Research Article
BibTex RIS Cite

Diazinon Standardının Oreochromis niloticus (Linnaeus, 1758)’un Beyin Dokusu Üzerindeki Histopatolojik ve Ultrayapısal Etkileri

Year 2024, , 46 - 56, 30.06.2024
https://doi.org/10.47027/duvetfd.1450989

Abstract

Bu çalışmada, 21 gün boyunca diazinon standartının subletal bir konsantrasyonuna maruz bırakılan Oreochromis niloticus (Linnaeus, 1758) beyin dokusunda histopatolojik ve ultra yapısal değişiklikler belirlenmiştir. Bu amaçla, O. niloticus bireyleri, 21 gün boyunca 280 µg/L (LC50/10) diazinon konsantrasyonuna maruz bırakılmış ve maruziyetin 7., 14. ve 21. günlerinde, maruz kalan canlıların beyin örnekleri alınmıştır. Beyin örneklerinin histolojik ve ultra yapısal preperasyonunun ardından, hazırlanan örnekler ışık ve geçirimli elektron mikroskopları (TEM) ile değerlendirilmiştir. Örneklerin değerlendirilmesi sonucu, subletal diazinon konsantrasyonunun O. niloticus'un beyin dokusunda histopatolojik ve ultra yapısal değişikliklere neden olduğu belirlenmiştir. Bu değişikliklerin şiddeti zamanla artmıştır. En şiddetli histopatolojik değişiklik, maruziyetin 14. ve 21. günlerinde belirlenen nekroz olarak tespit edilmiştir. Bununla birlikte, histopatolojik olarak en sık gözlenen değişiklikler beyin glial hücrelerinde bulutlu şişme, hipertrofi ve piknotik çekirdek olarak belirlenmiştir. Ultra yapısal olarak, hücrelerde mitokondrial dejenerasyon, kristoliz, akson ve dendritlerde deformasyon belirlenmiştir. Bu ultra yapısal bulgular, subletal diazinon konsantrasyonunun hücrelerin enerji metabolizmasını bozduğunu ve bu durumun O. niloticus'un beyininde nörodejeneratif işlev bozukluğuna yol açabileceğini göstermektedir.

Ethical Statement

Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.

Supporting Institution

TÜRKİYE BİLİMSEL VE TEKNOLOJİK ARAŞTIRMA KURUMU-TÜBİTAK

Project Number

114Z730

Thanks

Elektron Mikroskop teknisyeni Süreyya Kaçar'a teşekkür ederiz.

References

  • Pathak VM, Verma VK, Rawat BS, et al. (2022). Current Status of Pesticide Effects on Environment, Human Health and It's Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front Microbiol. 13:962619.
  • Tudi M, Daniel Ruan H, Wang L, Lyu J, et al. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 18:1112.
  • Jayaraj R, Megha P, Sreedev P. (2016). Organochlorine Pesticides, Their Toxic Effects on Living organisms and Their Fate in The Environment. Interdiscip. Toxicol. 9: 90–100.
  • Wagh V, Mukate S, Muley A, Kadam A, Panaskar D, Varade A. (2020). Study of Groundwater Contamination and Drinking Suitability in Basaltic Terrain of Maharashtra, India Through Pıg And Multivariate Statistical Techniques. J. Water Sup. Res. Technol. Aquat. 69: 398–414.
  • Gallo MA, Lawryk NJ. (1991). Organic Phosphorus Pesticides. Editors: Hayes WJ, Jr, Laws, ER. Handbook of Pesticide Toxicology: Classes of Pesticides, 917–1123. No. 2 Academic Press, New York, USA.
  • Lotti M. (2002). Promotion of Organophosphate-Induced Delayed Polyneuropathy by Certain Esterase Inhibitors. Toxicology. 27 (181-182): 245-248.
  • Dabrowski S, Hanke W, Polanska K, Makowiec Dabrowska T, Sobala W. (2003). Pesticide Exposure and Birthweight: an Epidemiological Study in Central Poland. Int J Occup Med Environ Health. 16: 31-39.
  • Gupta RC, Mukherjee IRM, Malik JK, Doss RB, Dettbarn WD, Milatovic, D. (2019). Insecticides. In Biomarkers in Toxicology. Academic Press.
  • Li ZH, Zlabek V, Velíšek J, Grabic, R, et al. (2011). Antioxidant Responses and Plasma Biochemical Characteristics in the Freshwater Rainbow Trout, Oncorhynchus mykiss, After Acute Exposure to the Fungicide Propiconazole. Czech J. Anim. Sci. 56: 61–69.
  • Zein MA, McElmurry SP, Kashian DR, Savolainen PT, Pitts DK. (2015). Toxic Effects of Combined Stressors on Daphnia pulex: Interactions Between Diazinon, 4-nonylphenol, and Wastewater Effluent. Environ Toxicol Chem. 34: 1145-1153.
  • Velki M, Di Paolo C, Nelles J, Seiler TB, Hollert H. (2017). Diuron and Diazinon Alter the Behavior of Zebrafish Embryos and Larvae in the Absence of Acute Toxicity. Chemosphere.180:65-76.
  • Mishra R, Shukla SP. (2003). Endosulfan Effects on Muscle Malate Dehydrogenase of the Freshwater Catfish, Claria batrachus. Ecotoxicology and Environmental Safety, 56: 425-433.
  • Cavas S, Ergene-Gozukara S. (2005). Induction of Micronuclei and Nuclear Abnormalities in Oreochromis niloticus Following Exposure to Petroleum Refinery and Chromium Processing Plant Effluents. Aquatic Toxicology, 74: 264-271.
  • Lopez-Barea, J. (1996). Biomarkers to Detect Environmental Pollution. Toxicology Letters, 88: 79.
  • van der Oost R, Beyer J, Vermeulen NPE. (2003). Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment: A Review. Environmental Toxicology and Pharmacology, 13: 57-149.
  • Almedia JA, Diniz YS, Marques SFG, et al. (2002). The Use of The Oxidative Stress Responses as Biomarkers in Nile Tilapia (Oreochromis niloticus) Exposed to In vivo Cadmium Contamination. Environment International, 27(8): 673-679.
  • El-Sherif MS, Ahmed MT, El-Danasoury MA, El-Nwish NHK. (2009). Evaluation of Diazinon Toxicity on Nile Tilapia Fish (O. niloticus). Journal of Fisheries and Aquatic Science, 4(4): 169-177.
  • Velmurugan, B. (2011). Identification of Potential Biomarkers for Chlorpyrifos and Cypermethrin Exposed to Fish Anabas testudineus (Bloch) using Histological, Biochemical, Haematological, Ultrastructural and Molecular Assays. Doktora Tezi, Madras Üniversitesi Çevresel Bilimler ve Biyoteknoloji Araştırma Bölümü, Chennai, Hindistan.
  • Segner H, Braunbeck T. (1998). Cellular Response Profile to Chemical Stress. Editors: Schuurmann G and Markert B. Ecotoxicology: Ecological Fundamentals, Chemical Exposure, and Biological Effects. 521-569. Wley-Liss, New York, USA.
  • Yancheva V, Velcheva I, Stoyanova S, Georgieva, E. (2016). Histological Biomarkers in Fish as a Tool in Ecological Risk Assessment and Monitoring Programs: A Review. Applied Ecology and Environmental Research. 14(1): 47-75.
  • Grue CE, Gibert PL, Seeley ME. (1997). Neurophysiological and Behavioral Changes in Non-Target Wildlife Exposed to Organophosphate and Carbamate Pesticides: Thermoregulation, Food Consumption, and Reproduction. American Zoologist. 37(4): 369–388.
  • American Public Health Association (APHA). (1998). Standard Methods for the Examination of Water and Wastewater. American Water Works Association, Water Pollution Control Federation, 20th Edition.
  • Gurr E. (1972). Biological Staining Methods. Kent Printers, Tonbridge Hematoksilen Eozin Boyaması.
  • Rohani MF. (2023). Pesticides Toxicity in Fish: Histopathological and Hemato-Biochemical Aspects–A Review. Emerging Contaminants. 100234
  • Uner N, Oruc EO, Sevgiler Y, Sahin NH, Durmaz D. (2006). Effects of Diazinon on Acetylcholinesterase Activity and Lipid Peroxidation in the Brain of Oreochromis niloticus. Environ. Toxicol. Pharmacol. 21: 241-245.
  • Sepici-Dincel A, Benli ACK, Selvi M, et al. (2009). Ecotoxicology and Environmental Safety Sublethal Cyfluthrin Toxicity to Carp (Cyprinus carpio L.) Fingerlings: Biochemical, Hematological, Histopathological Alterations. Ecotoxicol. Environ. Saf. 72: 1433-1439.
  • Das BK, Mukherjee SC. (2000). Chronic Toxic Effects of Quinalphos on Some Biochemical Parameters in Labeo rohita (Ham.). Toxicology Letters. 114 (1-3): 11-18.
  • Senarat S, Kettratad J, Kaneko G, Kamnurdnin T, Sudtongkong C. (2021). The Microanatomy of the Central Nervous System and Brain of the Indo-Pacific Seahorse, Hippocampus barbouri, during Development. Zoologia (Curitiba). 37: e53734.
  • Yamamoto N. (2008). Organization of the Actinopterygian Telencephalon. In: Watanabe S, Okaichi H (Eds) Comparative Study of Hippocampal Functions. Pp. 8–21. Nakanishiya Publishing, Kyoto, Japan.
  • Senarat S, Kettretad J, Jiraungkoorskul W. (2016). Neuroanatomy and Histology of the Central Nervous System in Short Mackerel, Rastrelliger brachysoma (Bleeker, 1851). Walailak Journal of Science & Technology. 13(7): 531–541.
  • Lakshmaiah G. (2017). Brain Histopathology of the Fish Cyprinus carpio Exposed to Lethal Concentrations of an Organophosphate Insecticide Phorate. Brain. 2(5): 668-672.
  • Alak G, Yeltekin AÇ, Özgeriş FB, et al. (2019). The Therapeutic Effect of N-Acetyl Cysteine as an Antioxidant on Rainbow Trout's Brain in Cypermethrin Toxicity. Chemosphere. 221: 30-36.
  • Al-Jammas S, Al-Saraj A. (2019). The Histological Changes Induced by Cytarabine on Rabbits Kidneys (with and without Vitamin E Administration). Iraqi Journal of Veterinary Sciences. 33(2): 311-316.
  • Benli AÇK, Özkul A. (2010). Acute Toxicity and Histopathological Effects of Sublethal Fenitrothion on Nile Tilapia, Oreochromis niloticus. Pestic. Biochem. Physiol. 97(1): 32-35.
  • Pirbeigi A, Poorbagher H, Eagderi S, Mirvaghefi AR. (2016). Pathological Effects of Sublethal Diazinon on the Blood, Gill, Liver and Kidney of the Freshwater Fish Capoeta damascina. Chemistry and Ecology. 32(3): 270-285.
  • Hinton DE, Lauren DJ. (1990). Liver Structural Alterations Accompanying Chronic Toxicity in Fishes Potential Biomarkers of Exposure. In: McCarthy JF, Shugart LR (eds) Biomarkers of Environmental Contamination. Pp: 17–57. Lewis Publishers, Boca Raton.
  • Badroo IA, Nandurkar HP, Khanday AH. (2020). Toxicological Impacts of Herbicide Paraquat Dichloride on Histological Profile (Gills, Liver, and Kidney) of Freshwater Fish Channa punctatus (Bloch). Environmental Science and Pollution Research. 27: 39054-39067.
  • Jia R, Li Y, Cao L, et al. (2019). Antioxidative, Anti-İnflammatory and Hepatoprotective Effects of Resveratrol on Oxidative Stress-Induced Liver Damage İn Tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 215: 56-66.
  • Zhao L, Cui C, Liu Q, et al. (2020). Combined Exposure to Hypoxia and Ammonia Aggravated Biological Effects on Glucose Metabolism, Oxidative Stress, Inflammation and Apoptosis in Largemouth Bass (Micropterus salmoides). Aquatic Toxicology. 224: 105514.
  • Américo-Pinheiro JHP, Machado AA, da Cruz C, et al. (2020). Histological Changes in Targeted Organs of Nile Tilapia (Oreochromis niloticus) Exposed to Sublethal Concentrations of the Pesticide Carbofuran. Water, Air, & Soil Pollution. 231(5): 228.
  • Chupani L, Zuskova E, Stara A, Velisek J, Kouba A. (2016). Histological Changes and Antioxidant Enzyme Activity in Signal Crayfish (Pacifastacus leniusculus) Associated with Sub-Acute Peracetic Acid Exposure. Fish & Shellfish Immunology. 48: 190-195.
  • Asma K, Noreen A, Wajid A. (2016). Histopathological Changes in Spleen and Kidney of Silver Carp (Hypophthalmicthys molitrix) after Acute Exposure to Deltamethrin. Biologia. 62(1): 139-144.
  • Hou L, Liu K, Li Y, Ma S, Ji X, Liu L. (2016). Necrotic Pyknosis is a Morphologically and Biochemically Distinct Event from Apoptotic Pyknosis. J Cell Sci. 129 (16): 3084-3090.
  • Zarha R, Mobarak Y. (2015). The Effects of the Pyrethroid Pesticide Cypermethrin on Gills and Kidneys (Trunk Mesonephroi) of Guppy’s Fish (Poecilia reticulata). Catrina: The International Journal of Environmental Sciences. 11(1): 93-101.
  • Nataraj B, Hemalatha D, Rangasamy B, Maharajan K, Ramesh M. (2017). Hepatic Oxidative Stress, Genotoxicity and Histopathological Alteration in Freshwater Fish Labeo rohita Exposed to Organophosphorus Pesticide Profenofos. Biocatalysis and Agricultural Biotechnology. 12: 185-190.
  • Banik U, Rahman MM, Khanam T, Mollah MFA. (2016). Histopathological Changes in the Gonads, Liver, and Kidney of Glossogobius giuris Exposed to Sub-Lethal Concentration of Diazinon. Progressive Agriculture. 27(4): 530-538.
  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T. (1999). Histopathology in Fish: Proposal For a Protocol to Assess Aquatic Pollution. Journal of Fish Diseases. 22: 25–34.
  • Nazir S, Ali MN, Tantray JA, et al. (2022). Study of Ultrastructural Abnormalities in the Renal Cells of Cyprinus carpio Induced by Toxicants. Toxics. 10(4):177.
  • Dutta HM. (2017). A Composite Approach for Evaluation of the Effects of Pesticides on Fish. In Fish Morphology. Pp. 249-277. Routledge.
  • Fontanetti CS, Christofoletti CA, Pinheiro TG, Souza TS, Pedro-Escher J. (2010). Microscopy as A Tool in Toxicological Evaluations. Microsc. Sci. Technol. Appl. Educ. 2: 1001–1007.
  • Parsons MJ, Green DR. (2010). Mitochondria in Cell Death. Essays in Biochemistry. 47: 99–114.
  • Arismendi-Morillo G. (2011). Electron Microscopy Morphology of the Mitochondrial Network in Gliomas and Their Vascular Microenvironment. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1807(6): 602-608.
  • Gilkerson RW, Selker JM, Capaldi RA. (2003). The Cristal Membrane of Mitochondria is the Principal Site of Oxidative Phosphorylation, FEBS Lett. 546: 355–358.
  • Nie ZW, Niu YJ, Zhou W, Kim JY, Ock SA, Cui XS. (2019). Thiamethoxam Induces Meiotic Arrest and Reduces the Quality of Oocytes in Cattle. Toxicol in Vitro. 61: 104635.
  • Xu X, Wang X, Yang Y. et al. (2022). Neonicotinoids: Mechanisms of Systemic Toxicity Based on Oxidative Stress-Mitochondrial Damage. Arch Toxicol. 96: 1493–1520.
  • Galluzzi L, Kepp O, Kroemer G. (2012). Mitochondria: Master Regulators of Danger Signalling. Nat Rev Mol Cell Biol. 13: 780–788.
  • Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA, Ugalde C. (2012). Mitochondrial Respiratory Chain Dysfunction: Implications in Neurodegeneration. Free Radic Biol Med. 53: 595–609.
  • Lai MY, Li J, Zhang XX, et al. (2022). SARM1 Participates in Axonal Degeneration and Mitochondrial Dysfunction in Prion Disease. Neural Regen Res. 17(10):2293-2299.
  • Soto C, Satani N. (2011). The Intricate Mechanisms of Neurodegeneration in Prion Diseases. Trends Mol Med. 17: 14–24.
  • Bernard C, Shah M, Johnston D. (2008) Dendrites and Disease. Editors: Stuart G et al. Dendrites, 2nd edn. Chapter 20. Pp: 531–554, Oxford University Press, New York, USA.
  • Rollenhagen A, Lübke JHR. (2013). Dendrites: A Key Structural Element of Neurons. Editors: Pfaff, D.W. Neuroscience in the 21st Century. Springer, New York, NY.

Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758)

Year 2024, , 46 - 56, 30.06.2024
https://doi.org/10.47027/duvetfd.1450989

Abstract

In this study, the histopathological and ultrastructural alterations in the brain tissue of Oreochromis niloticus (Linnaeus, 1758) exposed to a sublethal concentration of diazinon standard for 21 days were determined. For this purpose, O. niloticus individuals were exposed to 280 µg/L (LC50/10) diazinon concentration for 21 days and on the 7th, 14th and 21st days of the exposure, the brain samples of these individuals were removed. After the histological and ultrastructural preparations of the brain samples, the prepared samples were evaluated with light and transmission electron microscopes (TEM). Examination of the samples indicated that a sublethal dose of diazinon induced histopathological and ultrastructural modifications in the brain tissue of O. niloticus. The severity of these alterations was increased with the duration of the time. The most severe histopathological alteration was necrosis determined on the 14th and 21st days of exposure. However, histopathologically the most frequent changes were cloudy swelling, hypertrophy and pycnotic nucleus in the glial cells of the brain. Ultrastructurally, mitochondrial degeneration, cristolysis, axon and dendrite deformations were seen in the tissues. These ultrastructural findings showed that the sublethal concentration of diazinon disturbed the energy metabolism of the cells which might result in neurodegenerative dysfunction of O. niloticus brain.

Ethical Statement

This study is an original study; I acted in accordance with the principles and rules of scientific ethics in all stages of the study, including preparation, data collection, analysis and presentation of information; I cite sources for all data and information not obtained within the scope of this study and include these sources in the bibliography; I declare that I have not made any changes to the data used, and that I have complied with the ethical duties and responsibilities of the study by accepting all the terms and conditions of the Committee on Publication Ethics (COPE).

Supporting Institution

The Scientific and Technological Research Council of Turkey-TUBITAK

Project Number

114Z730

Thanks

we thank Süreyya Kaçar, electron microscope technician, for her outstanding contributions to our work.

References

  • Pathak VM, Verma VK, Rawat BS, et al. (2022). Current Status of Pesticide Effects on Environment, Human Health and It's Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front Microbiol. 13:962619.
  • Tudi M, Daniel Ruan H, Wang L, Lyu J, et al. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 18:1112.
  • Jayaraj R, Megha P, Sreedev P. (2016). Organochlorine Pesticides, Their Toxic Effects on Living organisms and Their Fate in The Environment. Interdiscip. Toxicol. 9: 90–100.
  • Wagh V, Mukate S, Muley A, Kadam A, Panaskar D, Varade A. (2020). Study of Groundwater Contamination and Drinking Suitability in Basaltic Terrain of Maharashtra, India Through Pıg And Multivariate Statistical Techniques. J. Water Sup. Res. Technol. Aquat. 69: 398–414.
  • Gallo MA, Lawryk NJ. (1991). Organic Phosphorus Pesticides. Editors: Hayes WJ, Jr, Laws, ER. Handbook of Pesticide Toxicology: Classes of Pesticides, 917–1123. No. 2 Academic Press, New York, USA.
  • Lotti M. (2002). Promotion of Organophosphate-Induced Delayed Polyneuropathy by Certain Esterase Inhibitors. Toxicology. 27 (181-182): 245-248.
  • Dabrowski S, Hanke W, Polanska K, Makowiec Dabrowska T, Sobala W. (2003). Pesticide Exposure and Birthweight: an Epidemiological Study in Central Poland. Int J Occup Med Environ Health. 16: 31-39.
  • Gupta RC, Mukherjee IRM, Malik JK, Doss RB, Dettbarn WD, Milatovic, D. (2019). Insecticides. In Biomarkers in Toxicology. Academic Press.
  • Li ZH, Zlabek V, Velíšek J, Grabic, R, et al. (2011). Antioxidant Responses and Plasma Biochemical Characteristics in the Freshwater Rainbow Trout, Oncorhynchus mykiss, After Acute Exposure to the Fungicide Propiconazole. Czech J. Anim. Sci. 56: 61–69.
  • Zein MA, McElmurry SP, Kashian DR, Savolainen PT, Pitts DK. (2015). Toxic Effects of Combined Stressors on Daphnia pulex: Interactions Between Diazinon, 4-nonylphenol, and Wastewater Effluent. Environ Toxicol Chem. 34: 1145-1153.
  • Velki M, Di Paolo C, Nelles J, Seiler TB, Hollert H. (2017). Diuron and Diazinon Alter the Behavior of Zebrafish Embryos and Larvae in the Absence of Acute Toxicity. Chemosphere.180:65-76.
  • Mishra R, Shukla SP. (2003). Endosulfan Effects on Muscle Malate Dehydrogenase of the Freshwater Catfish, Claria batrachus. Ecotoxicology and Environmental Safety, 56: 425-433.
  • Cavas S, Ergene-Gozukara S. (2005). Induction of Micronuclei and Nuclear Abnormalities in Oreochromis niloticus Following Exposure to Petroleum Refinery and Chromium Processing Plant Effluents. Aquatic Toxicology, 74: 264-271.
  • Lopez-Barea, J. (1996). Biomarkers to Detect Environmental Pollution. Toxicology Letters, 88: 79.
  • van der Oost R, Beyer J, Vermeulen NPE. (2003). Fish Bioaccumulation and Biomarkers in Environmental Risk Assessment: A Review. Environmental Toxicology and Pharmacology, 13: 57-149.
  • Almedia JA, Diniz YS, Marques SFG, et al. (2002). The Use of The Oxidative Stress Responses as Biomarkers in Nile Tilapia (Oreochromis niloticus) Exposed to In vivo Cadmium Contamination. Environment International, 27(8): 673-679.
  • El-Sherif MS, Ahmed MT, El-Danasoury MA, El-Nwish NHK. (2009). Evaluation of Diazinon Toxicity on Nile Tilapia Fish (O. niloticus). Journal of Fisheries and Aquatic Science, 4(4): 169-177.
  • Velmurugan, B. (2011). Identification of Potential Biomarkers for Chlorpyrifos and Cypermethrin Exposed to Fish Anabas testudineus (Bloch) using Histological, Biochemical, Haematological, Ultrastructural and Molecular Assays. Doktora Tezi, Madras Üniversitesi Çevresel Bilimler ve Biyoteknoloji Araştırma Bölümü, Chennai, Hindistan.
  • Segner H, Braunbeck T. (1998). Cellular Response Profile to Chemical Stress. Editors: Schuurmann G and Markert B. Ecotoxicology: Ecological Fundamentals, Chemical Exposure, and Biological Effects. 521-569. Wley-Liss, New York, USA.
  • Yancheva V, Velcheva I, Stoyanova S, Georgieva, E. (2016). Histological Biomarkers in Fish as a Tool in Ecological Risk Assessment and Monitoring Programs: A Review. Applied Ecology and Environmental Research. 14(1): 47-75.
  • Grue CE, Gibert PL, Seeley ME. (1997). Neurophysiological and Behavioral Changes in Non-Target Wildlife Exposed to Organophosphate and Carbamate Pesticides: Thermoregulation, Food Consumption, and Reproduction. American Zoologist. 37(4): 369–388.
  • American Public Health Association (APHA). (1998). Standard Methods for the Examination of Water and Wastewater. American Water Works Association, Water Pollution Control Federation, 20th Edition.
  • Gurr E. (1972). Biological Staining Methods. Kent Printers, Tonbridge Hematoksilen Eozin Boyaması.
  • Rohani MF. (2023). Pesticides Toxicity in Fish: Histopathological and Hemato-Biochemical Aspects–A Review. Emerging Contaminants. 100234
  • Uner N, Oruc EO, Sevgiler Y, Sahin NH, Durmaz D. (2006). Effects of Diazinon on Acetylcholinesterase Activity and Lipid Peroxidation in the Brain of Oreochromis niloticus. Environ. Toxicol. Pharmacol. 21: 241-245.
  • Sepici-Dincel A, Benli ACK, Selvi M, et al. (2009). Ecotoxicology and Environmental Safety Sublethal Cyfluthrin Toxicity to Carp (Cyprinus carpio L.) Fingerlings: Biochemical, Hematological, Histopathological Alterations. Ecotoxicol. Environ. Saf. 72: 1433-1439.
  • Das BK, Mukherjee SC. (2000). Chronic Toxic Effects of Quinalphos on Some Biochemical Parameters in Labeo rohita (Ham.). Toxicology Letters. 114 (1-3): 11-18.
  • Senarat S, Kettratad J, Kaneko G, Kamnurdnin T, Sudtongkong C. (2021). The Microanatomy of the Central Nervous System and Brain of the Indo-Pacific Seahorse, Hippocampus barbouri, during Development. Zoologia (Curitiba). 37: e53734.
  • Yamamoto N. (2008). Organization of the Actinopterygian Telencephalon. In: Watanabe S, Okaichi H (Eds) Comparative Study of Hippocampal Functions. Pp. 8–21. Nakanishiya Publishing, Kyoto, Japan.
  • Senarat S, Kettretad J, Jiraungkoorskul W. (2016). Neuroanatomy and Histology of the Central Nervous System in Short Mackerel, Rastrelliger brachysoma (Bleeker, 1851). Walailak Journal of Science & Technology. 13(7): 531–541.
  • Lakshmaiah G. (2017). Brain Histopathology of the Fish Cyprinus carpio Exposed to Lethal Concentrations of an Organophosphate Insecticide Phorate. Brain. 2(5): 668-672.
  • Alak G, Yeltekin AÇ, Özgeriş FB, et al. (2019). The Therapeutic Effect of N-Acetyl Cysteine as an Antioxidant on Rainbow Trout's Brain in Cypermethrin Toxicity. Chemosphere. 221: 30-36.
  • Al-Jammas S, Al-Saraj A. (2019). The Histological Changes Induced by Cytarabine on Rabbits Kidneys (with and without Vitamin E Administration). Iraqi Journal of Veterinary Sciences. 33(2): 311-316.
  • Benli AÇK, Özkul A. (2010). Acute Toxicity and Histopathological Effects of Sublethal Fenitrothion on Nile Tilapia, Oreochromis niloticus. Pestic. Biochem. Physiol. 97(1): 32-35.
  • Pirbeigi A, Poorbagher H, Eagderi S, Mirvaghefi AR. (2016). Pathological Effects of Sublethal Diazinon on the Blood, Gill, Liver and Kidney of the Freshwater Fish Capoeta damascina. Chemistry and Ecology. 32(3): 270-285.
  • Hinton DE, Lauren DJ. (1990). Liver Structural Alterations Accompanying Chronic Toxicity in Fishes Potential Biomarkers of Exposure. In: McCarthy JF, Shugart LR (eds) Biomarkers of Environmental Contamination. Pp: 17–57. Lewis Publishers, Boca Raton.
  • Badroo IA, Nandurkar HP, Khanday AH. (2020). Toxicological Impacts of Herbicide Paraquat Dichloride on Histological Profile (Gills, Liver, and Kidney) of Freshwater Fish Channa punctatus (Bloch). Environmental Science and Pollution Research. 27: 39054-39067.
  • Jia R, Li Y, Cao L, et al. (2019). Antioxidative, Anti-İnflammatory and Hepatoprotective Effects of Resveratrol on Oxidative Stress-Induced Liver Damage İn Tilapia (Oreochromis niloticus). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 215: 56-66.
  • Zhao L, Cui C, Liu Q, et al. (2020). Combined Exposure to Hypoxia and Ammonia Aggravated Biological Effects on Glucose Metabolism, Oxidative Stress, Inflammation and Apoptosis in Largemouth Bass (Micropterus salmoides). Aquatic Toxicology. 224: 105514.
  • Américo-Pinheiro JHP, Machado AA, da Cruz C, et al. (2020). Histological Changes in Targeted Organs of Nile Tilapia (Oreochromis niloticus) Exposed to Sublethal Concentrations of the Pesticide Carbofuran. Water, Air, & Soil Pollution. 231(5): 228.
  • Chupani L, Zuskova E, Stara A, Velisek J, Kouba A. (2016). Histological Changes and Antioxidant Enzyme Activity in Signal Crayfish (Pacifastacus leniusculus) Associated with Sub-Acute Peracetic Acid Exposure. Fish & Shellfish Immunology. 48: 190-195.
  • Asma K, Noreen A, Wajid A. (2016). Histopathological Changes in Spleen and Kidney of Silver Carp (Hypophthalmicthys molitrix) after Acute Exposure to Deltamethrin. Biologia. 62(1): 139-144.
  • Hou L, Liu K, Li Y, Ma S, Ji X, Liu L. (2016). Necrotic Pyknosis is a Morphologically and Biochemically Distinct Event from Apoptotic Pyknosis. J Cell Sci. 129 (16): 3084-3090.
  • Zarha R, Mobarak Y. (2015). The Effects of the Pyrethroid Pesticide Cypermethrin on Gills and Kidneys (Trunk Mesonephroi) of Guppy’s Fish (Poecilia reticulata). Catrina: The International Journal of Environmental Sciences. 11(1): 93-101.
  • Nataraj B, Hemalatha D, Rangasamy B, Maharajan K, Ramesh M. (2017). Hepatic Oxidative Stress, Genotoxicity and Histopathological Alteration in Freshwater Fish Labeo rohita Exposed to Organophosphorus Pesticide Profenofos. Biocatalysis and Agricultural Biotechnology. 12: 185-190.
  • Banik U, Rahman MM, Khanam T, Mollah MFA. (2016). Histopathological Changes in the Gonads, Liver, and Kidney of Glossogobius giuris Exposed to Sub-Lethal Concentration of Diazinon. Progressive Agriculture. 27(4): 530-538.
  • Bernet D, Schmidt H, Meier W, Burkhardt-Holm P, Wahli T. (1999). Histopathology in Fish: Proposal For a Protocol to Assess Aquatic Pollution. Journal of Fish Diseases. 22: 25–34.
  • Nazir S, Ali MN, Tantray JA, et al. (2022). Study of Ultrastructural Abnormalities in the Renal Cells of Cyprinus carpio Induced by Toxicants. Toxics. 10(4):177.
  • Dutta HM. (2017). A Composite Approach for Evaluation of the Effects of Pesticides on Fish. In Fish Morphology. Pp. 249-277. Routledge.
  • Fontanetti CS, Christofoletti CA, Pinheiro TG, Souza TS, Pedro-Escher J. (2010). Microscopy as A Tool in Toxicological Evaluations. Microsc. Sci. Technol. Appl. Educ. 2: 1001–1007.
  • Parsons MJ, Green DR. (2010). Mitochondria in Cell Death. Essays in Biochemistry. 47: 99–114.
  • Arismendi-Morillo G. (2011). Electron Microscopy Morphology of the Mitochondrial Network in Gliomas and Their Vascular Microenvironment. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 1807(6): 602-608.
  • Gilkerson RW, Selker JM, Capaldi RA. (2003). The Cristal Membrane of Mitochondria is the Principal Site of Oxidative Phosphorylation, FEBS Lett. 546: 355–358.
  • Nie ZW, Niu YJ, Zhou W, Kim JY, Ock SA, Cui XS. (2019). Thiamethoxam Induces Meiotic Arrest and Reduces the Quality of Oocytes in Cattle. Toxicol in Vitro. 61: 104635.
  • Xu X, Wang X, Yang Y. et al. (2022). Neonicotinoids: Mechanisms of Systemic Toxicity Based on Oxidative Stress-Mitochondrial Damage. Arch Toxicol. 96: 1493–1520.
  • Galluzzi L, Kepp O, Kroemer G. (2012). Mitochondria: Master Regulators of Danger Signalling. Nat Rev Mol Cell Biol. 13: 780–788.
  • Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA, Ugalde C. (2012). Mitochondrial Respiratory Chain Dysfunction: Implications in Neurodegeneration. Free Radic Biol Med. 53: 595–609.
  • Lai MY, Li J, Zhang XX, et al. (2022). SARM1 Participates in Axonal Degeneration and Mitochondrial Dysfunction in Prion Disease. Neural Regen Res. 17(10):2293-2299.
  • Soto C, Satani N. (2011). The Intricate Mechanisms of Neurodegeneration in Prion Diseases. Trends Mol Med. 17: 14–24.
  • Bernard C, Shah M, Johnston D. (2008) Dendrites and Disease. Editors: Stuart G et al. Dendrites, 2nd edn. Chapter 20. Pp: 531–554, Oxford University Press, New York, USA.
  • Rollenhagen A, Lübke JHR. (2013). Dendrites: A Key Structural Element of Neurons. Editors: Pfaff, D.W. Neuroscience in the 21st Century. Springer, New York, NY.
There are 61 citations in total.

Details

Primary Language English
Subjects Veterinary Histology and Embryology
Journal Section Research
Authors

Pelin Uğurlu 0000-0002-4790-2533

Elif İpek Satar 0000-0002-7540-3686

Tarık Çiçek 0000-0001-8491-5598

Project Number 114Z730
Publication Date June 30, 2024
Submission Date March 11, 2024
Acceptance Date May 21, 2024
Published in Issue Year 2024

Cite

APA Uğurlu, P., Satar, E. İ., & Çiçek, T. (2024). Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758). Dicle Üniversitesi Veteriner Fakültesi Dergisi, 17(1), 46-56. https://doi.org/10.47027/duvetfd.1450989
AMA Uğurlu P, Satar Eİ, Çiçek T. Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758). Dicle Üniv Vet Fak Derg. June 2024;17(1):46-56. doi:10.47027/duvetfd.1450989
Chicago Uğurlu, Pelin, Elif İpek Satar, and Tarık Çiçek. “Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis Niloticus (Linnaeus, 1758)”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17, no. 1 (June 2024): 46-56. https://doi.org/10.47027/duvetfd.1450989.
EndNote Uğurlu P, Satar Eİ, Çiçek T (June 1, 2024) Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758). Dicle Üniversitesi Veteriner Fakültesi Dergisi 17 1 46–56.
IEEE P. Uğurlu, E. İ. Satar, and T. Çiçek, “Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758)”, Dicle Üniv Vet Fak Derg, vol. 17, no. 1, pp. 46–56, 2024, doi: 10.47027/duvetfd.1450989.
ISNAD Uğurlu, Pelin et al. “Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis Niloticus (Linnaeus, 1758)”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17/1 (June 2024), 46-56. https://doi.org/10.47027/duvetfd.1450989.
JAMA Uğurlu P, Satar Eİ, Çiçek T. Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758). Dicle Üniv Vet Fak Derg. 2024;17:46–56.
MLA Uğurlu, Pelin et al. “Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis Niloticus (Linnaeus, 1758)”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 17, no. 1, 2024, pp. 46-56, doi:10.47027/duvetfd.1450989.
Vancouver Uğurlu P, Satar Eİ, Çiçek T. Impact of Diazinon Standard on Histopathological and Ultrastructural Properties on Brain Tissue of Oreochromis niloticus (Linnaeus, 1758). Dicle Üniv Vet Fak Derg. 2024;17(1):46-5.