Research Article
BibTex RIS Cite

Effects of Microwave Irradiation on the Color and Turbidity of Wastewater from Paper Recycling

Year 2025, Volume: 21 Issue: 1, 376 - 393, 30.06.2025
https://doi.org/10.58816/duzceod.1643105

Abstract

This study aims to determine the general optical properties of wastewater generated during the paper recycling process and to investigate the effects of microwave (MW) irradiation on color properties and turbidity removal. The lowest turbidity values were achieved at the highest MW power (360 W) and the longest irradiation time (60 seconds), that more effective results observed when combined with high-speed centrifugation (4000 rpm). The highest turbidity removal efficiency was achieved in sample YD6, with a reduction of 20.3 NTU, confirming that MW irradiation enhanced the separation of suspended solids when used in conjunction with centrifugation. It was revealed that increasing the centrifugation speed enhanced the turbidity removal efficiency. However, color analysis clearly demonstrated that MW irradiation altered brightness (L*), redness-greenness (a*), and yellowness-blueness (b*) color coordinates to a certain extent. The highest total color difference values were recorded in samples XD1 (∆E: 4.60) and YC2 (∆E: 5.02), indicating that MW treatment induced significant changes in the color composition of wastewater. Moreover, Hue angle (h0) analysis further demonstrated the shift in color composition after MW irradiation and centrifugation, reinforcing the potential of this approach for improving wastewater optical quality. It is notable that when the MW power increases, some optical variations occur in color properties of wastewater samples. The findings of this study may suggest that MW irradiation has potential impact, as a pre-treatment method for wastewater treatment in industrial processes such as paper recycling.

References

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of hazardous materials, 92(3), 263-274.
  • Appleton, T. J., Colder, R. I., Kingman, S. W., Lowndes, I. S., & Read, A. G. (2005). Microwave technology for energy-efficient processing of waste. Applied energy, 81(1), 85-113.
  • Biermann, C. J. (1996). Handbook of Pulping and Papermaking, Elsevier.
  • Borchardt, J. K., Miller, J. D., & Azevedo, M. A. D. (1998). Office paper de-inking. Current opinion in colloid & interface science, 3(4), 360-367.
  • Čabalová, I., Kačík, F., Geffert, A., & Kačíková, D. (2011). The effects of paper recycling and its environmental impact. Environmental management in practice, 17, 329-350.
  • Cırık, K., Çınar, Ö., Şahinkaya, E., Uysal, Y., Başak, S., Aydoğmuş, D., ... & Yetiş, Ü. (2013). Boyar madde içeren atıksu arıtma tesislerinin işletilmesine yönelik el kitabı. T.C. Çevre ve Şehircilik Bakanlığı, Ankara.
  • Clark, D.E., & Sutton, W.H. (1996). Microwave processing of materials. Annual Review of Materials Science, 26(1), 299-331.
  • Coskun, S. (2022). Zero waste management behavior: Conceptualization, scale development and validation A case study in Turkey. Sustainability, 14(19), 12654.
  • Hach-Lange (2023). Objective color assessment and quality control in the chemical, pharmaceutical and cosmetic industries, Application Report No. 3.14e DOC042.52.00019. Hach Lange Gmbh Willstätterstraße 11 D-40549 Düsseldorf, Germany.
  • Han, N., Zhang, J., Hoang, M., Gray, S., & Xie, Z. (2021). A review of process and wastewater reuse in the recycled paper industry. Environmental Technology & Innovation, 24, 101860.
  • Huang, L., & Logan, B. E. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied microbiology and biotechnology, 80, 349-355.
  • Hubbe, M. A., Metts, J.R., Hermosilla, D., Blanco, M.A., Yerushalmi, L., Haghighat, F., Lindholm-Lehto, P., Khodaparast, Z., Kamali, M., & Elliot, A. (2016).Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources, 11(3), 7953-8091.
  • Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and environmental safety, 114, 326-342.
  • Kardeş, S., Özkan, U., Bayram, O., & Şahin, H. T. (2024). An Artificial Neural Network (ANN) Modelling Approach for Evaluating Turbidity Properties of Paper Recycling Wastewater. BioResources, 19(3).
  • Özkan, U. (2023). “Kağıt Geri Dönüşüm Atıksularındaki Kirliliğin Giderilmesinde Mikrodalga Teknolojisinden Faydalanılması”. Yüksek Lisans Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Isparta.
  • Özkan, U., & Şahin, H. T. (2023). Treatment of paper recycling wastewater using microwave technology. Turkish Journal of Forestry, 24(2), 134-138.
  • Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater—a review. Science of the total environment, 333(1-3), 37-58.
  • Sahin, H. (2013). A study on paper recycling effects on cellulose properties. Turkish Journal of Forestry, 14(1), 74-80.
  • Sawyer, C.N., McCarty, P.L., & Parkin, G.F. (2020). Çevre Mühendisliği ve Bilimi İçin Kimya. Nobel Akademik Yayıncılık, Ankara.
  • Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment–A review. Renewable and Sustainable Energy Reviews, 78, 764-772.
  • Zhenying, S., Shijin, D., Xuejun, C., Yan, G., Junfeng, L., Hongyan, W., & Zhang, S. X. (2009). Combined de-inking technology applied on laser printed paper. Chemical Engineering and Processing: Process Intensification, 48(2), 587-591.

Kağıt Geri Dönüşümünden Elde Edilen Atık Suyun Renk ve Bulanıklık Özelliklerine Mikrodalga Işınlamasının Etkileri

Year 2025, Volume: 21 Issue: 1, 376 - 393, 30.06.2025
https://doi.org/10.58816/duzceod.1643105

Abstract

Bu çalışmanın amacı, kağıt geri dönüşüm prosesi sırasında oluşan atık suyun genel optik özelliklerini belirlemek ve mikrodalga (MW) ışınlamanın renk özellikleri ve bulanıklık giderimi üzerindeki etkilerini araştırmaktır. En düşük bulanıklık değerleri en yüksek MW gücünde (360 Watt) ve en uzun ışınlama süresinde (60 saniye) elde edilmiş, yüksek hızlı santrifüjleme (4000 rpm) ile birleştirildiğinde daha etkili sonuçlar gözlemlenmiştir. En yüksek bulanıklık giderme verimliliği 20,3 NTU'luk bir azalma ile YD6 numunesinde elde edilmiş ve MW ışınlamasının santrifüjleme ile birlikte kullanıldığında askıda katı maddelerin ayrışmasını arttırdığını doğrulamıştır. Santrifüj hızının arttırılmasının bulanıklık giderme verimliliğini arttırdığı ortaya çıkmıştır. Bununla birlikte, renk analizi MW ışınlamasının parlaklık (L*), kırmızılık-yeşillik (a*) ve sarılık-mavilik (b*) renk koordinatlarını belli bir düzeyde değiştirdiğini açıkça göstermiştir. En yüksek toplam renk farkı değerleri XD1 (∆E: 4.60) ve YC2 (∆E: 5.02) numunelerinde kaydedilmiştir, bu da MW işleminin atık suyun renk bileşiminde önemli değişikliklere neden olduğunu göstermektedir. Ayrıca, Hue açısı (h0) analizi, MW ışınlama ve santrifüjlemeden sonra renk bileşimindeki değişimi daha da göstererek bu yaklaşımın atık su optik kalitesini iyileştirme potansiyelini güçlendirmiştir. MW gücü arttığında, atık su numunelerinin renk özelliklerinde bazı optik değişimlerin meydana gelmesi dikkat çekicidir. Bu çalışmanın bulguları, kağıt geri dönüşümü gibi endüstriyel süreçlerde atık su arıtımı için bir ön arıtma yöntemi olarak MW ışınlamanın potansiyel bir etkiye sahip olduğunu gösterebilir.

References

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of hazardous materials, 92(3), 263-274.
  • Appleton, T. J., Colder, R. I., Kingman, S. W., Lowndes, I. S., & Read, A. G. (2005). Microwave technology for energy-efficient processing of waste. Applied energy, 81(1), 85-113.
  • Biermann, C. J. (1996). Handbook of Pulping and Papermaking, Elsevier.
  • Borchardt, J. K., Miller, J. D., & Azevedo, M. A. D. (1998). Office paper de-inking. Current opinion in colloid & interface science, 3(4), 360-367.
  • Čabalová, I., Kačík, F., Geffert, A., & Kačíková, D. (2011). The effects of paper recycling and its environmental impact. Environmental management in practice, 17, 329-350.
  • Cırık, K., Çınar, Ö., Şahinkaya, E., Uysal, Y., Başak, S., Aydoğmuş, D., ... & Yetiş, Ü. (2013). Boyar madde içeren atıksu arıtma tesislerinin işletilmesine yönelik el kitabı. T.C. Çevre ve Şehircilik Bakanlığı, Ankara.
  • Clark, D.E., & Sutton, W.H. (1996). Microwave processing of materials. Annual Review of Materials Science, 26(1), 299-331.
  • Coskun, S. (2022). Zero waste management behavior: Conceptualization, scale development and validation A case study in Turkey. Sustainability, 14(19), 12654.
  • Hach-Lange (2023). Objective color assessment and quality control in the chemical, pharmaceutical and cosmetic industries, Application Report No. 3.14e DOC042.52.00019. Hach Lange Gmbh Willstätterstraße 11 D-40549 Düsseldorf, Germany.
  • Han, N., Zhang, J., Hoang, M., Gray, S., & Xie, Z. (2021). A review of process and wastewater reuse in the recycled paper industry. Environmental Technology & Innovation, 24, 101860.
  • Huang, L., & Logan, B. E. (2008). Electricity generation and treatment of paper recycling wastewater using a microbial fuel cell. Applied microbiology and biotechnology, 80, 349-355.
  • Hubbe, M. A., Metts, J.R., Hermosilla, D., Blanco, M.A., Yerushalmi, L., Haghighat, F., Lindholm-Lehto, P., Khodaparast, Z., Kamali, M., & Elliot, A. (2016).Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources, 11(3), 7953-8091.
  • Kamali, M., & Khodaparast, Z. (2015). Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and environmental safety, 114, 326-342.
  • Kardeş, S., Özkan, U., Bayram, O., & Şahin, H. T. (2024). An Artificial Neural Network (ANN) Modelling Approach for Evaluating Turbidity Properties of Paper Recycling Wastewater. BioResources, 19(3).
  • Özkan, U. (2023). “Kağıt Geri Dönüşüm Atıksularındaki Kirliliğin Giderilmesinde Mikrodalga Teknolojisinden Faydalanılması”. Yüksek Lisans Tezi, Isparta Uygulamalı Bilimler Üniversitesi, Lisansüstü Eğitim Enstitüsü, Isparta.
  • Özkan, U., & Şahin, H. T. (2023). Treatment of paper recycling wastewater using microwave technology. Turkish Journal of Forestry, 24(2), 134-138.
  • Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater—a review. Science of the total environment, 333(1-3), 37-58.
  • Sahin, H. (2013). A study on paper recycling effects on cellulose properties. Turkish Journal of Forestry, 14(1), 74-80.
  • Sawyer, C.N., McCarty, P.L., & Parkin, G.F. (2020). Çevre Mühendisliği ve Bilimi İçin Kimya. Nobel Akademik Yayıncılık, Ankara.
  • Toczyłowska-Mamińska, R. (2017). Limits and perspectives of pulp and paper industry wastewater treatment–A review. Renewable and Sustainable Energy Reviews, 78, 764-772.
  • Zhenying, S., Shijin, D., Xuejun, C., Yan, G., Junfeng, L., Hongyan, W., & Zhang, S. X. (2009). Combined de-inking technology applied on laser printed paper. Chemical Engineering and Processing: Process Intensification, 48(2), 587-591.
There are 21 citations in total.

Details

Primary Language English
Subjects Fiber and Paper Technology
Journal Section Düzce University Faculty of Forestry Journal of Forestry 21(1)
Authors

Uğur Özkan 0000-0003-0147-9976

Halil Turgut Şahin 0000-0001-5633-6505

Publication Date June 30, 2025
Submission Date February 19, 2025
Acceptance Date April 28, 2025
Published in Issue Year 2025 Volume: 21 Issue: 1

Cite

APA Özkan, U., & Şahin, H. T. (2025). Effects of Microwave Irradiation on the Color and Turbidity of Wastewater from Paper Recycling. Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi, 21(1), 376-393. https://doi.org/10.58816/duzceod.1643105

 DUOD publishes its articles under the Creative Commons Attribution-NonCommercial licence (CC BY-NC).