cloud computing: efficient energy-aware and dynamic resources management in data centers. International Journal of Advanced Computer Science and Applications (IJACSA), 9(7), 124–127.
  • Epeat (2022). About EPEAT, https://www.epeat.net/about-epeat (E.T.: 12.07.2022)
  • Fu, J., Zhou, Q., Liu, J., Wang, T., Zhang, Q. & Jiang, G. (2008). High levels of heavy metals in rice (Oryzasativa L.) from a typical E-waste recycling area in southeast China and its potential risk to human health. Chemosphere, 71(7), 1269-1275.
  • Fürjes, L.C. (2022). Performance analysis of low dimensional word embeddings to support green computing. Production Systems and Information Engineering, 10(2), 27-36.
  • Gil, C.R., Ruiz-Falcó, A. & Martínez, J.M. (2012). Optimization of energy consumption in hpc centers: energy efficiency project of castile and leon supercomputing Center FCSCL. In International Conference on Renewable energies and Power Quality, 28-30 March, Santiago de Compostela (Spain).
  • Gramatyka, P., Nowosielski, R. & Sakiewicz, P. (2007). Recycling of waste electrical and electronic equipment. Journal of Achievements in Materials and Manufacturing Engineering, (20), 535-538.
  • Barba-Gutierrez, Y., Adenso-Diaz, B. & Hopp, M. (2008). An analysis of some environmental consequences of european electrical and electronic waste regulation. Resources, Conservation and Recycling, 52, 481–495.
  • Hanne, F.Z. (2011). Green-IT: Why developing countries should care?. IJCSI International Journal of Computer Science Issues, 8(4), 424-427.
  • Hernandez, A.A. (2019). An empirical investigation on the awareness and practices of higher education students in green information technology: implications for sustainable computing practice, education and policy. International Journal of Social Ecology and Sustainable Development (IJSESD) 10(2).
  • Horn, D.A. (2015). New EPEAT® standards for computer servers: a review of new green procurement criteria for servers. 2015 IEEE Conference on Technologies for Sustainability (SusTech), Ogden, UT, USA
  • Jacob, J.S. & Preetha, K.G. (2012). A novel approach for green computing through event-driven power aware pervasive computing. İçinde: Meghanathan, N., Chaki, N., Nagamalai, D. (eds) Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (pp.81-88), Berlin, Heidelberg.
  • Jain, R., Chaudhary, S. & Kumar, R. (2017). Green approach for next generation computing: a survey. International Journal of Advanced Engineering Research and Science (IJAERS), 4(1), 78-82.
  • JRC, (2019). Mapping the role of raw materials in sustainable development goals, joint researchcenter. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112892/sustainable_development_goals_report_jrc112892.pdf (E.T.: 31.07.2022)
  • Karmankar, P.S. & Tadse, P. (2021). Application of IoT in green computing. Journal of Emerging Technologies and Innovative Research (JETIR), 8(1), 111-114.
  • Katz, J., Rifer, W. & Wilson, A.R. (2005). EPEAT: electronic product environmental tool -development of an environmental rating system of electronic products for governmental/institutional procurement. IEEE International Symposium on Electronics and the Environment, 2005, New Orleans, LA, USA
  • Kumar, S. (2022). Embracing green computing in molecular phylogenetics. Molecular Biology and Evolution, 39(3).
  • Lei, H., Wang, R., Zhang, T., Liu, Y. & Zha, Y. (2016). A multi-objective co-evolutionary algorithm for energy-efficient scheduling on a green data center. Computers & Operations Research, 75, 103-117.
  • Liao, Y., Zhang, G. & Chen, H. (2020). Cost-efficient outsourced decryption of attribute-based encryption schemes for both users and cloud server in green cloud computing. IEEE Access, 8: 20862-20869.
  • Mandal, R., Banerjee, S., Islam, M.B., Chatterjee, P. & Biswas, U. (2022). Intelligent internet of things for healthcare and industry İçinde Ghosh. U., Chakraborty, C., Garg, L., Srivastava, G. (eds). QoS and Energy Efficiency Using Green Cloud Computing (pp.287-305), Cham: Springer Pub.
  • Mandal, R., Mondal, M.K., Banerjee, S. & Biswas, U. (2020). An approach toward design and development of an energy-aware vm selection policy with ımproved SLA violation in the domain of green cloud computing. The Journal of Supercomputing, 76, 7374–7393.
  • Mohabuth, A.Q. (2022a). The practice of green computing for businesses. In: Paul, P.K., Choudhury, A., Biswas, A., Singh, B.K. (eds) Environmental Informatics (pp.31-51). Springer, Singapore.
  • Mohabuth, A.Q. (2022b). A framework for the implementation of green computing in universities. 5th International Conference on Energy Conservation and Efficiency (ICECE), 16-17 March, Lahore, Pakistan Monika, G. & Kishore, J. (2010). E-Waste management: as a challenge to public health in India. Indian Journal of Community Medicine. 35(3), 382-385.
  • Muniswamaiah, M., Agerwala, T. & Tappert, C.C. (2020). Green computing for Internet of Things. 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud),01-03 August, New York.
  • Mukherjee, T., Banarjee, A., Varsamopoulos, G., Gupta, S.K.S. & Rungta, S. (2009). Spatio-temporal thermal-aware job scheduling to minimize energy consumption in virtualized heterogeneous data centers. Computer Networks, 53(17), 2888-2904.
  • Murtazaev, A. & Oh, S. (2011). Sercon: server consolidation algorithm using live migration of virtual machines for green computing. IETE Technical Review, 28(3), 212-231.
  • Murugesan, S. (2008). Harnessing Green IT: Principles and Practices. IT Professional, 24-33.
  • Nandyala, C.S. & Kim, H. (2016). Green IoT agriculture and healthcare application (GAHA). International Journal of Smart Home, 10(4), 289-300.
  • Ogala, E., Akoh, R., O., Ashiru, A. & Agbata, B., C. (2022). Green cloud-based computing architecture with ıntegrated green ınfrastructure. East African Scholars Journal of Engineering and Computer Sciences, 5(1).
  • Omelchuck, J., Katz, J., Salazar, V., Elwood H. & Rifer, W. (2006). The implementation of epeat: electronic product environmental assessment tool the implementation of an environmental rating system of electronic products for governmental/institutional procurement. International Symposium on Electronics and the Environment, 08-11 May, Scottsdale.
  • Orgerie, A.C. (2016). Green computing and sustainability. Energie et radiosciences - Journées scientifiques URSI France, Mar 2016, Rennes, France
  • Parker, J., S. (2022). Is sufficient carbon footprint ınformation available to make sustainability focused computer procurement strategies meaningful?. Procedia Computer Science, 203, 280-289.
  • Patanaik, S. & Sahoo, S.P. (2011). Green Computing for Sustainable Development. International Conference on Informatics for Development 2011 (ICID 2011), 26 November – 01 December, Yogyakarta.
  • Podder, S.K. & Samanta, D. (2022). Green computing practice in ICT-based methods: ınnovation in web-based learning and teaching technologies. International Journal of Web-Based Learning and Teaching Technologies, 17(4).
  • Pruthviraj, B.M. & Kumar, M. (2022). A scrutiny on current trends to future trends in green computing. International Journal of Research in Engineering and Science (IJRES), 10(5), 85-91.
  • Rahman, N. (2022). Existing green computing techniques: an insight. In: Agarwal, P., Mittal, M., Ahmed, J., Idrees, S.M. (eds) Smart Technologies for Energy and Environmental Sustainability. Green Energy and Technology. Cham: Springer Pub.
  • Rajesh, R., Kanakadhurga, D. & Prabaharan, N. (2022). Electronic waste: a critical assessment on the unimaginable growing pollutant, legislations and environmental ımpacts. Environmental Challenges, 7.
  • Ray, P.P. (2010). The Green Grid Saga - A Green Initiative to Data Centers: A Review. Indian Journal of Computer Science and Engineering (IJCSE), 1(4), 333-339.
  • Rec. (2020). “Dünyada ve Türkiye’de Elektronik Atık Mevcut Durumu Araştırma Raporu. https://rec.org.tr/wp-content/uploads/2020/06/AtiginOtesinde2020.pdf (E.T.: 12.07.2022)
  • Reddy, K.G. & Suma, S. (2022). Green computing in cloud computing. International Journal of Research in Engineering and Science (IJRES), 10(5), 84-87.
  • Robinson, B., H. (2009). E-waste: an assessment of global production and environmental impacts. Science of the Total Environment, 408(2), 183-191.
  • Sarkar, N.I. & Gul, S. (2021). Green computing and internet of things for smart cities: technologies, challenges, and implementation. In: Balusamy, B., Chilamkurti, N., Kadry, S. (eds) Green Computing in Smart Cities: Simulation and Techniques. Green Energy and Technology. Springer, Cham.
  • Sharma, H. & Singh, J.B. (2020). The effectual real- time processing using green cloud computing: A Brief Review. 9th International Conference System Modeling and Advancement in Research Trends (SMART), 4-5 December, Moradabad.
  • Sharma, P.K., Kumar, N. & Park, J.H. (2020). Blockchain technology toward green IoT: opportunities and challenges. IEEE Network, 34(4), 263-269.
  • Shrivastava, P., O’Connell, S. & Whitley, A. (2005). Handheld x-ray fluorescence: practical application as a screening tool to detect the presence of environmentally-sensitive substances in electronic equipment. International Symposium on Electronics and the Environment, 16-19 May, New Orleans.
  • Stevens, G.C. & Goosey, M. (2009). Electronic waste management. İçinde R.R. Haster & R.M. Harrison (Eds.), Materials Used in Manufacturing Electrical and Electronic Products, Issues in Environmental Science and Technology (pp.40-74), London: RSC Pub.
  • Switzer, J., Siu, E., Ramesh, S., Hu, R., Zadorian, E. & Kastner, R. (2022). Renée: New Life for Old Phones. IEEE Embedded Systems Letters, 14(3), 135-138.
  • Taruna, S., Singh, P. & Joshi, S. (2014). Green computing in developed and developing countries. International Journal in Foundations of Computer Science & Technology (IJFCST), 4(3), 97-102.
  • Vale, Z., Gomes, L., Ramos, D. & Faria, P. (2022). Green computing: a realistic evaluation of energy consumption for building load forecasting computation. J Smart Environ Green Comput, 2, 34-45.
  • Visalakshi, P., Paul, S. & Mandal, M. (2013). Green computing. International Journal of Modern Engineering Research (IJMER) 63-69.
  • von Laszewski, G., Wang, L., Younge, A., J., He, X. (2009). Power-aware scheduling of virtual machines in DVFS-enabled clusters. IEEE International Conference on Cluster Computing and Workshops 31 August-4 September 2009. New Orleans.
  • Wang, L., Khan, S., U., Chen, D., Koodziej, J., Ranjan, R., Xu, C. & Zomaya, A. (2013). Energy-aware parallel task scheduling in a cluster. Future Generation Computer Systems, 29(7), 1661-1670.
  • Wheeler, J. (2022). Expanding worker voice and labor rights in global supply chains: standard setting, verification and traceability. Global Social Policy, 22(2), 385–391.
  • Widmer, R., Oswald-Krap, H., Khetriwal, D., S., Schnellmann, M. & Böni, H. (2005). Global perspectives on e-waste. Environmental Impact Assessment Review, 25(5), 436-458.
  • Wong, M.H., Wu, S.C., Deng, W.J., Yu, X.Z., Luo, Q., Leung, A.O.W, Wong, C.S.C., Luxemburg, W.J. & Wong, A.S. (2007). Export of toxic chemicals e A review of the case of uncontrolled electronic-waste recycling. Environmental Pollution 149, 131-140.
  • Yeow, P.H.P. & Loo, W.H. (2022a). Antecedents of green computer purchase behavior among malaysian consumers from the perspective of rational choice and moral norm factors. Sustainable Production and Consumption 32, 550–561.
  • Yeow, P.H.P., Lee, Y.L. & Yuen, Y.Y. (2022b). Personal and social norms in responsible computer acquisition. Marketing Intelligence & Planning, 40(7), 884-897.
  • Ylä-Mella J, Pongrácz E & Keiski R.L. (2004). Recovery of waste electrical and electronic equipment (WEEE) in Finland. In: Pongrácz E (eds) Waste Minimization and Resources Use Optimization, Oulu: Oulu University Press.
  • Yong, Y.S., Lim, Y.A. & Ilankoon, I.M.S.K. (2019). An analysis of electronic waste management strategies and recycling operations in Malaysia: Challenges and Future Prospects. Journal of Cleaner Production, 224, 151-166.
There are 67 citations in total.

Details

Primary Language Turkish
Subjects Business Administration, Business Systems in Context (Other)
Journal Section Articles
Authors

Faruk Dursun 0000-0003-1571-1107

Early Pub Date December 31, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Dursun, F. (2023). Bilgi Teknolojilerinin Çevresel Yüzü: Yeşil Bilişim. Düzce Üniversitesi Sosyal Bilimler Dergisi, 13(2), 232-252. https://doi.org/10.55179/dusbed.1281865