Review
BibTex RIS Cite

The Effect of Cırcadıan Rhythmıes in Veterınary Reproductıon

Year 2023, , 134 - 141, 31.12.2023
https://doi.org/10.47027/duvetfd.1326090

Abstract

Circadian rhythms are internal biological rhythms that regulate the physiological and behavioral processes of living organisms. These rhythms are regulated by an internal biological clock located in the suprachiasmatic nucleus of the hypothalamus and driven by natural cycles of light and dark. Disruptions in these rhythms have been associated with a number of adverse health outcomes, including metabolic disorders, cardiovascular disease and cancer. The effects of circadian rhythms on reproductive processes in animals have been of interest for many years. Reproduction is a complex process involving the interaction of various physiological systems, including the endocrine, nervous and immune systems. Disruptions in circadian rhythms may alter the function of these systems, resulting in adverse effects on reproductive functions. Disruption of circadian rhythms in women can cause menstrual irregularities and infertility. Disruptions in the timing and coordination of hormone secretion can have adverse effects on reproductive outcomes. In men, disruptions in circadian rhythms can cause decreased testosterone levels and sperm quality, which can have a negative impact on reproductive outcomes. Veterinarians should be aware of the potential effects of circadian disruptions on reproductive outcomes and take steps to minimize their effects. This includes providing animals with appropriate lighting and a regular diet and exercise program. More research is needed to better understand the mechanisms by which circadian rhythms affect reproductive processes in animals and to develop strategies to optimize reproductive health in animals. In conclusion, circadian rhythms play a crucial role in regulating reproductive processes in animals. Disruptions in these rhythms can have adverse effects on reproductive function and veterinarians should take steps to minimize these effects. More research is needed to better understand the mechanisms involved in the occurrence of these effects and to improve reproductive health in animals.

References

  • Pittendrigh CS. (1993). Temporal Organization: Reflections of a Darwinian Clock-Watcher. Annual Review of Physiology. 55(1): 17-54.
  • Dunlap JC. (1999). Molecular Bases for Circadian Clocks. Cell. 96(2): 271-90.
  • Dickmeis T, Weger BD, Weger M. (2013). The Circadian Clock and Glucocorticoids–Interactions across Many Time Scales. Molecular and Cellular Endocrinology. 380(1-2): 2-15.
  • Cassone VM. (2005). The Clock That Tells the Time. Nature Neuroscience. 8(1).
  • Reiter RJ, Tan D-x, Mayo JC, Sainz RM, Leon J, Czarnocki Z. (2003). Melatonin as an Antioxidant: Biochemical Mechanisms and Pathophysiological Implications in Humans. Acta Biochimica Polonica. 50(4): 1129-46.
  • Schibler U. (2005). The Daily Rhythms of Genes, Cells and Organs: Biological Clocks and Circadian Timing in Cells. Embo reports. 6(1): 9-13.
  • Buttgereit F, Smolen JS, Coogan AN, Cajochen C. (2015). Clocking In: Chronobiology in Rheumatoid Arthritis. Nature Reviews Rheumatology. 11(6): 349-56.
  • Roenneberg T, Merrow M. (2016). The Circadian Clock and Human Health. Current Biology. 26(10): 432-43.
  • Hastings MH, Maywood ES, Brancaccio M. (2018). Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nature Reviews Neuroscience. 19(8): 453-69.
  • Takahashi JS. (2017). Transcriptional Architecture of the Mammalian Circadian Clock. Nature Reviews Genetics. 18(3): 164-79.
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. (2014). A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proceedings of the National Academy of Sciences. 111(45): 16219-24.
  • Reinke H, Asher G. (2019). Crosstalk between Metabolism and Circadian Clocks. Nature Reviews Molecular Cell Biology. 20(4): 227-41.
  • Reppert SM, Weaver DR. (2002). Coordination of Circadian Timing in Mammals. Nature. 418(6901): 935-41.
  • Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J. (2013). Circadian Clocks and Metabolism. Circadian Clocks. 217: 127-55.
  • Sellix MT. (2013). Clocks Underneath: The Role of Peripheral Clocks in the Timing of Female Reproductive Physiology. Frontiers in Endocrinology. 4: 91.
  • Rahman SA, Grant LK, Gooley JJ, Rajaratnam SM, Czeisler CA, Lockley SW. (2019). Endogenous Circadian Regulation of Female Reproductive Hormones. The Journal of Clinical Endocrinology and Metabolism. 104(12): 6049-59.
  • He P-J, Hirata M, Yamauchi N, Hattori M-a. (2007). Up-Regulation of Per1 Expression by Estradiol and Progesterone in the Rat Uterus. Journal of Endocrinology. 194(3): 511-20.
  • Moenter SM, DeFazio RA, Pitts GR, Nunemaker CS. (2003). Mechanisms Underlying Episodic Gonadotropin-Releasing Hormone Secretion. Frontiers in Neuroendocrinology. 24(2): 79-93.
  • Serhan Serhat A, Kükükaslan I, Kaya D, Mülazimoglu B, Emre B, Kaçar C, et al. (2012). The Change in Luteal Blood Flow and Luteal Size after Beta Carotene and Gnrh Injections in Early Pregnant Dairy Cows. Kafkas Universitesi Veteriner Fakultesi Dergisi. 18(6): 1035-41.
  • Yoshikawa T, Sellix M, Pezuk P, Menaker M. (2009). Timing of the Ovarian Circadian Clock Is Regulated by Gonadotropins. Endocrinology. 150(9): 4338-47.
  • Amano T, Matsushita A, Hatanaka Y, Watanabe T, Oishi K, Ishida N, et al. (2009). Expression and Functional Analyses of Circadian Genes in Mouse Oocytes and Preimplantation Embryos: Cry1 Is Involved in the Meiotic Process Independently of Circadian Clock Regulation. Biology of Reproduction. 80(3): 473-83.
  • Amano T, Tokunaga K, Kakegawa R, Yanagisawa A, Takemoto A, Tatemizo A, et al. (2010). Expression Analysis of Circadian Genes in Oocytes and Preimplantation Embryos of Cattle and Rabbits. Animal Reproduction Science. 121(3-4): 225-35.
  • Karman BN, Tischkau SA. (2006). Circadian Clock Gene Expression in the Ovary: Effects of Luteinizing Hormone. Biology of Reproduction. 75(4): 624-32.
  • Li R, Cheng S, Wang Z. (2015). Circadian Clock Gene Plays a Key Role on Ovarian Cycle and Spontaneous Abortion. Cellular Physiology and Biochemistry. 37(3): 911-20.
  • Sudo M, Sasahara K, Moriya T, Akiyama M, Hamada T, Shibata S. (2003). Constant Light Housing Attenuates Circadian Rhythms of Mper2 Mrna and Mper2 Protein Expression in the Suprachiasmatic Nucleus of Mice. Neuroscience. 121(2): 493-9.
  • Mereness AL, Murphy ZC, Sellix MT. (2015). Developmental Programming by Androgen Affects the Circadian Timing System in Female Mice. Biology of Reproduction. 92(4): 88, 1-12.
  • Chu G, Misawa I, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, et al. (2012). Contribution of Fsh and Triiodothyronine to the Development of Circadian Clocks During Granulosa Cell Maturation. American Journal of Physiology-Endocrinology and Metabolism. 302(6): 645-53.
  • Gräs S, Georg B, Jørgensen HL, Fahrenkrug J. (2012). Expression of the Clock Genes Per1 and Bmal1 During Follicle Development in the Rat Ovary. Effects of Gonadotropin Stimulation and Hypophysectomy. Cell and Tissue Research. 350(3): 539-48.
  • Sirois J, Sayasith K, Brown KA, Stock AE, Bouchard N, Doré M. (2004). Cyclooxygenase-2 and Its Role in Ovulation: A 2004 Account. Human Reproduction Update. 10(5): 373-85.
  • Tan D-X, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. (2015). Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules. 20(10): 18886-906.
  • Atasoy ÖB, Erbaş O. (2017). Melatonin Hormonunun Fizyolojik Etkileri. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 3(1): 52-62.
  • Amaral FGd, Cipolla-Neto J. (2018). A Brief Review About Melatonin, a Pineal Hormone. Archives of Endocrinology and Metabolism. 62(4): 472-9.
  • Sun T-C, Li H-Y, Li X-Y, Yu K, Deng S-L, Tian L. (2020). Protective Effects of Melatonin on Male Fertility Preservation and Reproductive System. Cryobiology. 95: 1-8.
  • Balík A, Kretschmannová K, Mazna P, Svobodová I, Zemková H. (2004). Melatonin Action in Neonatal Gonadotrophs. Physiological Research. 53(1): 153-66.
  • Genario R, Morello E, Bueno AA, Santos HO. (2019). The Usefulness of Melatonin in the Field of Obstetrics and Gynecology. Pharmacological Research. 147: 104337.
  • Mojaverrostami S, Asghari N, Khamisabadi M, Khoei HH. (2019). The Role of Melatonin in Polycystic Ovary Syndrome: A Review. International Journal of Reproductive Biomedicine. 17(12): 865.
  • Hsu C-N, Tain Y-L. (2020). Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease. International Journal of Molecular Sciences. 21(6): 2232.
  • Lincoln GA, Richardson M. (1998). Photo-Neuroendocrine Control of Seasonal Cycles in Body Weight, Pelage Growth and Reproduction: Lessons from the Hpd Sheep Model. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology. 119(3): 283-94.
  • Harrison JL, Miller DW, Findlay PA, Adam CL. (2008). Photoperiod Influences the Central Effects of Ghrelin on Food Intake, Gh and Lh Secretion in Sheep. Neuroendocrinology. 87(3): 182-92.
  • Barrett P, Bolborea M. (2012). Molecular Pathways Involved in Seasonal Body Weight and Reproductive Responses Governed by Melatonin. Journal of Pineal Research. 52(4): 376-88.
  • Gültiken N, Aslan S, Ay SS, Gülbahar MY, Thuróczy J, Koldaş E, et al. (2017). Effect of Deslorelin on Testicular Function, Serum Dihydrotestosterone and Oestradiol Concentrations During and after Suppression of Sexual Activity in Tom Cats. Journal of Feline Medicine and Surgery. 19(2): 123-31.
  • Hansen P. (1985). Seasonal Modulation of Puberty and the Postpartum Anestrus in Cattle: A Review. Livestock Production Science. 12(4): 309-27.
  • Sen A, Hoffmann HM. (2020). Role of Core Circadian Clock Genes in Hormone Release and Target Tissue Sensitivity in the Reproductive Axis. Molecular and Cellular Endocrinology. 501: 110655.
  • Rasmussen KM, Kjolhede CL. (2008). Maternal Obesity: A Problem for Both Mother and Child. Obesity Silver Spring. 16(5): 929-31.
  • Gao Q, Lv J, Li W, Zhang P, Tao J, Xu Z. (2016). Disrupting the Circadian Photo-Period Alters the Release of Follicle-Stimulating Hormone, Luteinizing Hormone, Progesterone, and Estradiol in Maternal and Fetal Sheep. Journal of Reproduction and Development. 62(5): 487-93.
  • Shukla P, Lemley CO, Dubey N, Meyer AM, O'Rourke ST, Vonnahme KA. (2014). Effect of Maternal Nutrient Restriction and Melatonin Supplementation from Mid to Late Gestation on Vascular Reactivity of Maternal and Fetal Placental Arteries. Placenta. 35(7): 461-6.
  • Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. (2009). Inflammation in Reproductive Disorders. Reproductive Sciences. 16(2): 216-29.
  • Bosc MJ. (1990). Photoperiodic Regulation of the Time of Birth in Rats: Involvement of Circadian Endogenous Mechanisms. Physiology and Behavior. 48(3): 441-6.
  • Gatford KL, Kennaway DJ, Liu H, Kleemann DO, Kuchel TR, Varcoe TJ. (2019). Simulated Shift Work Disrupts Maternal Circadian Rhythms and Metabolism, and Increases Gestation Length in Sheep. The Journal of Physiology. 597(7): 1889-904.
  • Ataman MB, Aköz M, Fındık M, Saban E. (2009). Geçiş Dönemi Başındaki Akkaraman Melezi Koyunlarda Farklı Dozda Flourogestene Acetate, Norgestomet Ve Pgf2α Ile Senkronize Östrüslerin Uyarılması. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 15(5).
  • Suarez-Trujillo A, Hoang N, Robinson L, McCabe CJ, Conklin D, Minor RC, et al. (2022). Effect of Circadian System Disruption on the Concentration and Daily Oscillations of Cortisol, Progesterone, Melatonin, Serotonin, Growth Hormone, and Core Body Temperature in Periparturient Dairy Cattle. Journal of Dairy Science. 105(3): 2651-68.
  • Casey TM, Plaut K. (2022). Circadian Clocks and Their Integration with Metabolic and Reproductive Systems: Our Current Understanding and Its Application to the Management of Dairy Cows. Journal of Animal Science. 100(10): 1-13.
  • Piccione G, Giannetto C, Schembari A, Gianesella M, Morgante M. (2011). A Comparison of Daily Total Locomotor Activity between the Lactation and the Dry Period in Dairy Cattle. Research in Veterinary Science. 91(2): 289-93.
  • Kendall P, Tucker C, Dalley D, Clark D, Webster J. (2008). Milking Frequency Affects the Circadian Body Temperature Rhythm in Dairy Cows. Livestock Science. 117(2-3): 130-8.
  • Wagner N, Mialon MM, Sloth KH, Lardy R, Ledoux D, Silberberg M, et al. (2021). Detection of Changes in the Circadian Rhythm of Cattle in Relation to Disease, Stress, and Reproductive Events. Methods. 186: 14-21.
  • Aulamazyan EK, Evsyukova II, Yarmolinskaya MI. (2018). The Role of Melatonin in Development of Gestational Diabetes Mellitus. Journal of Obstetrics and Women's Diseases. 67(1): 85-91.
  • Suarez-Trujillo A, Wernert G, Sun H, Steckler TS, Huff K, Cummings S, et al. (2020). Exposure to Chronic Light-Dark Phase Shifts During the Prepartum Nonlactating Period Attenuates Circadian Rhythms, Decreases Blood Glucose, and Increases Milk Yield in the Subsequent Lactation. Journal of Dairy Science. 103(3): 2784-99.
  • Young JW. (1977). Gluconeogenesis in Cattle: Significance and Methodology. Journal of Dairy Science. 60(1): 1-15.
  • Bell AW, Bauman DE. (1997). Adaptations of Glucose Metabolism During Pregnancy and Lactation. Journal of Mammary Gland Biology and Neoplasia. 2(3): 265-78.
  • Krishnan N, Davis AJ, Giebultowicz JM. (2008). Circadian Regulation of Response to Oxidative Stress in Drosophila Melanogaster. Biochemical and Biophysical Research Communications. 374(2): 299-303.
  • Cohen Engler A, Hadash A, Shehadeh N, Pillar G. (2012). Breastfeeding May Improve Nocturnal Sleep and Reduce Infantile Colic: Potential Role of Breast Milk Melatonin. European Journal of Pediatrics. 171: 729-32.
  • Milagres MP, Minim VP, Minim LA, Simiqueli AA, Moraes LE, Martino HS. (2014). Night Milking Adds Value to Cow's Milk. Journal of The Science of Food and Agriculture. 94(8): 1688-92.
  • Castro N, Spengler M, Lollivier V, Wellnitz O, Meyer H, Bruckmaier R. (2011). Diurnal Pattern of Melatonin in Blood and Milk of Dairy Cows. Milchwissenschaft. 66(4): 352-3.
  • Zuo D, Subjeck J, Wang X-Y. (2016). Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Frontiers in İmmunology. 7: 75.
  • Baykalir Y, Simsek U, Erisir M, Otlu O, Gungoren G, Gungoren A, et al. (2020). Photoperiod Effects on Carcass Traits, Meat Quality, and Stress Response in Heart and Lung of Broilers. South African Journal of Animal Science. 50(1): 138-49.
  • Zhao R, Cai C, Wang P, Zheng L, Wang J, Li K, et al. (2019). Effect of Night Light Regimen on Growth Performance, Antioxidant Status and Health of Broiler Chickens from 1 to 21 Days of Age. Asian-Australasian Journal of Animal Sciences. 32(6): 904.
  • Liu J, Mankani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, et al. (2006). The Circadian Clock Period 2 Gene Regulates Gamma Interferon Production of Nk Cells in Host Response to Lipopolysaccharide-Induced Endotoxic Shock. Infection and İmmunity. 74(8): 4750-6.
  • Colombo LL, Chen G-J, Lopez MC, Watson RR. (1992). Melatonin Induced Increase in Gamma-Interferon Production by Murine Splenocytes. Immunology Letters. 33(2): 123-6.
  • Wichmann MW, Zellweger R, DeMaso CM, Ayala A, Chaudry IH. (1996). Melatonin Administration Attenuates Depressed Immune Functions after Trauma-Hemorrhage. Journal of Surgical Research. 63(1): 256-62.
  • Peek CB, Ramsey KM, Marcheva B, Bass J. (2012). Nutrient Sensing and the Circadian Clock. Trends in Endocrinology and Metabolism. 23(7): 312-8.
  • Martin DE, Hall MN. (2005). The Expanding Tor Signaling Network. Current Opinion in Cell Biology. 17(2): 158-66.
  • Hardie DG. (2007). Amp-Activated/Snf1 Protein Kinases: Conserved Guardians of Cellular Energy. Nature Reviews Molecular Cell Biology. 8(10): 774-85.
  • Hardie DG. (2004). The Amp-Activated Protein Kinase Pathway--New Players Upstream and Downstream. Journal of Cell Science. 117(Pt 23): 5479-87.
  • Teng ZW, Yang GQ, Wang LF, Fu T, Lian HX, Sun Y, et al. (2021). Effects of the Circadian Rhythm on Milk Composition in Dairy Cows: Does Day Milk Differ from Night Milk? Journal of Dairy Science. 104(7): 8301-13.
  • Pilorz V, Steinlechner S. (2008). Low Reproductive Success in Per1 and Per2 Mutant Mouse Females Due to Accelerated Ageing? Reproduction. 135(4): 559.
  • Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T. (2005). Period3 Structural Variation: A Circadian Biomarker Associated with Breast Cancer in Young Women. Cancer Epidemiology Biomarkers and Prevention. 14(1): 268-70.
  • Zheng Y, Liu C, Li Y, Jiang H, Yang P, Tang J, et al. (2019). Loss-of-Function Mutations with Circadian Rhythm Regulator Per1/Per2 Lead to Premature Ovarian Insufficiency. Biology of Reproduction. 100(4): 1066-72.
  • Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. (2010). Reproductive Biology of Female Bmal1 Null Mice. Reproduction. 139(6): 1077-90.
  • Nehme P, Amaral F, Lowden A, Skene DJ, Cipolla-Neto J, Moreno CRdC. (2019). Reduced Melatonin Synthesis in Pregnant Night Workers: Metabolic Implications for Offspring. Medical Hypotheses. 132: 109353.
  • Khan HL, Bhatti S, Khan YL, Abbas S, Munir Z, Sherwani IARK, et al. (2020). Cell-Free Nucleic Acids and Melatonin Levels in Human Follicular Fluid Predict Embryo Quality in Patients Undergoing in-Vitro Fertilization Treatment. Journal of Gynecology Obstetrics and Human Reproduction. 49(1): 101624.
  • Macchi MM, Bruce JN. (2004). Human Pineal Physiology and Functional Significance of Melatonin. Frontiers in Neuroendocrinology. 25(3-4): 177-95.
  • Sellix MT, Murphy ZC, Menaker M. (2013). Excess Androgen During Puberty Disrupts Circadian Organization in Female Rats. Endocrinology. 154(4): 1636-47.
  • Reschke L, McCarthy R, Herzog ED, Fay JC, Jungheim ES, England SK. (2018). Chronodisruption: An Untimely Cause of Preterm Birth? Best Practice and Research Clinical Obstetrics and Gynaecology. 52: 60-7.
  • Bouchlariotou S, Liakopoulos V, Giannopoulou M, Arampatzis S, Eleftheriadis T, Mertens PR, et al. (2014). Melatonin Secretion Is Impaired in Women with Preeclampsia and an Abnormal Circadian Blood Pressure Rhythm. Renal Failure. 36(7): 1001-7.

Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi

Year 2023, , 134 - 141, 31.12.2023
https://doi.org/10.47027/duvetfd.1326090

Abstract

Sirkadiyen ritimler, canlı organizmaların fizyolojik ve davranışsal süreçlerini düzenleyen içsel biyolojik ritimlerdir. Bu ritimler, hipotalamusun suprakiazmatik çekirdeğinde yer alan ve doğal ışık ve karanlık döngüleri tarafından yönlendirilen dahili bir biyolojik saat tarafından düzenlenir. Bu ritimlerdeki bozulmalar, metabolik bozukluklar, kardiyovasküler hastalıklar ve kanser dahil olmak üzere bir dizi olumsuz sağlık sonucuyla ilişkilendirilmiştir. Sirkadiyen ritimlerin hayvanlarda üreme süreçleri üzerindeki etkileri uzun yıllardır ilgi konusu olmuştur. Üreme, endokrin, sinir ve bağışıklık sistemleri dahil olmak üzere çeşitli fizyolojik sistemlerin etkileşimini içeren karmaşık bir süreçtir. Sirkadiyen ritimlerdeki aksamalar, bu sistemlerin işlevini değiştirerek üreme fonksiyonları üzerinde olumsuz etkilere yol açabilir. Kadınlarda sirkadiyen ritimlerin bozulması adet düzensizliklerine ve kısırlığa neden olabilir. Hormon salgılanmasının zamanlaması ve koordinasyonundaki aksamalar, üreme sonuçları üzerinde olumsuz etkilere yol açabilir. Erkeklerde sirkadiyen ritimlerdeki aksamalar, testosteron düzeylerinin ve sperm kalitesinin düşmesine neden olabilir ve bu da üreme sonuçları üzerinde olumsuz bir etkiye sahip olabilir. Veteriner hekimler, sirkadiyen aksamaların üreme sonuçları üzerindeki potansiyel etkilerinin farkında olmalı ve etkilerini en aza indirmek için adımlar atmalıdır. Bu, hayvanlara uygun aydınlatma ve düzenli bir beslenme ve egzersiz programı sağlanmasını da kapsamaktadır. Hayvanlarda sirkadiyen ritimlerin üreme süreçlerini etkilediği mekanizmaları daha iyi anlamak ve hayvanlarda üreme sağlığını optimize etmek için stratejiler geliştirmek için daha fazla araştırmaya ihtiyaç vardır. Sonuç olarak, sirkadiyen ritimler, hayvanlarda üreme süreçlerinin düzenlenmesinde çok önemli bir rol oynamaktadır. Bu ritimlerdeki aksamaların üreme fonksiyonları üzerinde olumsuz etkileri olabilir ve veteriner hekimler bu etkileri en aza indirmek için adımlar atmalıdır. Bu etkilerin ortaya çıkmasında rol oynayan mekanizmaları daha iyi anlamak ve hayvanlarda üreme sağlığını iyileştirmek için daha fazla araştırmaya ihtiyaç vardır.

References

  • Pittendrigh CS. (1993). Temporal Organization: Reflections of a Darwinian Clock-Watcher. Annual Review of Physiology. 55(1): 17-54.
  • Dunlap JC. (1999). Molecular Bases for Circadian Clocks. Cell. 96(2): 271-90.
  • Dickmeis T, Weger BD, Weger M. (2013). The Circadian Clock and Glucocorticoids–Interactions across Many Time Scales. Molecular and Cellular Endocrinology. 380(1-2): 2-15.
  • Cassone VM. (2005). The Clock That Tells the Time. Nature Neuroscience. 8(1).
  • Reiter RJ, Tan D-x, Mayo JC, Sainz RM, Leon J, Czarnocki Z. (2003). Melatonin as an Antioxidant: Biochemical Mechanisms and Pathophysiological Implications in Humans. Acta Biochimica Polonica. 50(4): 1129-46.
  • Schibler U. (2005). The Daily Rhythms of Genes, Cells and Organs: Biological Clocks and Circadian Timing in Cells. Embo reports. 6(1): 9-13.
  • Buttgereit F, Smolen JS, Coogan AN, Cajochen C. (2015). Clocking In: Chronobiology in Rheumatoid Arthritis. Nature Reviews Rheumatology. 11(6): 349-56.
  • Roenneberg T, Merrow M. (2016). The Circadian Clock and Human Health. Current Biology. 26(10): 432-43.
  • Hastings MH, Maywood ES, Brancaccio M. (2018). Generation of Circadian Rhythms in the Suprachiasmatic Nucleus. Nature Reviews Neuroscience. 19(8): 453-69.
  • Takahashi JS. (2017). Transcriptional Architecture of the Mammalian Circadian Clock. Nature Reviews Genetics. 18(3): 164-79.
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. (2014). A Circadian Gene Expression Atlas in Mammals: Implications for Biology and Medicine. Proceedings of the National Academy of Sciences. 111(45): 16219-24.
  • Reinke H, Asher G. (2019). Crosstalk between Metabolism and Circadian Clocks. Nature Reviews Molecular Cell Biology. 20(4): 227-41.
  • Reppert SM, Weaver DR. (2002). Coordination of Circadian Timing in Mammals. Nature. 418(6901): 935-41.
  • Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J. (2013). Circadian Clocks and Metabolism. Circadian Clocks. 217: 127-55.
  • Sellix MT. (2013). Clocks Underneath: The Role of Peripheral Clocks in the Timing of Female Reproductive Physiology. Frontiers in Endocrinology. 4: 91.
  • Rahman SA, Grant LK, Gooley JJ, Rajaratnam SM, Czeisler CA, Lockley SW. (2019). Endogenous Circadian Regulation of Female Reproductive Hormones. The Journal of Clinical Endocrinology and Metabolism. 104(12): 6049-59.
  • He P-J, Hirata M, Yamauchi N, Hattori M-a. (2007). Up-Regulation of Per1 Expression by Estradiol and Progesterone in the Rat Uterus. Journal of Endocrinology. 194(3): 511-20.
  • Moenter SM, DeFazio RA, Pitts GR, Nunemaker CS. (2003). Mechanisms Underlying Episodic Gonadotropin-Releasing Hormone Secretion. Frontiers in Neuroendocrinology. 24(2): 79-93.
  • Serhan Serhat A, Kükükaslan I, Kaya D, Mülazimoglu B, Emre B, Kaçar C, et al. (2012). The Change in Luteal Blood Flow and Luteal Size after Beta Carotene and Gnrh Injections in Early Pregnant Dairy Cows. Kafkas Universitesi Veteriner Fakultesi Dergisi. 18(6): 1035-41.
  • Yoshikawa T, Sellix M, Pezuk P, Menaker M. (2009). Timing of the Ovarian Circadian Clock Is Regulated by Gonadotropins. Endocrinology. 150(9): 4338-47.
  • Amano T, Matsushita A, Hatanaka Y, Watanabe T, Oishi K, Ishida N, et al. (2009). Expression and Functional Analyses of Circadian Genes in Mouse Oocytes and Preimplantation Embryos: Cry1 Is Involved in the Meiotic Process Independently of Circadian Clock Regulation. Biology of Reproduction. 80(3): 473-83.
  • Amano T, Tokunaga K, Kakegawa R, Yanagisawa A, Takemoto A, Tatemizo A, et al. (2010). Expression Analysis of Circadian Genes in Oocytes and Preimplantation Embryos of Cattle and Rabbits. Animal Reproduction Science. 121(3-4): 225-35.
  • Karman BN, Tischkau SA. (2006). Circadian Clock Gene Expression in the Ovary: Effects of Luteinizing Hormone. Biology of Reproduction. 75(4): 624-32.
  • Li R, Cheng S, Wang Z. (2015). Circadian Clock Gene Plays a Key Role on Ovarian Cycle and Spontaneous Abortion. Cellular Physiology and Biochemistry. 37(3): 911-20.
  • Sudo M, Sasahara K, Moriya T, Akiyama M, Hamada T, Shibata S. (2003). Constant Light Housing Attenuates Circadian Rhythms of Mper2 Mrna and Mper2 Protein Expression in the Suprachiasmatic Nucleus of Mice. Neuroscience. 121(2): 493-9.
  • Mereness AL, Murphy ZC, Sellix MT. (2015). Developmental Programming by Androgen Affects the Circadian Timing System in Female Mice. Biology of Reproduction. 92(4): 88, 1-12.
  • Chu G, Misawa I, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, et al. (2012). Contribution of Fsh and Triiodothyronine to the Development of Circadian Clocks During Granulosa Cell Maturation. American Journal of Physiology-Endocrinology and Metabolism. 302(6): 645-53.
  • Gräs S, Georg B, Jørgensen HL, Fahrenkrug J. (2012). Expression of the Clock Genes Per1 and Bmal1 During Follicle Development in the Rat Ovary. Effects of Gonadotropin Stimulation and Hypophysectomy. Cell and Tissue Research. 350(3): 539-48.
  • Sirois J, Sayasith K, Brown KA, Stock AE, Bouchard N, Doré M. (2004). Cyclooxygenase-2 and Its Role in Ovulation: A 2004 Account. Human Reproduction Update. 10(5): 373-85.
  • Tan D-X, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. (2015). Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules. 20(10): 18886-906.
  • Atasoy ÖB, Erbaş O. (2017). Melatonin Hormonunun Fizyolojik Etkileri. İstanbul Bilim Üniversitesi Florence Nightingale Tıp Dergisi. 3(1): 52-62.
  • Amaral FGd, Cipolla-Neto J. (2018). A Brief Review About Melatonin, a Pineal Hormone. Archives of Endocrinology and Metabolism. 62(4): 472-9.
  • Sun T-C, Li H-Y, Li X-Y, Yu K, Deng S-L, Tian L. (2020). Protective Effects of Melatonin on Male Fertility Preservation and Reproductive System. Cryobiology. 95: 1-8.
  • Balík A, Kretschmannová K, Mazna P, Svobodová I, Zemková H. (2004). Melatonin Action in Neonatal Gonadotrophs. Physiological Research. 53(1): 153-66.
  • Genario R, Morello E, Bueno AA, Santos HO. (2019). The Usefulness of Melatonin in the Field of Obstetrics and Gynecology. Pharmacological Research. 147: 104337.
  • Mojaverrostami S, Asghari N, Khamisabadi M, Khoei HH. (2019). The Role of Melatonin in Polycystic Ovary Syndrome: A Review. International Journal of Reproductive Biomedicine. 17(12): 865.
  • Hsu C-N, Tain Y-L. (2020). Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease. International Journal of Molecular Sciences. 21(6): 2232.
  • Lincoln GA, Richardson M. (1998). Photo-Neuroendocrine Control of Seasonal Cycles in Body Weight, Pelage Growth and Reproduction: Lessons from the Hpd Sheep Model. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology and Toxicology. 119(3): 283-94.
  • Harrison JL, Miller DW, Findlay PA, Adam CL. (2008). Photoperiod Influences the Central Effects of Ghrelin on Food Intake, Gh and Lh Secretion in Sheep. Neuroendocrinology. 87(3): 182-92.
  • Barrett P, Bolborea M. (2012). Molecular Pathways Involved in Seasonal Body Weight and Reproductive Responses Governed by Melatonin. Journal of Pineal Research. 52(4): 376-88.
  • Gültiken N, Aslan S, Ay SS, Gülbahar MY, Thuróczy J, Koldaş E, et al. (2017). Effect of Deslorelin on Testicular Function, Serum Dihydrotestosterone and Oestradiol Concentrations During and after Suppression of Sexual Activity in Tom Cats. Journal of Feline Medicine and Surgery. 19(2): 123-31.
  • Hansen P. (1985). Seasonal Modulation of Puberty and the Postpartum Anestrus in Cattle: A Review. Livestock Production Science. 12(4): 309-27.
  • Sen A, Hoffmann HM. (2020). Role of Core Circadian Clock Genes in Hormone Release and Target Tissue Sensitivity in the Reproductive Axis. Molecular and Cellular Endocrinology. 501: 110655.
  • Rasmussen KM, Kjolhede CL. (2008). Maternal Obesity: A Problem for Both Mother and Child. Obesity Silver Spring. 16(5): 929-31.
  • Gao Q, Lv J, Li W, Zhang P, Tao J, Xu Z. (2016). Disrupting the Circadian Photo-Period Alters the Release of Follicle-Stimulating Hormone, Luteinizing Hormone, Progesterone, and Estradiol in Maternal and Fetal Sheep. Journal of Reproduction and Development. 62(5): 487-93.
  • Shukla P, Lemley CO, Dubey N, Meyer AM, O'Rourke ST, Vonnahme KA. (2014). Effect of Maternal Nutrient Restriction and Melatonin Supplementation from Mid to Late Gestation on Vascular Reactivity of Maternal and Fetal Placental Arteries. Placenta. 35(7): 461-6.
  • Weiss G, Goldsmith LT, Taylor RN, Bellet D, Taylor HS. (2009). Inflammation in Reproductive Disorders. Reproductive Sciences. 16(2): 216-29.
  • Bosc MJ. (1990). Photoperiodic Regulation of the Time of Birth in Rats: Involvement of Circadian Endogenous Mechanisms. Physiology and Behavior. 48(3): 441-6.
  • Gatford KL, Kennaway DJ, Liu H, Kleemann DO, Kuchel TR, Varcoe TJ. (2019). Simulated Shift Work Disrupts Maternal Circadian Rhythms and Metabolism, and Increases Gestation Length in Sheep. The Journal of Physiology. 597(7): 1889-904.
  • Ataman MB, Aköz M, Fındık M, Saban E. (2009). Geçiş Dönemi Başındaki Akkaraman Melezi Koyunlarda Farklı Dozda Flourogestene Acetate, Norgestomet Ve Pgf2α Ile Senkronize Östrüslerin Uyarılması. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 15(5).
  • Suarez-Trujillo A, Hoang N, Robinson L, McCabe CJ, Conklin D, Minor RC, et al. (2022). Effect of Circadian System Disruption on the Concentration and Daily Oscillations of Cortisol, Progesterone, Melatonin, Serotonin, Growth Hormone, and Core Body Temperature in Periparturient Dairy Cattle. Journal of Dairy Science. 105(3): 2651-68.
  • Casey TM, Plaut K. (2022). Circadian Clocks and Their Integration with Metabolic and Reproductive Systems: Our Current Understanding and Its Application to the Management of Dairy Cows. Journal of Animal Science. 100(10): 1-13.
  • Piccione G, Giannetto C, Schembari A, Gianesella M, Morgante M. (2011). A Comparison of Daily Total Locomotor Activity between the Lactation and the Dry Period in Dairy Cattle. Research in Veterinary Science. 91(2): 289-93.
  • Kendall P, Tucker C, Dalley D, Clark D, Webster J. (2008). Milking Frequency Affects the Circadian Body Temperature Rhythm in Dairy Cows. Livestock Science. 117(2-3): 130-8.
  • Wagner N, Mialon MM, Sloth KH, Lardy R, Ledoux D, Silberberg M, et al. (2021). Detection of Changes in the Circadian Rhythm of Cattle in Relation to Disease, Stress, and Reproductive Events. Methods. 186: 14-21.
  • Aulamazyan EK, Evsyukova II, Yarmolinskaya MI. (2018). The Role of Melatonin in Development of Gestational Diabetes Mellitus. Journal of Obstetrics and Women's Diseases. 67(1): 85-91.
  • Suarez-Trujillo A, Wernert G, Sun H, Steckler TS, Huff K, Cummings S, et al. (2020). Exposure to Chronic Light-Dark Phase Shifts During the Prepartum Nonlactating Period Attenuates Circadian Rhythms, Decreases Blood Glucose, and Increases Milk Yield in the Subsequent Lactation. Journal of Dairy Science. 103(3): 2784-99.
  • Young JW. (1977). Gluconeogenesis in Cattle: Significance and Methodology. Journal of Dairy Science. 60(1): 1-15.
  • Bell AW, Bauman DE. (1997). Adaptations of Glucose Metabolism During Pregnancy and Lactation. Journal of Mammary Gland Biology and Neoplasia. 2(3): 265-78.
  • Krishnan N, Davis AJ, Giebultowicz JM. (2008). Circadian Regulation of Response to Oxidative Stress in Drosophila Melanogaster. Biochemical and Biophysical Research Communications. 374(2): 299-303.
  • Cohen Engler A, Hadash A, Shehadeh N, Pillar G. (2012). Breastfeeding May Improve Nocturnal Sleep and Reduce Infantile Colic: Potential Role of Breast Milk Melatonin. European Journal of Pediatrics. 171: 729-32.
  • Milagres MP, Minim VP, Minim LA, Simiqueli AA, Moraes LE, Martino HS. (2014). Night Milking Adds Value to Cow's Milk. Journal of The Science of Food and Agriculture. 94(8): 1688-92.
  • Castro N, Spengler M, Lollivier V, Wellnitz O, Meyer H, Bruckmaier R. (2011). Diurnal Pattern of Melatonin in Blood and Milk of Dairy Cows. Milchwissenschaft. 66(4): 352-3.
  • Zuo D, Subjeck J, Wang X-Y. (2016). Unfolding the Role of Large Heat Shock Proteins: New Insights and Therapeutic Implications. Frontiers in İmmunology. 7: 75.
  • Baykalir Y, Simsek U, Erisir M, Otlu O, Gungoren G, Gungoren A, et al. (2020). Photoperiod Effects on Carcass Traits, Meat Quality, and Stress Response in Heart and Lung of Broilers. South African Journal of Animal Science. 50(1): 138-49.
  • Zhao R, Cai C, Wang P, Zheng L, Wang J, Li K, et al. (2019). Effect of Night Light Regimen on Growth Performance, Antioxidant Status and Health of Broiler Chickens from 1 to 21 Days of Age. Asian-Australasian Journal of Animal Sciences. 32(6): 904.
  • Liu J, Mankani G, Shi X, Meyer M, Cunningham-Runddles S, Ma X, et al. (2006). The Circadian Clock Period 2 Gene Regulates Gamma Interferon Production of Nk Cells in Host Response to Lipopolysaccharide-Induced Endotoxic Shock. Infection and İmmunity. 74(8): 4750-6.
  • Colombo LL, Chen G-J, Lopez MC, Watson RR. (1992). Melatonin Induced Increase in Gamma-Interferon Production by Murine Splenocytes. Immunology Letters. 33(2): 123-6.
  • Wichmann MW, Zellweger R, DeMaso CM, Ayala A, Chaudry IH. (1996). Melatonin Administration Attenuates Depressed Immune Functions after Trauma-Hemorrhage. Journal of Surgical Research. 63(1): 256-62.
  • Peek CB, Ramsey KM, Marcheva B, Bass J. (2012). Nutrient Sensing and the Circadian Clock. Trends in Endocrinology and Metabolism. 23(7): 312-8.
  • Martin DE, Hall MN. (2005). The Expanding Tor Signaling Network. Current Opinion in Cell Biology. 17(2): 158-66.
  • Hardie DG. (2007). Amp-Activated/Snf1 Protein Kinases: Conserved Guardians of Cellular Energy. Nature Reviews Molecular Cell Biology. 8(10): 774-85.
  • Hardie DG. (2004). The Amp-Activated Protein Kinase Pathway--New Players Upstream and Downstream. Journal of Cell Science. 117(Pt 23): 5479-87.
  • Teng ZW, Yang GQ, Wang LF, Fu T, Lian HX, Sun Y, et al. (2021). Effects of the Circadian Rhythm on Milk Composition in Dairy Cows: Does Day Milk Differ from Night Milk? Journal of Dairy Science. 104(7): 8301-13.
  • Pilorz V, Steinlechner S. (2008). Low Reproductive Success in Per1 and Per2 Mutant Mouse Females Due to Accelerated Ageing? Reproduction. 135(4): 559.
  • Zhu Y, Brown HN, Zhang Y, Stevens RG, Zheng T. (2005). Period3 Structural Variation: A Circadian Biomarker Associated with Breast Cancer in Young Women. Cancer Epidemiology Biomarkers and Prevention. 14(1): 268-70.
  • Zheng Y, Liu C, Li Y, Jiang H, Yang P, Tang J, et al. (2019). Loss-of-Function Mutations with Circadian Rhythm Regulator Per1/Per2 Lead to Premature Ovarian Insufficiency. Biology of Reproduction. 100(4): 1066-72.
  • Boden MJ, Varcoe TJ, Voultsios A, Kennaway DJ. (2010). Reproductive Biology of Female Bmal1 Null Mice. Reproduction. 139(6): 1077-90.
  • Nehme P, Amaral F, Lowden A, Skene DJ, Cipolla-Neto J, Moreno CRdC. (2019). Reduced Melatonin Synthesis in Pregnant Night Workers: Metabolic Implications for Offspring. Medical Hypotheses. 132: 109353.
  • Khan HL, Bhatti S, Khan YL, Abbas S, Munir Z, Sherwani IARK, et al. (2020). Cell-Free Nucleic Acids and Melatonin Levels in Human Follicular Fluid Predict Embryo Quality in Patients Undergoing in-Vitro Fertilization Treatment. Journal of Gynecology Obstetrics and Human Reproduction. 49(1): 101624.
  • Macchi MM, Bruce JN. (2004). Human Pineal Physiology and Functional Significance of Melatonin. Frontiers in Neuroendocrinology. 25(3-4): 177-95.
  • Sellix MT, Murphy ZC, Menaker M. (2013). Excess Androgen During Puberty Disrupts Circadian Organization in Female Rats. Endocrinology. 154(4): 1636-47.
  • Reschke L, McCarthy R, Herzog ED, Fay JC, Jungheim ES, England SK. (2018). Chronodisruption: An Untimely Cause of Preterm Birth? Best Practice and Research Clinical Obstetrics and Gynaecology. 52: 60-7.
  • Bouchlariotou S, Liakopoulos V, Giannopoulou M, Arampatzis S, Eleftheriadis T, Mertens PR, et al. (2014). Melatonin Secretion Is Impaired in Women with Preeclampsia and an Abnormal Circadian Blood Pressure Rhythm. Renal Failure. 36(7): 1001-7.
There are 84 citations in total.

Details

Primary Language Turkish
Subjects Veterinary Sciences (Other)
Journal Section Review
Authors

Hüseyin Koç 0000-0002-9031-6505

Serhan Serhat Ay 0000-0003-2116-5149

Murat Fındık 0000-0003-1408-2548

Early Pub Date December 28, 2023
Publication Date December 31, 2023
Acceptance Date September 27, 2023
Published in Issue Year 2023

Cite

APA Koç, H., Ay, S. S., & Fındık, M. (2023). Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 16(2), 134-141. https://doi.org/10.47027/duvetfd.1326090
AMA Koç H, Ay SS, Fındık M. Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi. Dicle Üniv Vet Fak Derg. December 2023;16(2):134-141. doi:10.47027/duvetfd.1326090
Chicago Koç, Hüseyin, Serhan Serhat Ay, and Murat Fındık. “Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 16, no. 2 (December 2023): 134-41. https://doi.org/10.47027/duvetfd.1326090.
EndNote Koç H, Ay SS, Fındık M (December 1, 2023) Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi. Dicle Üniversitesi Veteriner Fakültesi Dergisi 16 2 134–141.
IEEE H. Koç, S. S. Ay, and M. Fındık, “Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi”, Dicle Üniv Vet Fak Derg, vol. 16, no. 2, pp. 134–141, 2023, doi: 10.47027/duvetfd.1326090.
ISNAD Koç, Hüseyin et al. “Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 16/2 (December 2023), 134-141. https://doi.org/10.47027/duvetfd.1326090.
JAMA Koç H, Ay SS, Fındık M. Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi. Dicle Üniv Vet Fak Derg. 2023;16:134–141.
MLA Koç, Hüseyin et al. “Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 16, no. 2, 2023, pp. 134-41, doi:10.47027/duvetfd.1326090.
Vancouver Koç H, Ay SS, Fındık M. Veteriner Reprodüksiyonda Sirkadiyen Ritimlerin Etkisi. Dicle Üniv Vet Fak Derg. 2023;16(2):134-41.