Review
BibTex RIS Cite

Abiotic Plant Stresses in Central Anatolian Aridlands

Year 2024, , 228 - 248, 28.12.2024
https://doi.org/10.58816/duzceod.1490911

Abstract

Prevealing stress factors affecting plant performance in the Central Anatolian arid lands are drought, heat, frost, salt and lack of usable forms of some nutrients. Although the region is climatically arid, seasonal drought is frequently observed. Although not throughout the region, saline soils cause problems in some bottom lands, especially as sodic soils. Among the nutrients, the scarcity of the usable form of phosphorus iron, copper and zinc stand out. Since the success of afforestation efforts in the region has so far been explained by silvicultural practices, most mechanisms limiting plant growth have not been understood. Therefore, studies on ecological and physiological stress factors that limit plant growth can increase the success of restoration efforts in the region.

Project Number

Tübitak 120 O 688

References

  • Ahuja I, de Vos RC, Bones AM, & Hall RD. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15, 664–674.
  • Arshad M., & Frankenberger Jr. W.T., (1993). Microbial production of plant growth regulators. In: Blaine F., MEETING Jr. (Eds.), Soil Microbial Ecology, New York: Marcel and Dekker, Inc.
  • Ashley, M. K., Grant, M. & Grabov, A., (2005), Plant responses to potassium deficiencies: a role for potassium transport proteins, Journal of Experimental Botany, 57 (2), 425-436.
  • Aslam, M., Fakher, B., Ashraf, M. A., Cheng, Y., Wang, B., & Qin, Y. (2022). Plant low-temperature stress: signaling and response. Agronomy, 12, 702.
  • Binkley, D. and R.F. Fisher. (2013). Ecology and Management of Forest Soils. Fourth Edition, John Wiley & Sons, New York.
  • Büyük, İ., Soydam-Aydın, S., ve Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turkish Bulletin of Hygiene & Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 69(2).
  • Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of experimental botany, 58(15-16), 4245-4255.
  • Chiba, S., Yokota, S. I., Yonekura, K., Tanaka, S., Furuyama, H., Kubota, H., ... & Matsumoto, H. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of the neurological sciences, 241(2), 39-43.
  • Choudhary, N. L., Sairam, R. K., & Tyagi, A. (2005). Expression of Δ¹-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Ind. J. Biochem. Biophys, 42, 366–370.
  • Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., & Abrams, S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu.Rev.Plant Biol. 61, 651–679.
  • Dietrich, D. (2018). Hydrotropism: How roots search for water. J. Exp. Bot., 69, 2759–2771.
  • Ding, Y., Shi, Y., & Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol., 222, 1690–1704.
  • Doğan, O. (2011). “Çölleşme nedir? nasıl mücadele edilir?” Kurak ve Yarıkurak Alan Yönetimi Çalıştayı, 5-8 Aralık 2011, Ürgüp, Nevşehir. 262-268.
  • Dubey, R.S. (1994). Handbook of Plant and Crop Stress. New York: Marcel Dekker, 227.
  • Durumel, M. H. (2018). Ozmotik stres altındaki domates bitkisinde GABA uygulamasının bazı biyokimyasal parametreler üzerine etkisi. Yüksek Lisans Tezi. Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray.
  • Fabro, G., Kovács, I., Pavet, V., Szabados, L., & Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-Microbe Interactions, 17(4), 343-350.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture. 153-188. Springer, Dordrecht.
  • Foyer, C., H., & Graham N. (2013). Redox signaling in plants. Antioxidants & Redox Signaling, 18(16), 2087-2090.
  • Fricke, W., & Winfried, S., P. (2002). The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiology, 129(1), 374-388.
  • Glick, B.R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world, Microbiological Research, 169(1), 30-39.
  • Guo, X., Liu, D., & Chong, K. (2018). Cold signaling in plants: Insights into mechanisms and regulation. Journal of integrative plant biology, 60(9), 745-756.
  • Hall, A., E. (2001) Crop responses to the environment. CRC Press, Boca Raton, FL.
  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA.
  • Hare, P. & Cress, W. (1997) Metabolic implications of stress inducedproline accumulation in plants. Plant Growth Regul., 21, 79–102.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J.-K. & Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.
  • Haudecoeur, E., Planamente, S., Cirou, A., Tannieres, M., Shelp, B. J., Morera, S., & Faure, D. (2009). Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 106(34), 14587-14592.
  • Henle, K.J., Jethmalani, S.M., & Nagle, W.A. (1999). Stres proteins and glycoproteins. Int Mol Med, 1, 25-32.
  • Hirt, H., Shinozaki, K. (2003). Plant responses to abiotic stress (Vol. 4). Springer Science & Business Media.
  • Holmberg, N., & Bülow, L. (1998). Improving stress tolerance in plants by gene transfer. Trends in plant science, 3(2), 61-66.
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M. N., Yakışır, E., ve Okur, O. (2014). Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2), 1-19.
  • Iqbal, N., Umar, S., Khan, N.A., & Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ. Exp. Bot. 100, 34e42.
  • Jenks, M. A., & Hasegawa, P. M. (Eds.). (2005). Plant abiotic stress (pp. 270-270). Blackwell Pub.
  • Ingram, J. & Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377–403.
  • Kacar, B., 2005, Potasyumun bitkilerde işlevleri ve kalite üzerine etkileri, Potasyumun Yeri ve Önemi Çalıştayı, Eskişehir, 20-30.
  • Kadıoğlu, A. (2004). Bitki fizyolojisi. Trabzon: Lokman Yayın, 453.
  • Kaur, G., & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61(2), 201-209.
  • Khan, A., & Ashraf, M. (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and experimental botany, 63(1-3), 224-231.
  • Khan, Z., Jan, R., Asif, S., Farooq, M., Jang, Y. H., Kim, E. G., ... & Kim, K. M. (2024). Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Scientific Reports, 14(1), 1214.
  • Kishor, P. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. S., ... & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 424-438.
  • Klepek, Y., Geiger, D., Stadler, R., Klebl, F., Landouar-Arsivaud, L., Lemoine, R., Hedrich, R., & Sauer, N. (2005). Arabidopsis polyol transporter 5, a new member of th monosaccharide transporter-like superfamily, mediates Hþ-symport of numerous substrates, including myoinositol, glycerol, and ribose. Plant Cell, 17, 204e218.
  • Kosová, K., Vítámvása, P., Prášila, I. T. & Renaut, J., (2011). Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response, Journal of Proteomics, 74, 1301-1322.
  • Kozlowski, T.T., & Pallardy, S.G. (1997). Physiology of Woody Plants Second Edition. Academic Press. New York.
  • König, J., Muthuramalingam, M., & Dietz, K. J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology, 15(3), 261-268.
  • Levitt J. (1972). Responses of plants to environmental Stresses. New York, London: Academic Press, 697.
  • Levitt, J. (1980). Responses of Plants to Environmental Stresses: Chilling, freezing, and high temperature stresses. Second Ed., Vols. I II. New York and London Academic Press.
  • Luo, L. (2010) Breeding for water-saving and drought-resistance rice in China. Journal of Experimental Botany, 61, 3509–3517.
  • Manavalan, L., P., & Ngyuyen, H., T. (2012). Drought tolerance in Crops: Physiology to Genomics Plant stress physiology. Shabala, S. (Ed.). Cabi.
  • Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F. A., Mühlenbock, P., Brosché, M., ... & Kangasjärvi, J. (2016). Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of experimental botany,67(13), 3831-3844.
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science,9(10), 490-498.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in plant science,11(1), 15-19.
  • Mittler, R. (2017). ROS are good. Trends in plant science,22(1), 11-19.
  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G. A. D., Tognetti, V. B., Vandepoele, K., ... & Van Breusegem, F. (2011). ROS signaling: the new wave?. Trends in plant science, 16(6), 300-309.
  • Munns, R., & Sharp, R. E. (1993). Involvement of abscisic acid in controlling plant growth in soil of low water potential. Functional Plant Biology,20(5), 425-437.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250.
  • Niu, X., Bressan, R. A., Hasegawa, P. M. & Pardo, J. M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.
  • Pallardy, S.G. (2008). Physiology of woody plants.—3rd edition. Elsevier, New york.
  • Passioura, J. B., & Munns, R. (2000). Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Functional Plant Biology, 27(10), 941-948.
  • Prasad PVV, Pisipati SR, Momcilovic I, & Ristic Z. (2011).Independent andcombined effects of high temperature and drought stress during grain filling onplantyield and chloroplastEF-Tuexpressionin spring wheat. Journal of Agronomyand Crop Science, 197, 430–441.
  • Rao, K., Raghavendra, A., & Reddy, K. (2006). Physiology and molecular biology of stress tolerance (pp. 1-14). Springer: Dordrecht, Nertherlands.
  • Rhodes, D., & Nadolska‐Orczyk, A. (2001). Plant stress physiology. e LS.
  • Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current science, 407-421.
  • Saradhi, P. P., AliaArora, S., & Prasad, K. V. S. K. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochemical and biophysical research communications, 209(1), 1-5.
  • Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal‐induced accumulation of free proline in a metal‐tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia plantarum, 101(3), 477-482.
  • Schulze, E. D., Beck, E., & Hohenstein, K. M. (2005). Environment as stress factor: stress physiology of plants. Plant Ecology, 702, 7-11.
  • Serrano, R., Mulet, J. M., Rios, G. Marquez, J. A., de Larriona, I. F., Leube, M. P., Mendizabal, I. Pascual- Ahuir, A., Proft, M. R. R. & Montesinos, C. (1999) A glimpse of the mechanism of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023–1036.
  • Shabala, S., & Munns, R. (2012). Salinity Stress: Physiological Constraints and Adaptive Mechanisms. Plant stress physiology. Shabala, S. (Ed.). Cabi.
  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060.
  • Smirnoff, N. (2005). Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. Antioxidants and reactive oxygen species in plants, 53-86.
  • Song, L., Huang, S. S. C., Wise, A., Castanon, R., Nery, J. R., Chen, H., ... & Ecker, J. R. (2016). A transcription factor hierarchy defines an environmental stress response network. Science, 354(6312), 1550.
  • Supriya L, Durgeshwar P, Muthamilarasan M, & Padmaja G (2022) Melatonin mediated differential regulation of drought tolerance in sensitive and tolerant varieties of upland cotton (Gossypium hirsutum L). Front Plant Sci., 1–22.
  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43.
  • Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in plant science, 15(2), 89-97.
  • Tan, K.H. (2011). Principles of Soil Chemistry. Fourth Edition. CRC Press, New York.
  • Thirgood, J. V. (1981). Man and the mediterranean forest. A history of resource depletion.
  • Vaahtera, L., Brosché, M., Wrzaczek, M., & Kangasjärvi, J. (2014). Specificity in ROS signaling and transcript signatures. Antioxidants & redox signaling, 21(9), 1422-1441.
  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids, 35, 753-759.
  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology, 16(2), 123-132.
  • Walker, D. J., Leigh, R. A. & Miller, A. J., (1996). Potassium homeostasis in vacuolate plant cells, Proceedings of the National Academy of Sciences, 93(19), 10510- 10514.
  • Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390.
  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
  • Westgate, M. E. (1994). Water status and development of the maize endosperm and embryo during drought. Crop science,34(1), 76-83.
  • Westwood, M.N. (1993). Hormones and Growth Regulators, Temperate Zone Pomology: Physiology and Culture, Timber Press Inc, Portland, Oregon, USA.
  • Widodo, Patterson, J. H., Newbigin, E. D., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of experimental botany, 60(14), 4089-4103.
  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in plant science, 14(1), 1-4.
  • Yıldız, O., Çetin, B., Sargıncı, M., Toprak, B., ... ve Şahin, U. (2018). İç Anadolu’da ağaçlandırma çalışmaları. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 14(1), 1-20.
  • Yıldız, O., Eşen, D., Sargıncı, M., Çetin, B., Toprak, B., & Dönmez, A. H. (2022). Restoration success in afforestation sites established at different times in arid lands of Central Anatolia. Forest Ecology and Management, 503, 119808.
  • Yoshiba, Y. (1995). Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J., 7, 101-110.
  • Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant physiology, 124(3), 941-948.
  • Zhu, J. K., Liu, J., & Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell, 10(7), 1181-1191.

İç Anadolu Kurak Sahalarında Abiyotik Bitki Stresleri

Year 2024, , 228 - 248, 28.12.2024
https://doi.org/10.58816/duzceod.1490911

Abstract

İç Anadolu kurak sahalarında bitki büyümesini etkileyen en önemli stres faktörleri kuraklık, sıcaklık, don, tuz ve bazı besin elementlerinin yararlanılabilir formlarının eksikliğidir. Bölge iklimsel olarak kurak olmasına rağmen mevsimsel kuraklıkta sık sık görülmektedir. Tuzlu topraklar bölge genelinde olmasa bile bazı taban arazilerde özellikle sodik toprak olarak sorun yaratmaktadır. Besin elementlerinden ise en çok fosforun yararlanılabilir formunun azlığı ile mikro besin elementlerinde demir, bakır ve çinko eksikliği öne çıkmaktadır. Bölgedeki ağaçlandırma çalışmalarının başarısı şimdiye kadar silvikültürel uygulamalarla açıklandığından bitki büyümesini sınırlayan çoğu mekanizma anlaşılamamıştır. Bu nedenle bitki büyümesini sınırlandıran ekolojik ve fizyolojik stres faktörlerini konu alan çalışmalar bölgedeki restorasyon çalışmalarının başarını arttırabilir.

Ethical Statement

Bu çalışma, Düzce Üniversitesi, Lisansüstü Eğitim Enstitüsü, Orman Mühendisliği Anabilim Dalı’nda “İç Anadolu Kurak Sahalarında Dikim Çukuru, Hümik asit ve Jasmonik uygulamasının, Toros sediri (Cedrus libani), karaçam (Pinus nigra), kızılçam (Pinus brutia), badem (Prunus amygdalus) ve iğde (Elaeagnus angustifolia) fidanlarının tutma ve büyüme başarısına etkisi” isimli doktora tezinden üretilmiştir.

Supporting Institution

Tübitak

Project Number

Tübitak 120 O 688

Thanks

Bu çalışma TÜBİTAK 120 O 688 nolu “İç Anadolu Kurak Sahalarında Dikim Çukuru, Hümik asit ve Jasmonik uygulamasının, Toros sediri (Cedrus libani), karaçam (Pinus nigra), kızılçam (Pinus brutia), badem (Prunus amygdalus) ve iğde (Elaeagnus angustifolia) fidanlarının tutma ve büyüme başarısına etkisi” isimli proje tarafından desteklenmiştir. Destekleri için kuruma ve çalışanlarına teşekkürlerimizi sunarız.

References

  • Ahuja I, de Vos RC, Bones AM, & Hall RD. (2010). Plant molecular stress responses face climate change. Trends in Plant Science, 15, 664–674.
  • Arshad M., & Frankenberger Jr. W.T., (1993). Microbial production of plant growth regulators. In: Blaine F., MEETING Jr. (Eds.), Soil Microbial Ecology, New York: Marcel and Dekker, Inc.
  • Ashley, M. K., Grant, M. & Grabov, A., (2005), Plant responses to potassium deficiencies: a role for potassium transport proteins, Journal of Experimental Botany, 57 (2), 425-436.
  • Aslam, M., Fakher, B., Ashraf, M. A., Cheng, Y., Wang, B., & Qin, Y. (2022). Plant low-temperature stress: signaling and response. Agronomy, 12, 702.
  • Binkley, D. and R.F. Fisher. (2013). Ecology and Management of Forest Soils. Fourth Edition, John Wiley & Sons, New York.
  • Büyük, İ., Soydam-Aydın, S., ve Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turkish Bulletin of Hygiene & Experimental Biology/Türk Hijyen ve Deneysel Biyoloji, 69(2).
  • Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of experimental botany, 58(15-16), 4245-4255.
  • Chiba, S., Yokota, S. I., Yonekura, K., Tanaka, S., Furuyama, H., Kubota, H., ... & Matsumoto, H. (2006). Autoantibodies against HSP70 family proteins were detected in the cerebrospinal fluid from patients with multiple sclerosis. Journal of the neurological sciences, 241(2), 39-43.
  • Choudhary, N. L., Sairam, R. K., & Tyagi, A. (2005). Expression of Δ¹-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Ind. J. Biochem. Biophys, 42, 366–370.
  • Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., & Abrams, S.R. (2010). Abscisic acid: Emergence of a core signaling network. Annu.Rev.Plant Biol. 61, 651–679.
  • Dietrich, D. (2018). Hydrotropism: How roots search for water. J. Exp. Bot., 69, 2759–2771.
  • Ding, Y., Shi, Y., & Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol., 222, 1690–1704.
  • Doğan, O. (2011). “Çölleşme nedir? nasıl mücadele edilir?” Kurak ve Yarıkurak Alan Yönetimi Çalıştayı, 5-8 Aralık 2011, Ürgüp, Nevşehir. 262-268.
  • Dubey, R.S. (1994). Handbook of Plant and Crop Stress. New York: Marcel Dekker, 227.
  • Durumel, M. H. (2018). Ozmotik stres altındaki domates bitkisinde GABA uygulamasının bazı biyokimyasal parametreler üzerine etkisi. Yüksek Lisans Tezi. Aksaray Üniversitesi Fen Bilimleri Enstitüsü, Aksaray.
  • Fabro, G., Kovács, I., Pavet, V., Szabados, L., & Alvarez, M. E. (2004). Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-Microbe Interactions, 17(4), 343-350.
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. In Sustainable agriculture. 153-188. Springer, Dordrecht.
  • Foyer, C., H., & Graham N. (2013). Redox signaling in plants. Antioxidants & Redox Signaling, 18(16), 2087-2090.
  • Fricke, W., & Winfried, S., P. (2002). The biophysics of leaf growth in salt-stressed barley. A study at the cell level. Plant Physiology, 129(1), 374-388.
  • Glick, B.R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world, Microbiological Research, 169(1), 30-39.
  • Guo, X., Liu, D., & Chong, K. (2018). Cold signaling in plants: Insights into mechanisms and regulation. Journal of integrative plant biology, 60(9), 745-756.
  • Hall, A., E. (2001) Crop responses to the environment. CRC Press, Boca Raton, FL.
  • Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, USA.
  • Hare, P. & Cress, W. (1997) Metabolic implications of stress inducedproline accumulation in plants. Plant Growth Regul., 21, 79–102.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J.-K. & Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499.
  • Haudecoeur, E., Planamente, S., Cirou, A., Tannieres, M., Shelp, B. J., Morera, S., & Faure, D. (2009). Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 106(34), 14587-14592.
  • Henle, K.J., Jethmalani, S.M., & Nagle, W.A. (1999). Stres proteins and glycoproteins. Int Mol Med, 1, 25-32.
  • Hirt, H., Shinozaki, K. (2003). Plant responses to abiotic stress (Vol. 4). Springer Science & Business Media.
  • Holmberg, N., & Bülow, L. (1998). Improving stress tolerance in plants by gene transfer. Trends in plant science, 3(2), 61-66.
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M. N., Yakışır, E., ve Okur, O. (2014). Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2), 1-19.
  • Iqbal, N., Umar, S., Khan, N.A., & Khan, M.I.R. (2014). A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ. Exp. Bot. 100, 34e42.
  • Jenks, M. A., & Hasegawa, P. M. (Eds.). (2005). Plant abiotic stress (pp. 270-270). Blackwell Pub.
  • Ingram, J. & Bartels, D. (1996) The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 377–403.
  • Kacar, B., 2005, Potasyumun bitkilerde işlevleri ve kalite üzerine etkileri, Potasyumun Yeri ve Önemi Çalıştayı, Eskişehir, 20-30.
  • Kadıoğlu, A. (2004). Bitki fizyolojisi. Trabzon: Lokman Yayın, 453.
  • Kaur, G., & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61(2), 201-209.
  • Khan, A., & Ashraf, M. (2008). Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environmental and experimental botany, 63(1-3), 224-231.
  • Khan, Z., Jan, R., Asif, S., Farooq, M., Jang, Y. H., Kim, E. G., ... & Kim, K. M. (2024). Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Scientific Reports, 14(1), 1214.
  • Kishor, P. K., Sangam, S., Amrutha, R. N., Laxmi, P. S., Naidu, K. R., Rao, K. S., ... & Sreenivasulu, N. (2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current science, 424-438.
  • Klepek, Y., Geiger, D., Stadler, R., Klebl, F., Landouar-Arsivaud, L., Lemoine, R., Hedrich, R., & Sauer, N. (2005). Arabidopsis polyol transporter 5, a new member of th monosaccharide transporter-like superfamily, mediates Hþ-symport of numerous substrates, including myoinositol, glycerol, and ribose. Plant Cell, 17, 204e218.
  • Kosová, K., Vítámvása, P., Prášila, I. T. & Renaut, J., (2011). Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response, Journal of Proteomics, 74, 1301-1322.
  • Kozlowski, T.T., & Pallardy, S.G. (1997). Physiology of Woody Plants Second Edition. Academic Press. New York.
  • König, J., Muthuramalingam, M., & Dietz, K. J. (2012). Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Current opinion in plant biology, 15(3), 261-268.
  • Levitt J. (1972). Responses of plants to environmental Stresses. New York, London: Academic Press, 697.
  • Levitt, J. (1980). Responses of Plants to Environmental Stresses: Chilling, freezing, and high temperature stresses. Second Ed., Vols. I II. New York and London Academic Press.
  • Luo, L. (2010) Breeding for water-saving and drought-resistance rice in China. Journal of Experimental Botany, 61, 3509–3517.
  • Manavalan, L., P., & Ngyuyen, H., T. (2012). Drought tolerance in Crops: Physiology to Genomics Plant stress physiology. Shabala, S. (Ed.). Cabi.
  • Mignolet-Spruyt, L., Xu, E., Idänheimo, N., Hoeberichts, F. A., Mühlenbock, P., Brosché, M., ... & Kangasjärvi, J. (2016). Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of experimental botany,67(13), 3831-3844.
  • Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science,9(10), 490-498.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in plant science,11(1), 15-19.
  • Mittler, R. (2017). ROS are good. Trends in plant science,22(1), 11-19.
  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G. A. D., Tognetti, V. B., Vandepoele, K., ... & Van Breusegem, F. (2011). ROS signaling: the new wave?. Trends in plant science, 16(6), 300-309.
  • Munns, R., & Sharp, R. E. (1993). Involvement of abscisic acid in controlling plant growth in soil of low water potential. Functional Plant Biology,20(5), 425-437.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, cell & environment, 25(2), 239-250.
  • Niu, X., Bressan, R. A., Hasegawa, P. M. & Pardo, J. M. (1995) Ion homeostasis in NaCl stress environments. Plant Physiology, 109, 735–742.
  • Pallardy, S.G. (2008). Physiology of woody plants.—3rd edition. Elsevier, New york.
  • Passioura, J. B., & Munns, R. (2000). Rapid environmental changes that affect leaf water status induce transient surges or pauses in leaf expansion rate. Functional Plant Biology, 27(10), 941-948.
  • Prasad PVV, Pisipati SR, Momcilovic I, & Ristic Z. (2011).Independent andcombined effects of high temperature and drought stress during grain filling onplantyield and chloroplastEF-Tuexpressionin spring wheat. Journal of Agronomyand Crop Science, 197, 430–441.
  • Rao, K., Raghavendra, A., & Reddy, K. (2006). Physiology and molecular biology of stress tolerance (pp. 1-14). Springer: Dordrecht, Nertherlands.
  • Rhodes, D., & Nadolska‐Orczyk, A. (2001). Plant stress physiology. e LS.
  • Sairam, R. K., & Tyagi, A. (2004). Physiology and molecular biology of salinity stress tolerance in plants. Current science, 407-421.
  • Saradhi, P. P., AliaArora, S., & Prasad, K. V. S. K. (1995). Proline accumulates in plants exposed to UV radiation and protects them against UV-induced peroxidation. Biochemical and biophysical research communications, 209(1), 1-5.
  • Schat, H., Sharma, S. S., & Vooijs, R. (1997). Heavy metal‐induced accumulation of free proline in a metal‐tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia plantarum, 101(3), 477-482.
  • Schulze, E. D., Beck, E., & Hohenstein, K. M. (2005). Environment as stress factor: stress physiology of plants. Plant Ecology, 702, 7-11.
  • Serrano, R., Mulet, J. M., Rios, G. Marquez, J. A., de Larriona, I. F., Leube, M. P., Mendizabal, I. Pascual- Ahuir, A., Proft, M. R. R. & Montesinos, C. (1999) A glimpse of the mechanism of ion homeostasis during salt stress. Journal of Experimental Botany, 50, 1023–1036.
  • Shabala, S., & Munns, R. (2012). Salinity Stress: Physiological Constraints and Adaptive Mechanisms. Plant stress physiology. Shabala, S. (Ed.). Cabi.
  • Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060.
  • Smirnoff, N. (2005). Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. Antioxidants and reactive oxygen species in plants, 53-86.
  • Song, L., Huang, S. S. C., Wise, A., Castanon, R., Nery, J. R., Chen, H., ... & Ecker, J. R. (2016). A transcription factor hierarchy defines an environmental stress response network. Science, 354(6312), 1550.
  • Supriya L, Durgeshwar P, Muthamilarasan M, & Padmaja G (2022) Melatonin mediated differential regulation of drought tolerance in sensitive and tolerant varieties of upland cotton (Gossypium hirsutum L). Front Plant Sci., 1–22.
  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43.
  • Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in plant science, 15(2), 89-97.
  • Tan, K.H. (2011). Principles of Soil Chemistry. Fourth Edition. CRC Press, New York.
  • Thirgood, J. V. (1981). Man and the mediterranean forest. A history of resource depletion.
  • Vaahtera, L., Brosché, M., Wrzaczek, M., & Kangasjärvi, J. (2014). Specificity in ROS signaling and transcript signatures. Antioxidants & redox signaling, 21(9), 1422-1441.
  • Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino acids, 35, 753-759.
  • Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology, 16(2), 123-132.
  • Walker, D. J., Leigh, R. A. & Miller, A. J., (1996). Potassium homeostasis in vacuolate plant cells, Proceedings of the National Academy of Sciences, 93(19), 10510- 10514.
  • Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370-7390.
  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
  • Westgate, M. E. (1994). Water status and development of the maize endosperm and embryo during drought. Crop science,34(1), 76-83.
  • Westwood, M.N. (1993). Hormones and Growth Regulators, Temperate Zone Pomology: Physiology and Culture, Timber Press Inc, Portland, Oregon, USA.
  • Widodo, Patterson, J. H., Newbigin, E. D., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of experimental botany, 60(14), 4089-4103.
  • Yang, J., Kloepper, J. W., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in plant science, 14(1), 1-4.
  • Yıldız, O., Çetin, B., Sargıncı, M., Toprak, B., ... ve Şahin, U. (2018). İç Anadolu’da ağaçlandırma çalışmaları. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 14(1), 1-20.
  • Yıldız, O., Eşen, D., Sargıncı, M., Çetin, B., Toprak, B., & Dönmez, A. H. (2022). Restoration success in afforestation sites established at different times in arid lands of Central Anatolia. Forest Ecology and Management, 503, 119808.
  • Yoshiba, Y. (1995). Correlation between the induction of a gene for 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J., 7, 101-110.
  • Zhu, J. K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant physiology, 124(3), 941-948.
  • Zhu, J. K., Liu, J., & Xiong, L. (1998). Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. The Plant Cell, 10(7), 1181-1191.
There are 89 citations in total.

Details

Primary Language Turkish
Subjects Tree Nutrition and Physiology
Journal Section Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 20(2)
Authors

Abdullah Hüseyin Dönmez 0000-0003-4562-9702

Oktay Yıldız 0000-0002-8058-4506

Project Number Tübitak 120 O 688
Publication Date December 28, 2024
Submission Date May 27, 2024
Acceptance Date September 23, 2024
Published in Issue Year 2024

Cite

APA Dönmez, A. H., & Yıldız, O. (2024). İç Anadolu Kurak Sahalarında Abiyotik Bitki Stresleri. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 20(2), 228-248. https://doi.org/10.58816/duzceod.1490911

........