Research Article
BibTex RIS Cite

Ankastre Kirişlerin Doğrusal Olmayan Statik Analizi ve Analitik Çözüm ile Mukayesesi

Year 2025, Volume: 3 Issue: 2, 83 - 103, 22.12.2025
https://doi.org/10.70081/duted.1718049

Abstract

Hafiflik ve yüksek dayanım gereksinimlerinin ön planda olduğu endüstriyel uygulamalarda, gelişmiş yapı elemanlarına duyulan ihtiyaç giderek artmaktadır. Malzeme teknolojisindeki ilerlemeler ile mühendislik tasarımlarının bütünleşmesi; özellikle makine, havacılık ve uzay alanlarında yenilikçi çözümlerin geliştirilmesine olanak sağlamıştır. Bu kapsamda, ankastre mesnetli kirişler yapısal sistemlerde sıkça tercih edilmekte; ancak geleneksel doğrusal analiz yöntemleri, doğrusal olmayan davranışların tam olarak modellenmesinde yetersiz kalmaktadır. Gerilme-birim şekil değiştirme ilişkilerinin doğrusal olmaması ve yükleme altında meydana gelen büyük yer değiştirmeler, bu yapıların analizinde dikkate alınması gereken önemli unsurlar olarak ön plana çıkmaktadır. Bu çalışmada, bir ucu ankastre olan kirişe uygulanan momentlerin neden olduğu yatay ve düşey yer değiştirmeler, doğrusal olmayan malzeme davranışı ve büyük şekil değiştirmeler temel alınarak analiz edilmiştir. Analizler sonlu elemanlar yazılımı ile gerçekleştirilmiş; çözüm sürecinin farklı geometrilere ve malzeme türlerine uygulanabilirliğini sağlamak amacıyla parametrik bir kodlama yaklaşımı benimsenmiştir. Ayrıca fonksiyonel gradyanlı malzemelerin modellenmesi ve analizi hakkında yaklaşım ortaya konmuştur. Analiz sonuçları teorik yaklaşımlar ve elde edilen analitik sonuçlar ile mukayese edilerek farkların sebepleri değerlendirilmiştir.

References

  • ANSYS Inc. (2023). Structural analyses guide: Nonlinear structural analysis. Canonsburg, PA: ANSYS Inc.
  • Aksoy, H. G., & Şenocak, E. (2009). Wave propagation in functionally graded and layered materials. Finite Elements in Analysis and Design, 45(12), 876-891. https://doi.org/10.1016/j.finel.2009.06.025.
  • Alkunte, S., Fidan, I., Naikwadi, V., Gudavasov, S., Ali, M. A., Mahmudov, M., Hasanov, S., & Cheepu, M. (2024). Advancements and challenges in additively manufactured functionally graded materials: A comprehensive review. Journal of Manufacturing and Materials Processing, 8(1), 23. https://doi.org/10.3390/jmmp8010023.
  • Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2012). Mechanics of materials (7th ed.). McGraw-Hill Education.
  • Beléndez, A., Beléndez, T., & Neipp, C. (2003). Numerical and experimental analysis of a cantilever beam: A laboratory project to introduce geometric nonlinearity in mechanicas of materials. International Journal of Engineering Education, 19(6), 885–892.
  • Berry, M.P., & Eberhard, M.O. (2007). Performance modeling strategies for modern reinforced concrete bridge columns (PEER Report No. 2007/07). Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • Callister, W. D., & Rethwisch, D. G. (2020). Materials science and engineering: An introduction (10th ed.). John Wiley & Sons.
  • Chawla, K. K. (2012). Composite materials: Science and engineering (3rd ed.). Springer.
  • Demir, E., Çallıoğlu, H., & Girgin, Z. (2024). Large deflection analysis of functionally graded beam by using combining method. Journal of Materials and Mechatronics: A, 5(1), 87–105. https://doi.org/10.55546/jmm.1451429.
  • Eren, İ. (2008). Analyses of large deflections for logarithmical bimodulus cantilever beams. Journal of Reinforced Plastics and Composites, 28(11), 1359-1363. https://doi.org/10.1177/0731684408089861.
  • Gere, J. M., & Timoshenko, S. P. (1997). Mechanics of materials (4th ed.). PWS Publishing Company.
  • Kim, N. H., Sankar, B. V., & Kumar, A. V. (2018). Introduction to finite element analysis and design (2nd ed.). John Wiley & Sons.
  • Kyungwoo, L. (2001). Post-buckling of uniform cantilever column under a combined load. International Journal of Non-linear Mechanics, 36(5), 813-816. https://doi.org/10.1016/S0020-7462(00)00047-0.
  • Lewis, G., & Monasa, F. (1982). Large deflections of cantilever beams of non-linear materials of the ludwick type subjected to an end moment. International Journal of Non-Linear Mechanics, 17(1), 1-6. https://doi.org/10.1016/0020-7462(82)90032-4.
  • Lian, C., Wang, J., Meng, B., & Wang, L. (2023). The approximate solution of the nonlinear exact equation of deflection of an elastic beam with the Galerkin method. Applied Sciences, 13(1), Article 345. https://doi.org/10.3390/app13010345.
  • Liu, H., Han, Y., & Yang, J. (2017). Large deflection of curved elastic beams made of Ludwick type material. Applied Mathematics and Mechanics, 38(7), 909–920. https://doi.org/10.1007/s10483-017-2213-6.
  • Li, Y., Li, X., Xie, C., & Huo, S. (2022). Explicit Solution to large deformation of cantilever beam by ımproved homotopy analysis method II: Vertical and horizontal displacements. Applied Sciences, 12(5), Article 2513. https://doi.org/10.3390/app12052513.
  • Rahimi, G. H., & Davoodinik, A. R. (2010). Large deflection of functionally graded cantilever flexible beam with geometric non-linearity: Analytical and numerical approaches. Scientia Iranica Transaction B: Mechanical Engineering, 17(1), 25–40.
  • Reddy, J. N. (2004). An introduction to nonlinear finite element analysis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198525295.001.0001.
  • Ussorio, D., Vaccaro, M. S., Barretta, R., Luciano, R., & Marotti de Sciarra, F. (2024). Large deflection of a nonlocal gradient cantilever beam. International Journal of Engineering Science, 206, Article 104172. https://doi.org/10.1016/j.ijengsci.2024.104172.

Nonlinear Static Analysis of Cantilever Beams and Comparison with Analytical Solution

Year 2025, Volume: 3 Issue: 2, 83 - 103, 22.12.2025
https://doi.org/10.70081/duted.1718049

Abstract

In industrial applications where lightweight structures and high strength requirements are of paramount importance, the demand for advanced structural elements is steadily increasing. The integration of advancements in material technology with engineering design has enabled the development of innovative solutions, particularly in the fields of mechanical, aerospace, and space engineering. In this context, cantilever beams are frequently preferred in structural systems; however, traditional linear analysis methods are often inadequate for accurately modeling nonlinear behaviors. The nonlinearity of stress–strain relationships and the occurrence of large displacements under loading emerge as critical factors that must be considered in the analysis of such structures. In this study, the horizontal and vertical displacements caused by the applied moments on a cantilever beam were analyzed based on nonlinear material behavior and large deformations. The analyses were carried out using finite element software, and a parametric coding approach was adopted to ensure the applicability of the solution process to various geometries and material types. Furthermore, a modeling and analysis approach for functionally graded materials (FGMs) was proposed. The results of the analyses were compared with theoretical approaches and analytical results, and the causes of the discrepancies were evaluated.

References

  • ANSYS Inc. (2023). Structural analyses guide: Nonlinear structural analysis. Canonsburg, PA: ANSYS Inc.
  • Aksoy, H. G., & Şenocak, E. (2009). Wave propagation in functionally graded and layered materials. Finite Elements in Analysis and Design, 45(12), 876-891. https://doi.org/10.1016/j.finel.2009.06.025.
  • Alkunte, S., Fidan, I., Naikwadi, V., Gudavasov, S., Ali, M. A., Mahmudov, M., Hasanov, S., & Cheepu, M. (2024). Advancements and challenges in additively manufactured functionally graded materials: A comprehensive review. Journal of Manufacturing and Materials Processing, 8(1), 23. https://doi.org/10.3390/jmmp8010023.
  • Beer, F. P., Johnston, E. R., DeWolf, J. T., & Mazurek, D. F. (2012). Mechanics of materials (7th ed.). McGraw-Hill Education.
  • Beléndez, A., Beléndez, T., & Neipp, C. (2003). Numerical and experimental analysis of a cantilever beam: A laboratory project to introduce geometric nonlinearity in mechanicas of materials. International Journal of Engineering Education, 19(6), 885–892.
  • Berry, M.P., & Eberhard, M.O. (2007). Performance modeling strategies for modern reinforced concrete bridge columns (PEER Report No. 2007/07). Pacific Earthquake Engineering Research Center, University of California, Berkeley.
  • Callister, W. D., & Rethwisch, D. G. (2020). Materials science and engineering: An introduction (10th ed.). John Wiley & Sons.
  • Chawla, K. K. (2012). Composite materials: Science and engineering (3rd ed.). Springer.
  • Demir, E., Çallıoğlu, H., & Girgin, Z. (2024). Large deflection analysis of functionally graded beam by using combining method. Journal of Materials and Mechatronics: A, 5(1), 87–105. https://doi.org/10.55546/jmm.1451429.
  • Eren, İ. (2008). Analyses of large deflections for logarithmical bimodulus cantilever beams. Journal of Reinforced Plastics and Composites, 28(11), 1359-1363. https://doi.org/10.1177/0731684408089861.
  • Gere, J. M., & Timoshenko, S. P. (1997). Mechanics of materials (4th ed.). PWS Publishing Company.
  • Kim, N. H., Sankar, B. V., & Kumar, A. V. (2018). Introduction to finite element analysis and design (2nd ed.). John Wiley & Sons.
  • Kyungwoo, L. (2001). Post-buckling of uniform cantilever column under a combined load. International Journal of Non-linear Mechanics, 36(5), 813-816. https://doi.org/10.1016/S0020-7462(00)00047-0.
  • Lewis, G., & Monasa, F. (1982). Large deflections of cantilever beams of non-linear materials of the ludwick type subjected to an end moment. International Journal of Non-Linear Mechanics, 17(1), 1-6. https://doi.org/10.1016/0020-7462(82)90032-4.
  • Lian, C., Wang, J., Meng, B., & Wang, L. (2023). The approximate solution of the nonlinear exact equation of deflection of an elastic beam with the Galerkin method. Applied Sciences, 13(1), Article 345. https://doi.org/10.3390/app13010345.
  • Liu, H., Han, Y., & Yang, J. (2017). Large deflection of curved elastic beams made of Ludwick type material. Applied Mathematics and Mechanics, 38(7), 909–920. https://doi.org/10.1007/s10483-017-2213-6.
  • Li, Y., Li, X., Xie, C., & Huo, S. (2022). Explicit Solution to large deformation of cantilever beam by ımproved homotopy analysis method II: Vertical and horizontal displacements. Applied Sciences, 12(5), Article 2513. https://doi.org/10.3390/app12052513.
  • Rahimi, G. H., & Davoodinik, A. R. (2010). Large deflection of functionally graded cantilever flexible beam with geometric non-linearity: Analytical and numerical approaches. Scientia Iranica Transaction B: Mechanical Engineering, 17(1), 25–40.
  • Reddy, J. N. (2004). An introduction to nonlinear finite element analysis. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198525295.001.0001.
  • Ussorio, D., Vaccaro, M. S., Barretta, R., Luciano, R., & Marotti de Sciarra, F. (2024). Large deflection of a nonlocal gradient cantilever beam. International Journal of Engineering Science, 206, Article 104172. https://doi.org/10.1016/j.ijengsci.2024.104172.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Solid Mechanics
Journal Section Research Article
Authors

Fatih Temiz 0009-0000-2532-1247

Submission Date June 12, 2025
Acceptance Date September 28, 2025
Publication Date December 22, 2025
Published in Issue Year 2025 Volume: 3 Issue: 2

Cite

APA Temiz, F. (2025). Ankastre Kirişlerin Doğrusal Olmayan Statik Analizi ve Analitik Çözüm ile Mukayesesi. Düzce University Journal of Technical Sciences, 3(2), 83-103. https://doi.org/10.70081/duted.1718049

1823addf-db33-4abd-8bf7-00840f24f67f
DOAJ_logo-colour.svg     670fd3aa57986_ebsco-applied-science.png       ErihPlus-Logo.jpg      13377      search-result-logo-horizontal-TEST.jpg