Review
BibTex RIS Cite

YENİ NESİL AŞILAR

Year 2024, Volume: 17 Issue: 2, 204 - 210, 31.12.2024
https://doi.org/10.47027/duvetfd.1474558

Abstract

İnsanlık yüzyıllardır önlemenin tedavi etmekten daha iyi olduğunu biliyor ve bunu başarmanın yollarını arıyor. En etkili korunma yöntemi olarak kabul edilen aşılama serüveni çiçek hastalığına ilişkin çalışmalarla başladı. Bu durum, 1796'da Edward Jenner'ın, bir inekten enfekte olan bir kadından aldığı aşı virüsünü bir çocuğa vermesiyle devam etti. Louis Pasteur 1798 yılında uygulanan virüsün çiçek virüsünü birkaç ay sonra ortadan kaldırdığını gözlemlemiş ve böylece ilk kez çiçek aşısı bulunup kullanılmıştır. Robert Koch ve Louis Pasteur tarafından sürdürülen bu süreç, inaktive aşı kavramının ortaya çıkmasına yol açtı. 19. yüzyılın sonlarına doğru veba, kolera ve tifoya karşı inaktif aşılar geliştirildi. 1948 yılında difteri, tetanoz ve boğmacaya karşı ilk kombine aşı üretildi. 20. yüzyılın ikinci yarısından sonra yeni uygulamalar ortaya çıktı. Viral aşılar için hücre kültürü çalışmaları başladı. Zamanla teknolojik gelişmelerin aşılar üzerindeki etkisi hissedildi ve yeni nesil aşılar üzerinde çalışmalar başladı. Klonlama, rekombinant aşıların ve yeni nesil aşıların temelini attı. Bilim insanları yeni nesil aşı çalışmalarına odaklanarak viral vektör bazlı aşılar, RNA bazlı aşılar, alt birim aşılar, virüs benzeri parçacıklı aşılar ve marker aşılar gibi aşıları aşı teknolojisine kazandırdı.

References

  • .CDC Immunization: The Basics. Access: https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm . Date of access: 02.06.2024
  • Erganiş O (2010). The role of university-public sector-industry cooperation at development of animal vaccines. Eurasian J Vet Sci. 26(1): 1-6.
  • Erganiş O, Uçan US (2003). Evaluation of three different vaccination regimes against newcastle disease in central anatolia. Turk J Vet Anim Sci. 27(5): 1065-1069.
  • Hadimli HH, Erganiş O (2001). Studies on Staphylococcal vaccines for mastitis in dairy cows. Eurasian J Vet Sci. 17(4): 9-19.
  • Megha KB, Seema AN, Mohanan PV (2022). Vaccine and vaccination as a part of human life: in view of covid‐19. Biotechnol J. 17(1): 2100188.
  • Wolff JA et al. (1990). Direct gene transfer into mouse muscle in vivo. Sci., 23:247-1465-8.
  • Vartak A, Sucheck SJ (2016). Recent advances in subunit vaccine carriers. Vaccines. 4(2): 12.
  • Field D, Hood D, Moxon R (1999). Contribution of genomics to bacterial pathogenesis. Curr Opin Genet Dev. 9(6): 700-703.
  • Rappuoli R (2000). Reverse vaccinology. Curr Opin Microbiol. 3(5): 445-450.
  • Capecchi B, Serruto D, Adu-Bobie J, Rappuoli R, Pizza M (2004). The genome revolution in vaccine research. Curr Issues Mol Biol. 6(1): 17-28.
  • Esson R, Falque S, Abachin E, George S, Nougarede N (2023). Development of a droplet digital pcr for pertussis toxin locus copy number determination in a genetically-modified bordetella pertussis strain. Biologicals. 82: 101683.
  • Arnon R, Ben-Yedidia T (2003). Old and new vaccine approaches. Int Immunopharmacol. 3(8): 1195-1204.
  • Mascola JR, Nabel GJ (2001). Vaccines for the prevention of hiv-1 disease. Curr Opin Immunol. 13(4): 489-494.
  • Boulanger D, Schneider D, Chippaux J-P, Sellin B, Capron A (1999). Research note schistosoma bovis: vaccine effects of a recombinant homologous glutathione s-transferase in sheep. Int J Parasitol. 29(3): 415-418.
  • Diminsky D, Moav N, Gorecki M, Barenholz Y (1999). Physical, chemical and immunological stability of cho-derived hepatitis b surface antigen (hbsag) particles. Vaccin. 18(1-2): 3-17.
  • Pérez O, Batista-Duharte A, González E, et al. (2012). Human prophylactic vaccine adjuvants and their determinant role in new vaccine formulations. Braz J Med Biol Res. 45(8): 681-692.
  • Sette A, Rappuoli R (2010). Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 33(4): 530-541.
  • Cardoso F, Pacífico R, Mortara RA, Oliveira S (2006). Human antibody responses of patients living in endemic areas for schistosomiasis to the tegumental protein sm29 identified through genomic studies. Clin Exp Immunol. 144(3): 382-391.
  • Jackson DA, Symons RH, Berg P (1972). Biochemical method for inserting new genetic information into dna of simian virus 40: circular sv40 DNA molecules containing lambda phage genes and the galactose operon of escherichia coli. PNAS. 69(10): 2904-2909.
  • Mackett M, Smith GL, Moss B (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. PNAS. 79(23): 7415-7419.
  • Chuan YP, Wibowo N, Connors NK, et al. (2014). Microbially synthesized modular virus-like particles and capsomeres displaying group a streptococcus hypervariable antigenic determinants. Biotechnol Bioeng. 111(6): 1062-1070.
  • To KKW, Cho WCS (2021). An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov. 16(11): 1307-1317.
  • Karikó K, Muramatsu H, Ludwig J, Weissman D (2011). Generating the optimal mrna for therapy: hplc purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39(21): 142.
  • Fuller DH, Berglund P (2020). Amplifying RNA vaccine development. N Engl J Med. 382(25): 2469-2471.
  • Plotkin SA, Plotkin SL (2011). The development of vaccines: how the past led to the future. Nat Rev Microbiol. 9(12): 889-893.
  • Carascal MB, Pavon RDN, Rivera WL (2022). Recent progress in recombinant influenza vaccine development toward heterosubtypic immune response. Front Immunol. 19(13): 878943.
  • Wang S, Lu S (2013). DNA immunization. Curr Protoc Microbiol. 5(31): 181311-181324.
  • Cockrel AS, Baric RS (2016). An effective DNA vaccine platform for middle east respiratory syndrome coronavirus. Ann Transl Med. 4 (24): 499.
  • Vekemans J, Leach A, Cohen J (2009). Development of the RTS, S/AS malaria mandidate maccine. Vaccin. 27(6): 67-71.
  • Chackerian B (2010). Virus-Like particle based vaccines for alzheimer disease. Hum Vaccin. 6(11): 926-930
  • Zochowska M, Piguet AC, Jemielity J, et al. (2015). Virus-Like particle-mediated intracellular delivery of mrna cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine. 11(1): 67-76.
  • Bachmann MF, Whitehead P (2013). Active immunotherapy for chronic diseases. Vaccin. 31(14): 1777-1784.
  • Vicente T, Roldão A, Peixoto C, Carrondo MJ, Alves PM (2011). Large-Scale production and purification of vlp-based vaccines. J Invertebr Pathol. (107): 42-48.
  • Schijns V, Fernández-Tejada A, Barjaktarović Ž, et al. (2020). Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev. 296(1): 169-190.
  • Oirschot van JT, Kaashoek MJ, Rijsewijk FAM, Stegeman JA (1996). The use of marker vaccines in eradication of herpesviruses. J Biotech. 44(1–3):75-81.
  • Tang D-c, DeVit M, Johnston SA (1992). Genetic immunization is a simple method for eliciting an immune response. Nature. 356 (6365): 152-154.
  • Li F, Li B, Niu X, et al. (2022). The development of classical swine fever marker vaccines in recent years. Vaccin. 10(4).
  • Walders B, Raschke A, Neugebauer M, et al. (2005). Blending of a conventional mycoplasma hyopneumoniae vaccine with a positive marker: tracking of immunised pigs by peptide-specific antibodies raised to the marker component. Res Vet Sci. 78(2):135-141.
  • Singh A (2021). Why not the ‘narker’ or DIVA vaccines for the control of emerging infectious diseases of humans? Vaccin. 39(10): 1476-1477.
  • Mangen MJ, Jalvingh AW, Nielen M, et al. (2001). Spatial and stochastic simulation to compare two emergency-vaccination strategies with a marker vaccine in the 1997/1998 dutch classical swine fever epidemic. Prev Vet Med. 48(3):177-200.

Next Generation Vaccines

Year 2024, Volume: 17 Issue: 2, 204 - 210, 31.12.2024
https://doi.org/10.47027/duvetfd.1474558

Abstract

For centuries, mankind has been aware that prevention is more valuable than cure and has sought appropriate ways to do so. The adventure of vaccination, known as the most effective protection method, began with studies against smallpox. It continued when Edward Jenner administered the vaccinia virus to a child in 1796, which he received from a woman infected by a cow. Louis Pasteur observed that the virus administered in 1798 eliminated the smallpox virus after a few months, so the smallpox vaccine was first discovered and applied. The concept of inactivated vaccines emerged during the collaboration between Robert Koch and Louis Pasteur. Inactivated vaccines against plague, cholera, and typhoid emerged around the end of the nineteenth century. In 1948, the first combined vaccine against diphtheria, tetanus and pertussis was produced. After the second half of the 20th century, new applications began to be introduced. Then, cell culture studies for viral vaccines started. The effect of advancing technology began to be felt in vaccines over time and new generation vaccine studies started. With cloning, the foundation of recombinant vaccines and thus new-generation vaccines was laid. Scientists focused on next-generation vaccine studies and introduced vaccines such as viral vector-based vaccines, RNA-based vaccines, Subunit vaccines, Virus-like particle vaccines and Marker vaccines into vaccine technology.

References

  • .CDC Immunization: The Basics. Access: https://www.cdc.gov/vaccines/vac-gen/imz-basics.htm . Date of access: 02.06.2024
  • Erganiş O (2010). The role of university-public sector-industry cooperation at development of animal vaccines. Eurasian J Vet Sci. 26(1): 1-6.
  • Erganiş O, Uçan US (2003). Evaluation of three different vaccination regimes against newcastle disease in central anatolia. Turk J Vet Anim Sci. 27(5): 1065-1069.
  • Hadimli HH, Erganiş O (2001). Studies on Staphylococcal vaccines for mastitis in dairy cows. Eurasian J Vet Sci. 17(4): 9-19.
  • Megha KB, Seema AN, Mohanan PV (2022). Vaccine and vaccination as a part of human life: in view of covid‐19. Biotechnol J. 17(1): 2100188.
  • Wolff JA et al. (1990). Direct gene transfer into mouse muscle in vivo. Sci., 23:247-1465-8.
  • Vartak A, Sucheck SJ (2016). Recent advances in subunit vaccine carriers. Vaccines. 4(2): 12.
  • Field D, Hood D, Moxon R (1999). Contribution of genomics to bacterial pathogenesis. Curr Opin Genet Dev. 9(6): 700-703.
  • Rappuoli R (2000). Reverse vaccinology. Curr Opin Microbiol. 3(5): 445-450.
  • Capecchi B, Serruto D, Adu-Bobie J, Rappuoli R, Pizza M (2004). The genome revolution in vaccine research. Curr Issues Mol Biol. 6(1): 17-28.
  • Esson R, Falque S, Abachin E, George S, Nougarede N (2023). Development of a droplet digital pcr for pertussis toxin locus copy number determination in a genetically-modified bordetella pertussis strain. Biologicals. 82: 101683.
  • Arnon R, Ben-Yedidia T (2003). Old and new vaccine approaches. Int Immunopharmacol. 3(8): 1195-1204.
  • Mascola JR, Nabel GJ (2001). Vaccines for the prevention of hiv-1 disease. Curr Opin Immunol. 13(4): 489-494.
  • Boulanger D, Schneider D, Chippaux J-P, Sellin B, Capron A (1999). Research note schistosoma bovis: vaccine effects of a recombinant homologous glutathione s-transferase in sheep. Int J Parasitol. 29(3): 415-418.
  • Diminsky D, Moav N, Gorecki M, Barenholz Y (1999). Physical, chemical and immunological stability of cho-derived hepatitis b surface antigen (hbsag) particles. Vaccin. 18(1-2): 3-17.
  • Pérez O, Batista-Duharte A, González E, et al. (2012). Human prophylactic vaccine adjuvants and their determinant role in new vaccine formulations. Braz J Med Biol Res. 45(8): 681-692.
  • Sette A, Rappuoli R (2010). Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 33(4): 530-541.
  • Cardoso F, Pacífico R, Mortara RA, Oliveira S (2006). Human antibody responses of patients living in endemic areas for schistosomiasis to the tegumental protein sm29 identified through genomic studies. Clin Exp Immunol. 144(3): 382-391.
  • Jackson DA, Symons RH, Berg P (1972). Biochemical method for inserting new genetic information into dna of simian virus 40: circular sv40 DNA molecules containing lambda phage genes and the galactose operon of escherichia coli. PNAS. 69(10): 2904-2909.
  • Mackett M, Smith GL, Moss B (1982). Vaccinia virus: a selectable eukaryotic cloning and expression vector. PNAS. 79(23): 7415-7419.
  • Chuan YP, Wibowo N, Connors NK, et al. (2014). Microbially synthesized modular virus-like particles and capsomeres displaying group a streptococcus hypervariable antigenic determinants. Biotechnol Bioeng. 111(6): 1062-1070.
  • To KKW, Cho WCS (2021). An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov. 16(11): 1307-1317.
  • Karikó K, Muramatsu H, Ludwig J, Weissman D (2011). Generating the optimal mrna for therapy: hplc purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 39(21): 142.
  • Fuller DH, Berglund P (2020). Amplifying RNA vaccine development. N Engl J Med. 382(25): 2469-2471.
  • Plotkin SA, Plotkin SL (2011). The development of vaccines: how the past led to the future. Nat Rev Microbiol. 9(12): 889-893.
  • Carascal MB, Pavon RDN, Rivera WL (2022). Recent progress in recombinant influenza vaccine development toward heterosubtypic immune response. Front Immunol. 19(13): 878943.
  • Wang S, Lu S (2013). DNA immunization. Curr Protoc Microbiol. 5(31): 181311-181324.
  • Cockrel AS, Baric RS (2016). An effective DNA vaccine platform for middle east respiratory syndrome coronavirus. Ann Transl Med. 4 (24): 499.
  • Vekemans J, Leach A, Cohen J (2009). Development of the RTS, S/AS malaria mandidate maccine. Vaccin. 27(6): 67-71.
  • Chackerian B (2010). Virus-Like particle based vaccines for alzheimer disease. Hum Vaccin. 6(11): 926-930
  • Zochowska M, Piguet AC, Jemielity J, et al. (2015). Virus-Like particle-mediated intracellular delivery of mrna cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine. 11(1): 67-76.
  • Bachmann MF, Whitehead P (2013). Active immunotherapy for chronic diseases. Vaccin. 31(14): 1777-1784.
  • Vicente T, Roldão A, Peixoto C, Carrondo MJ, Alves PM (2011). Large-Scale production and purification of vlp-based vaccines. J Invertebr Pathol. (107): 42-48.
  • Schijns V, Fernández-Tejada A, Barjaktarović Ž, et al. (2020). Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol Rev. 296(1): 169-190.
  • Oirschot van JT, Kaashoek MJ, Rijsewijk FAM, Stegeman JA (1996). The use of marker vaccines in eradication of herpesviruses. J Biotech. 44(1–3):75-81.
  • Tang D-c, DeVit M, Johnston SA (1992). Genetic immunization is a simple method for eliciting an immune response. Nature. 356 (6365): 152-154.
  • Li F, Li B, Niu X, et al. (2022). The development of classical swine fever marker vaccines in recent years. Vaccin. 10(4).
  • Walders B, Raschke A, Neugebauer M, et al. (2005). Blending of a conventional mycoplasma hyopneumoniae vaccine with a positive marker: tracking of immunised pigs by peptide-specific antibodies raised to the marker component. Res Vet Sci. 78(2):135-141.
  • Singh A (2021). Why not the ‘narker’ or DIVA vaccines for the control of emerging infectious diseases of humans? Vaccin. 39(10): 1476-1477.
  • Mangen MJ, Jalvingh AW, Nielen M, et al. (2001). Spatial and stochastic simulation to compare two emergency-vaccination strategies with a marker vaccine in the 1997/1998 dutch classical swine fever epidemic. Prev Vet Med. 48(3):177-200.
There are 40 citations in total.

Details

Primary Language English
Subjects Veterinary Bacteriology, Veterinary Microbiology
Journal Section Review
Authors

Canan Kebabçıoğlu 0000-0001-7299-9923

Osman Erganiş 0000-0002-9340-9360

Adam Tawor 0000-0001-6865-1801

Publication Date December 31, 2024
Submission Date April 27, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Kebabçıoğlu, C., Erganiş, O., & Tawor, A. (2024). Next Generation Vaccines. Dicle Üniversitesi Veteriner Fakültesi Dergisi, 17(2), 204-210. https://doi.org/10.47027/duvetfd.1474558
AMA Kebabçıoğlu C, Erganiş O, Tawor A. Next Generation Vaccines. Dicle Üniv Vet Fak Derg. December 2024;17(2):204-210. doi:10.47027/duvetfd.1474558
Chicago Kebabçıoğlu, Canan, Osman Erganiş, and Adam Tawor. “Next Generation Vaccines”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17, no. 2 (December 2024): 204-10. https://doi.org/10.47027/duvetfd.1474558.
EndNote Kebabçıoğlu C, Erganiş O, Tawor A (December 1, 2024) Next Generation Vaccines. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17 2 204–210.
IEEE C. Kebabçıoğlu, O. Erganiş, and A. Tawor, “Next Generation Vaccines”, Dicle Üniv Vet Fak Derg, vol. 17, no. 2, pp. 204–210, 2024, doi: 10.47027/duvetfd.1474558.
ISNAD Kebabçıoğlu, Canan et al. “Next Generation Vaccines”. Dicle Üniversitesi Veteriner Fakültesi Dergisi 17/2 (December 2024), 204-210. https://doi.org/10.47027/duvetfd.1474558.
JAMA Kebabçıoğlu C, Erganiş O, Tawor A. Next Generation Vaccines. Dicle Üniv Vet Fak Derg. 2024;17:204–210.
MLA Kebabçıoğlu, Canan et al. “Next Generation Vaccines”. Dicle Üniversitesi Veteriner Fakültesi Dergisi, vol. 17, no. 2, 2024, pp. 204-10, doi:10.47027/duvetfd.1474558.
Vancouver Kebabçıoğlu C, Erganiş O, Tawor A. Next Generation Vaccines. Dicle Üniv Vet Fak Derg. 2024;17(2):204-10.