Research Article
BibTex RIS Cite

Determination of Material Volume Using UAVs in Land Surface Change: The Case of Konuralp Campus (Düzce)

Year 2024, , 1 - 14, 28.12.2024
https://doi.org/10.58816/duzceod.1582454

Abstract

In this study examined the availability of UAV in determining material volume in excavation and fill works. The study aims on calculating the volume of an excavation work areas 1841 m² at the parking lot of the Faculty of Sports Sciences at Düzce University Konuralp Campus and a filling work areas 2759 m² on the access road to the Environmental and Health Specialization Laboratory. Autonomous UAV flights were performed before and after the excavation and filling works in the study areas. Besides, following these UAV flights, terrestrial measurements were made in the same way. The study was founded that UAV data analysis results an excavation volume of 7121 m³ in the parking area and a filling volume of 5752 m³ on the road. According to calculations used terrestrial measurement methods, the excavation volume in the parking area was 7007 m³ and the filling volume on the road was 5683 m³. An average difference of 1.42% was found between UAV data and terrestrial measurement methods. The results were showed the usability of UAV systems in detected material volume.

Ethical Statement

This article does not contain any studies with human participants or animals.

References

  • Anonymous, (1999). 19-21 May 1998 Western Black Sea Flood Causes, Necessary Measures and Suggestions. Scientific Committee Report. TMMOB Chamber of Forest Engineers, Publication No. 22, p. 117, Ankara.
  • Anonymous, (2002). New Town New Life Düzce. Düzce Governorship Press and Public Relations Directorate.
  • Anonymous, (2024). Total station https://www.sistemas.com.tr/haber?h=total-station. Access: 20 Temmuz 2024.
  • Akgul, M., Yurtseven, H., Gulci, S., & Akay, A. E. (2018). Evaluation of UAV-and GNSS Based DEMs for Earthwork Volume. Arabian Journal for Science and Engineering, 43(4), 1893-1909.
  • Akgul, M., Yurtseven, H., Demir, M., Akay, A.E., Gülci, S., & Öztürk, T. (2016). Usage opportunities of generating digital elevation model with unmanned aerial vehicles on forestry. Journal of the Faculty of Forestry Istanbul University, 66(1), 104-118.
  • Balaban, B. (2024). Comparison of UAV-based methods for monitoring surface change in open-pit mining sites in forests: Düzce-Tatlidere case. Düzce University, Institute of Graduate Studies, Department of Forest Engineering, Master's Thesis, Düzce.
  • Erdin, K. (1992). Photogrammetry. İ.Ü. University Faculty of Forestry Publications İ.Ü. Publication No: 3674, O.F. Publication No. :421, Istanbul, ISBN 975-404-251-9.
  • Eisenbeiss, H., & Sauerbier M. (2011). Investigation of UAV systems and flight modes for photogrammetrıc applications. The Photogrammetric Record, 26(136), 400–421.
  • GH, (2024). Geomatik Hizmetler https://geomatikhizmetler.com.tr/urunler/total-station/#:~:text=Total%20Station%2C%20harita%20ve%20m%C3%BChendislik,otomatik%20%C3%B6l%C3%A7%C3%BCm%20yapabilen%20bir%20cihazd%C4%B1r. Total Station. Access: 02 December 2024.
  • Gülci, S., Akgül, M., Akay, A. E., & Taş, İ. (2017). Using ready-to-use drone images in forestry activities: case study of Çınarpınar in Kahramanmaras, Türkiye, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W6, 51–53.
  • Gülci, S., & G. Kılınç, 2018: Assessment of Drone-Assısted Soıl Stockpıle Volume Measurement. Internatıonal Academıc Research Congress, 30 Oct-03 Nov. 2018.
  • Gülci, S., Yurtseven, H., & Akgül, M. (2021). Assessment of pre-flight block plannıng for lowcost unmanned air vehicles. Turkish Journal of Forest Science, 5(1), 114-126. İnan,
  • İnan, M., & Öztürk, T. (2016). Investigations of using the low cost close-range photogrammetry for forest roads conditions. 6th Remote Sensıng-Cbs Symposıum (UZALCBS 2016), 5-7 October 2016, Adana. 254 - 258.
  • Liang, H., Lee, S. C., Bae, W., Kim, J., & Seo, S. (2023). Towards UAVs in construction: advancements, challenges, and future directions for monitoring and inspection. Drones, 7(3), 202.
  • Mitch, B., & Salah, S. (2009). Architecture for cooperative airborne simultaneous localization and mapping. Journal Intelligent. Robotic System, 55(4-5), 267-297.
  • Luo, Y., Chen, J., Xi, W., Zhao, P., Qiao, X., Deng, X., & Liu, Q. (2016). Analysis of tunnel displacement accuracy with total station. Measurement, 83, 29-37.
  • Netcad, (2024). Volume calculation from cross-sections https://wiki.netcad.com.tr/display/HELP/EXCANET+%7C+Hacim+Hesapla#8613a9affba64c218bc5c193a2f55095. TCK Method. Access: 03 December 2024.
  • Osborn, J., Dell, M., Stone, C., Iqba, I., Lacey, M., Lucieer, A., & McCoull, C. (2017). Photogrammetry for forest inventory. Forest& Wood Products Australia. 86 .
  • Özdemir, M. (2023). The use of data obtained in three dimensions with different devices in mining studies. Journal of Scientific Reports-C, 4, 14-32.
  • Pehlivan, H. (2019). Robotic Total Station and Analysis of GNSS Measurements. Erzincan University Journal of Science and Technology, 12(2), 1018-1027.
  • Scherer, M., & Lerma, J. L. (2009). From the conventional total station to the prospective image assisted photogrammetric scanning total station: Comprehensive review. Journal of Surveying Engineering, 135(4), 173-178.
  • Seki, M., Tiryakioğlu, İ., & Uysal, M. (2017). Comparison of volumes done with different data collection methods. Geomatik, 2(2), 106-111.
  • Shervais, K. (2015). Structure from Motion, Introductory Guide https://www.unavco.org/education/resources/educational-resources/lesson/field-geodesy/module-materials/sfm-intro-guide.pdf. Access: 27 July 2016.
  • Tahar, K. N., Ahmad, A., & Akib, W. A. A. W. M. (2011, December). UAV-based stereo vision for photogrammetric survey in aerial terrain mapping. In 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE), 443-447. IEEE.
  • Tercan, E. (2018). Use of unmanned aerial vehicles in roadway measurements: Okurcalar city center example. Ömer Halisdemir University Journal of Engineering Sciences, 7(2), 649-660.
  • Türk, Y., Canyurt, H., Eker, R., & Aydın, A. (2022). Determination of forest road cut and fill volumes by using un-manned aerial vehicle: A case study in the Bolu-Taşlıyayla. Turkish Journal of Forestry Research, Special Issue, 97-104.
  • Türk, Y., & Canyurt, H. (2024). Capabilities of using UAVs to determine forest road excavation volumes in mountaınous areas. Sumarski List, 148 (3-4), 137–150.
  • Ulvi, A. (2018). Analysis of the utility of the unmanned aerıal vehıcle (UAV) in volume calculation by using photogrammetric techniques. International Journal of Engineering and Geosciences, 3(2), 43-49.
  • Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), 62.
  • Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing, 4(6), 1671-1692.
  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
  • Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174–190.
  • Yilmaz, H. M. (2010). Close range photogrammetry in volume computing. Experimental Techniques, 34, 48-54.

Arazi Yüzey Değişiminde İHA Kullanılarak Materyal Hacminin Belirlenmesi: Konuralp Yerleşkesi (Düzce) Örneği

Year 2024, , 1 - 14, 28.12.2024
https://doi.org/10.58816/duzceod.1582454

Abstract

Bu çalışmada, İHA teknolojisinin kazı ve dolgu çalışmaları materyal hacminin belirlenmesinde kullanılabilirliği incelenmiştir. Düzce Üniversitesi Konuralp Yerleşkesi Spor Bilimleri Fakültesi otoparkında 1841 m2 büyüklüğünde yapılan kazı çalışması ile Çevre ve Sağlık İhtisaslaşma Laboratuvarı bağlantı yolunda 2759 m2 büyüklüğünde yapılan dolgu çalışması hacminin hesaplanması çalışamaya konu edilmiştir. Kazı ve dolgu çalışmalarından önce ve sonra İHA ile uçuşlar otonom olarak gerçekleşmiştir. Ayrıca bu İHA uçuşlarını takiben yersel ölçümler de aynı şekilde yapılmıştır. Çalışmada, İHA verileri ile otopark alanında 7121 m³ kazı hacmi, yolda 5752 m³ dolgu hacmi bulunmuştur. Yersel ölçüm yöntemlerine göre yapılan hesaplamada ise otopark alanında kazı miktarı 7007 m³, yolda dolgu miktarı 5683 m³ bulunmuştur. İHA verileri ile yersel ölçüm yöntemleri arasında ortalama %1,42’lik bir fark bulunmuştur. Elde edilen sonuçlar materyal hacminin belirlenmesinde İHA sistemlerinin kullanılabilirliğini ortaya koymaktadır.

References

  • Anonymous, (1999). 19-21 May 1998 Western Black Sea Flood Causes, Necessary Measures and Suggestions. Scientific Committee Report. TMMOB Chamber of Forest Engineers, Publication No. 22, p. 117, Ankara.
  • Anonymous, (2002). New Town New Life Düzce. Düzce Governorship Press and Public Relations Directorate.
  • Anonymous, (2024). Total station https://www.sistemas.com.tr/haber?h=total-station. Access: 20 Temmuz 2024.
  • Akgul, M., Yurtseven, H., Gulci, S., & Akay, A. E. (2018). Evaluation of UAV-and GNSS Based DEMs for Earthwork Volume. Arabian Journal for Science and Engineering, 43(4), 1893-1909.
  • Akgul, M., Yurtseven, H., Demir, M., Akay, A.E., Gülci, S., & Öztürk, T. (2016). Usage opportunities of generating digital elevation model with unmanned aerial vehicles on forestry. Journal of the Faculty of Forestry Istanbul University, 66(1), 104-118.
  • Balaban, B. (2024). Comparison of UAV-based methods for monitoring surface change in open-pit mining sites in forests: Düzce-Tatlidere case. Düzce University, Institute of Graduate Studies, Department of Forest Engineering, Master's Thesis, Düzce.
  • Erdin, K. (1992). Photogrammetry. İ.Ü. University Faculty of Forestry Publications İ.Ü. Publication No: 3674, O.F. Publication No. :421, Istanbul, ISBN 975-404-251-9.
  • Eisenbeiss, H., & Sauerbier M. (2011). Investigation of UAV systems and flight modes for photogrammetrıc applications. The Photogrammetric Record, 26(136), 400–421.
  • GH, (2024). Geomatik Hizmetler https://geomatikhizmetler.com.tr/urunler/total-station/#:~:text=Total%20Station%2C%20harita%20ve%20m%C3%BChendislik,otomatik%20%C3%B6l%C3%A7%C3%BCm%20yapabilen%20bir%20cihazd%C4%B1r. Total Station. Access: 02 December 2024.
  • Gülci, S., Akgül, M., Akay, A. E., & Taş, İ. (2017). Using ready-to-use drone images in forestry activities: case study of Çınarpınar in Kahramanmaras, Türkiye, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W6, 51–53.
  • Gülci, S., & G. Kılınç, 2018: Assessment of Drone-Assısted Soıl Stockpıle Volume Measurement. Internatıonal Academıc Research Congress, 30 Oct-03 Nov. 2018.
  • Gülci, S., Yurtseven, H., & Akgül, M. (2021). Assessment of pre-flight block plannıng for lowcost unmanned air vehicles. Turkish Journal of Forest Science, 5(1), 114-126. İnan,
  • İnan, M., & Öztürk, T. (2016). Investigations of using the low cost close-range photogrammetry for forest roads conditions. 6th Remote Sensıng-Cbs Symposıum (UZALCBS 2016), 5-7 October 2016, Adana. 254 - 258.
  • Liang, H., Lee, S. C., Bae, W., Kim, J., & Seo, S. (2023). Towards UAVs in construction: advancements, challenges, and future directions for monitoring and inspection. Drones, 7(3), 202.
  • Mitch, B., & Salah, S. (2009). Architecture for cooperative airborne simultaneous localization and mapping. Journal Intelligent. Robotic System, 55(4-5), 267-297.
  • Luo, Y., Chen, J., Xi, W., Zhao, P., Qiao, X., Deng, X., & Liu, Q. (2016). Analysis of tunnel displacement accuracy with total station. Measurement, 83, 29-37.
  • Netcad, (2024). Volume calculation from cross-sections https://wiki.netcad.com.tr/display/HELP/EXCANET+%7C+Hacim+Hesapla#8613a9affba64c218bc5c193a2f55095. TCK Method. Access: 03 December 2024.
  • Osborn, J., Dell, M., Stone, C., Iqba, I., Lacey, M., Lucieer, A., & McCoull, C. (2017). Photogrammetry for forest inventory. Forest& Wood Products Australia. 86 .
  • Özdemir, M. (2023). The use of data obtained in three dimensions with different devices in mining studies. Journal of Scientific Reports-C, 4, 14-32.
  • Pehlivan, H. (2019). Robotic Total Station and Analysis of GNSS Measurements. Erzincan University Journal of Science and Technology, 12(2), 1018-1027.
  • Scherer, M., & Lerma, J. L. (2009). From the conventional total station to the prospective image assisted photogrammetric scanning total station: Comprehensive review. Journal of Surveying Engineering, 135(4), 173-178.
  • Seki, M., Tiryakioğlu, İ., & Uysal, M. (2017). Comparison of volumes done with different data collection methods. Geomatik, 2(2), 106-111.
  • Shervais, K. (2015). Structure from Motion, Introductory Guide https://www.unavco.org/education/resources/educational-resources/lesson/field-geodesy/module-materials/sfm-intro-guide.pdf. Access: 27 July 2016.
  • Tahar, K. N., Ahmad, A., & Akib, W. A. A. W. M. (2011, December). UAV-based stereo vision for photogrammetric survey in aerial terrain mapping. In 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE), 443-447. IEEE.
  • Tercan, E. (2018). Use of unmanned aerial vehicles in roadway measurements: Okurcalar city center example. Ömer Halisdemir University Journal of Engineering Sciences, 7(2), 649-660.
  • Türk, Y., Canyurt, H., Eker, R., & Aydın, A. (2022). Determination of forest road cut and fill volumes by using un-manned aerial vehicle: A case study in the Bolu-Taşlıyayla. Turkish Journal of Forestry Research, Special Issue, 97-104.
  • Türk, Y., & Canyurt, H. (2024). Capabilities of using UAVs to determine forest road excavation volumes in mountaınous areas. Sumarski List, 148 (3-4), 137–150.
  • Ulvi, A. (2018). Analysis of the utility of the unmanned aerıal vehıcle (UAV) in volume calculation by using photogrammetric techniques. International Journal of Engineering and Geosciences, 3(2), 43-49.
  • Wallace, L., Lucieer, A., Malenovský, Z., Turner, D., & Vopěnka, P. (2016). Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3), 62.
  • Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing, 4(6), 1671-1692.
  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). Structure-from-Motion photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
  • Xiang, H., & Tian, L. (2011). Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2), 174–190.
  • Yilmaz, H. M. (2010). Close range photogrammetry in volume computing. Experimental Techniques, 34, 48-54.
There are 33 citations in total.

Details

Primary Language English
Subjects Forest Products Transport and Evaluation Information
Journal Section Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi 20(2)
Authors

Nuri Töreyen 0009-0003-5912-5596

Yılmaz Türk 0000-0001-7644-7886

Tunahan Çınar 0000-0002-6473-0884

Publication Date December 28, 2024
Submission Date November 10, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024

Cite

APA Töreyen, N., Türk, Y., & Çınar, T. (2024). Determination of Material Volume Using UAVs in Land Surface Change: The Case of Konuralp Campus (Düzce). Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 20(2), 1-14. https://doi.org/10.58816/duzceod.1582454

........