Review
BibTex RIS Cite

Bioactive Food Peptides and Effects on Health

Year 2020, Volume: 10 Issue: 2, 241 - 246, 31.05.2020
https://doi.org/10.33631/duzcesbed.559968

Abstract

Bioactive food
peptides have many structural features in the control of various biological
functions in the body. These components need to be measurable at a
physiologically realistic level. Bioactive peptides have been identified as
peptides with hormone or drug-like activity that have a physiological function
by binding to specific receptors on target cells leading to the induction of
physiological responses. Bioactive peptides usually contain between 3 and 20
amino acid residues and remain inactive while the sequences are in the basic
protein structure. Inactive bioactive food peptides in the primary structure of
plant and animal proteins are activated by releasing the peptide sequences.
These peptides are mainly produced by enzymatic hydrolysis, hydrolysis with
digestive enzymes in the gastrointestinal tract and fermentation.
In vitro and in vivo studies showed that bioactive food peptides have
antihypertensive, hypolipidemic, antioxidant and anti-inflammatory activity.
Therefore, studies on the use of bioactive food peptides have been increasing
in the treatment of chronic diseases and general health. The purpose of this
review article is to investigate the effects of bioactive food peptides on
health.

References

  • 1. Bougle D, Bouhallab S. Dietary bioactive peptides: Human studies. Crit Rev Food Sci Nutr. 2017;57(2):335-43.
  • 2. Toldrá F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem. 2018;267:395-404.
  • 3. Li G, Liu W, Wang Y, Jia F, Wang Y, Ma Y, et al. Chapter One - Functions and Applications of Bioactive Peptides From Corn Gluten Meal. In: Toldrá F, editor. Advances in Food and Nutrition Research. 87: Academic Press; 2019. p. 1-41.
  • 4. Udenigwe CC, Aluko RE. Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci. 2012;77(1):R11-24.
  • 5. Sharma S, Singh R, Rana S. Bioactive peptides: a review. Int J Bioautomation. 2011;15(4):223-50.
  • 6. Chew LY, Toh GT, Ismail A. Application of Proteases for the Production of Bioactive Peptides. Enzymes in Food Biotechnology, 2019. p. 247-61.
  • 7. Mazorra-Manzano MA, Ramirez-Suarez JC, Yada RY. Plant proteases for bioactive peptides release: A review. Crit Rev Food Sci Nutr. 2018;58(13):2147-63.
  • 8. Sharma S, Singh R, Rana S. Review Article Bioactive Peptides: A Review2012. 223 p.
  • 9. Moller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr. 2008;47(4):171-82.
  • 10.Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 2007;18(2):163-9.
  • 11. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M. BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int. 2008;91(4):965-80.
  • 12. Nongonierma AB, FitzGerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. J Funct Foods. 2015;17:640-56.
  • 13. Udenigwe CC. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Scı Tech. 2014;36(2):137-43.
  • 14. Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014;2014:608979.
  • 15. Chakrabarti S, Guha S, Majumder K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients. 2018;10(11).
  • 16. Barberis SE, Origone AL, Adaro MO, Bersi G. Chapter 5 - Bioactive Peptides as Functional Food Ingredients. In: Grumezescu AM, Holban AM, editors. Role of Materials Science in Food Bioengineering: Academic Press; 2018. p. 147-86.
  • 17. Park YW, Nam MS. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J Food Sci Anim Resour. 2015;35(6):831-40.
  • 18. Sultan S, Huma N, Butt MS, Aleem M, Abbas M. Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Crit Rev Food Sci Nutr. 2018;58(1):105-15.
  • 19. Temussi PA. The good taste of peptides. J Pept Sci. 2012;18(2):73-82.
  • 20. Panchaud A, Affolter M, Kussmann M. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J Proteomics. 2012;75(12):3546-59.
  • 21. Agyei D, Danquah MK. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Scı Tech. 2012;23(2):62-9.
  • 22. Barberis SE, Origone AL, Adaro MO, Bersi G. Bioactive Peptides as Functional Food Ingredients. Role of Materials Science in Food Bioengineering, 2018. p. 147-86.
  • 23. Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv Colloid Interface Sci. 2011;165(1):23-35.
  • 24. Virgilio N. Bioactive Peptides in the Gut–Brain Axis. In: Ferranti P, Berry EM, Anderson JR, editors. Encyclopedia of Food Security and Sustainability. Oxford: Elsevier; 2019. p. 311-4.
  • 25. Arihara K, Zhou L, Ohata M. Chapter Five - Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides. In: Toldrá F, editor. Advances in Food and Nutrition Research. 81: Academic Press; 2017. p. 161-85.
  • 26. Daliri E, Oh D, Lee B. Bioactive Peptides. Foods. 2017;6(5).
  • 27. Yao S, Agyei D, Udenigwe CC. Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. Adv Food Nutr Res. 2018;84:145-81.
  • 28. Toldra F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem. 2018;267:395-404.
  • 29. Saidi S, Deratani A, Belleville M-P, Ben Amar R. Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res Int. 2014;65:329-36.
  • 30. Hernandez-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci. 2011;165(1):23-35.
  • 31. Hirota T, Nonaka A, Matsushita A, Uchida N, Ohki K, Asakura M, et al. Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart Vessels. 2011;26(5):549-56.
  • 32. Sipola M, Finckenberg P, Korpela R, Vapaatalo H, Nurminen M-L. Effect of long-term intake of milk products on blood pressure in hypertensive rats. J Dairy Res. 2002;69(1):103-11.
  • 33. Amorim FG, Coitinho LB, Dias AT, Friques AGF, Monteiro BL, Rezende LCDd, et al. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chem. 2019;282:109-19.
  • 34. Ibrahim HR, Ahmed AS, Miyata T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res. 2017;8(1):63-71.
  • 35. Castellano P, Aristoy M-C, Sentandreu MÁ, Vignolo G, Toldrá F. Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus. J Proteomics. 2013;89:183-90.
  • 36. Nishibori N, Kishibuchi R, Morita K. Soy Pulp Extract Inhibits Angiotensin I-Converting Enzyme (ACE) Activity In Vitro: Evidence for Its Potential Hypertension-Improving Action. J Diet Suppl. 2017;14(3):241-51.
  • 37. Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, et al. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. BioFactors (Oxford, England). 2000;12(1-4):143-6.
  • 38. Cho SJ, Juillerat MA, Lee CH. Identification of LDL-receptor transcription stimulating peptides from soybean hydrolysate in human hepatocytes. J Agric Food Chem. 2008;56(12):4372-6.
  • 39. Borodin EA, Menshikova IG, Dorovskikh VA, Feoktistova NA, Shtarberg MA, Yamamoto T, et al. Effects of Two-Month Consumption of 30 g a Day of Soy Protein Isolate or Skimmed Curd Protein on Blood Lipid Concentration in Russian Adults with Hyperlipidemia. J Nutr Sci Vitaminol. 2009;55(6):492-7.
  • 40. Researchers L. Lunasin and Heart Health [Internet].2017. [22.03.2018]. Available from: http://lunasin.com/.
  • 41. Erdmann K, Cheung BW, Schroder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem. 2008;19(10):643-54.
  • 42. Ono T, Murakoshi M, Suzuki N, Iida N, Ohdera M, Iigo M, et al. Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Br J Nutr. 2010;104(11):1688-95.
  • 43. Kim MJ, Yang HJ, Hee Kim J, Ahn C-W, Ho Lee J, Sung Kim K, et al. Obesity-Related Metabolomic Analysis of Human Subjects in Black Soybean Peptide Intervention Study by Ultraperformance Liquid Chromatography and Quadrupole-Time-of-Flight Mass Spectrometry, 2013. 874981 p.
  • 44. Sah BNP, Vasiljevic T, McKechnie S, Donkor ON. Identification of Anticancer Peptides from Bovine Milk Proteins and Their Potential Roles in Management of Cancer: A Critical Review. Compr Rev Food Sci F. 2015;14(2):123-38.
  • 45. Martínez Leo EE, Martín Ortega AM, Segura Campos MR. Chapter 9 - Bioactive Peptides—Impact in Cancer Therapy. In: Grumezescu AM, Holban AM, editors. Therapeutic, Probiotic, and Unconventional Foods: Academic Press; 2018. p. 157-66.
  • 46. Yao S, Agyei D, Udenigwe CC. Chapter Four - Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. In: Toldrá F, editor. Advances in Food and Nutrition Research. 84: Academic Press; 2018. p. 145-81.
  • 47. Mojica L, Gonzalez de Mejia E, Granados-Silvestre MÁ, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J Funct Foods. 2017;31:274-86.
  • 48. Siow H-L, Gan C-Y. Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J Funct Foods. 2016;22:1-12.
  • 49. Majumder K, Chakrabarti S, Davidge ST, Wu J. Structure and activity study of egg protein ovotransferrin derived peptides (IRW and IQW) on endothelial inflammatory response and oxidative stress. J Agric Food Chem. 2013;61(9):2120-9.
  • 50. Huang W, Chakrabarti S, Majumder K, Jiang Y, Davidge ST, Wu J. Egg-derived peptide IRW inhibits TNF-alpha-induced inflammatory response and oxidative stress in endothelial cells. J Agric Food Chem. 2010;58(20):10840-6.

Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri

Year 2020, Volume: 10 Issue: 2, 241 - 246, 31.05.2020
https://doi.org/10.33631/duzcesbed.559968

Abstract

Biyoaktif
besin peptitleri, vücutta birçok biyolojik işlevin kontrolünde yapısal özelliğe
sahiptir. Bu bileşenlerin olumlu etkilerini gösterebilmeleri için fizyolojik
olarak gerçekçi düzeyde ve ölçülebilir etki göstermesi gerekmektedir. Biyoaktif
peptitler; fizyolojik tepkimelerin indüklenmesine yol açan, hedef hücreler
üzerindeki spesifik reseptörlere bağlanma yoluyla fizyolojik fonksiyonu olan,
hormon veya ilaç benzeri aktiviteye sahip peptitler olarak tanımlanmıştır.
Biyoaktif peptitler genellikle 3-20 amino asit kalıntısı içermekte ve temel
protein yapısındayken etkinlik göstermemektedir. Bitki ve hayvan proteinlerinin
temel yapısında bulunan biyoaktif besin peptitlerinin etkinlik gösterebilmesi
için peptit sekanslarının serbest hale gelmesi gerekmektedir. Bu peptitler
çoğunlukla enzimatik hidroliz, gastrointestinal sistemde sindirim enzimleri ile
hidroliz ve fermentasyon yoluyla üretilmektedir. Yapılan
in vitro ve in vivo
çalışmalarda; biyoaktif besin peptitlerinin antihipertansif, hipolipidemik,
antioksidan, antiinflamatuar aktiviteye sahip olduğu bildirilmiştir. Bu
nedenle, son yıllarda kronik hastalıkların önlenmesinde, tedavisinde ve genel
sağlığın korunmasında biyoaktif besin peptitlerin kullanımına yönelik
çalışmalar artmaktadır. Bu derleme yazının amacı, biyoaktif besin peptitlerini
ve sağlık üzerine olan etkilerinin değerlendirilmesidir.

References

  • 1. Bougle D, Bouhallab S. Dietary bioactive peptides: Human studies. Crit Rev Food Sci Nutr. 2017;57(2):335-43.
  • 2. Toldrá F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem. 2018;267:395-404.
  • 3. Li G, Liu W, Wang Y, Jia F, Wang Y, Ma Y, et al. Chapter One - Functions and Applications of Bioactive Peptides From Corn Gluten Meal. In: Toldrá F, editor. Advances in Food and Nutrition Research. 87: Academic Press; 2019. p. 1-41.
  • 4. Udenigwe CC, Aluko RE. Food protein-derived bioactive peptides: production, processing, and potential health benefits. J Food Sci. 2012;77(1):R11-24.
  • 5. Sharma S, Singh R, Rana S. Bioactive peptides: a review. Int J Bioautomation. 2011;15(4):223-50.
  • 6. Chew LY, Toh GT, Ismail A. Application of Proteases for the Production of Bioactive Peptides. Enzymes in Food Biotechnology, 2019. p. 247-61.
  • 7. Mazorra-Manzano MA, Ramirez-Suarez JC, Yada RY. Plant proteases for bioactive peptides release: A review. Crit Rev Food Sci Nutr. 2018;58(13):2147-63.
  • 8. Sharma S, Singh R, Rana S. Review Article Bioactive Peptides: A Review2012. 223 p.
  • 9. Moller NP, Scholz-Ahrens KE, Roos N, Schrezenmeir J. Bioactive peptides and proteins from foods: indication for health effects. Eur J Nutr. 2008;47(4):171-82.
  • 10.Hartmann R, Meisel H. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol. 2007;18(2):163-9.
  • 11. Minkiewicz P, Dziuba J, Iwaniak A, Dziuba M, Darewicz M. BIOPEP database and other programs for processing bioactive peptide sequences. J AOAC Int. 2008;91(4):965-80.
  • 12. Nongonierma AB, FitzGerald RJ. The scientific evidence for the role of milk protein-derived bioactive peptides in humans: A Review. J Funct Foods. 2015;17:640-56.
  • 13. Udenigwe CC. Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends Food Scı Tech. 2014;36(2):137-43.
  • 14. Chakrabarti S, Jahandideh F, Wu J. Food-derived bioactive peptides on inflammation and oxidative stress. Biomed Res Int. 2014;2014:608979.
  • 15. Chakrabarti S, Guha S, Majumder K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients. 2018;10(11).
  • 16. Barberis SE, Origone AL, Adaro MO, Bersi G. Chapter 5 - Bioactive Peptides as Functional Food Ingredients. In: Grumezescu AM, Holban AM, editors. Role of Materials Science in Food Bioengineering: Academic Press; 2018. p. 147-86.
  • 17. Park YW, Nam MS. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J Food Sci Anim Resour. 2015;35(6):831-40.
  • 18. Sultan S, Huma N, Butt MS, Aleem M, Abbas M. Therapeutic potential of dairy bioactive peptides: A contemporary perspective. Crit Rev Food Sci Nutr. 2018;58(1):105-15.
  • 19. Temussi PA. The good taste of peptides. J Pept Sci. 2012;18(2):73-82.
  • 20. Panchaud A, Affolter M, Kussmann M. Mass spectrometry for nutritional peptidomics: How to analyze food bioactives and their health effects. J Proteomics. 2012;75(12):3546-59.
  • 21. Agyei D, Danquah MK. Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Scı Tech. 2012;23(2):62-9.
  • 22. Barberis SE, Origone AL, Adaro MO, Bersi G. Bioactive Peptides as Functional Food Ingredients. Role of Materials Science in Food Bioengineering, 2018. p. 147-86.
  • 23. Hernández-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: Production, bioavailability and incorporation into foods. Adv Colloid Interface Sci. 2011;165(1):23-35.
  • 24. Virgilio N. Bioactive Peptides in the Gut–Brain Axis. In: Ferranti P, Berry EM, Anderson JR, editors. Encyclopedia of Food Security and Sustainability. Oxford: Elsevier; 2019. p. 311-4.
  • 25. Arihara K, Zhou L, Ohata M. Chapter Five - Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides. In: Toldrá F, editor. Advances in Food and Nutrition Research. 81: Academic Press; 2017. p. 161-85.
  • 26. Daliri E, Oh D, Lee B. Bioactive Peptides. Foods. 2017;6(5).
  • 27. Yao S, Agyei D, Udenigwe CC. Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. Adv Food Nutr Res. 2018;84:145-81.
  • 28. Toldra F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem. 2018;267:395-404.
  • 29. Saidi S, Deratani A, Belleville M-P, Ben Amar R. Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Res Int. 2014;65:329-36.
  • 30. Hernandez-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci. 2011;165(1):23-35.
  • 31. Hirota T, Nonaka A, Matsushita A, Uchida N, Ohki K, Asakura M, et al. Milk casein-derived tripeptides, VPP and IPP induced NO production in cultured endothelial cells and endothelium-dependent relaxation of isolated aortic rings. Heart Vessels. 2011;26(5):549-56.
  • 32. Sipola M, Finckenberg P, Korpela R, Vapaatalo H, Nurminen M-L. Effect of long-term intake of milk products on blood pressure in hypertensive rats. J Dairy Res. 2002;69(1):103-11.
  • 33. Amorim FG, Coitinho LB, Dias AT, Friques AGF, Monteiro BL, Rezende LCDd, et al. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules. Food Chem. 2019;282:109-19.
  • 34. Ibrahim HR, Ahmed AS, Miyata T. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res. 2017;8(1):63-71.
  • 35. Castellano P, Aristoy M-C, Sentandreu MÁ, Vignolo G, Toldrá F. Peptides with angiotensin I converting enzyme (ACE) inhibitory activity generated from porcine skeletal muscle proteins by the action of meat-borne Lactobacillus. J Proteomics. 2013;89:183-90.
  • 36. Nishibori N, Kishibuchi R, Morita K. Soy Pulp Extract Inhibits Angiotensin I-Converting Enzyme (ACE) Activity In Vitro: Evidence for Its Potential Hypertension-Improving Action. J Diet Suppl. 2017;14(3):241-51.
  • 37. Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, et al. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. BioFactors (Oxford, England). 2000;12(1-4):143-6.
  • 38. Cho SJ, Juillerat MA, Lee CH. Identification of LDL-receptor transcription stimulating peptides from soybean hydrolysate in human hepatocytes. J Agric Food Chem. 2008;56(12):4372-6.
  • 39. Borodin EA, Menshikova IG, Dorovskikh VA, Feoktistova NA, Shtarberg MA, Yamamoto T, et al. Effects of Two-Month Consumption of 30 g a Day of Soy Protein Isolate or Skimmed Curd Protein on Blood Lipid Concentration in Russian Adults with Hyperlipidemia. J Nutr Sci Vitaminol. 2009;55(6):492-7.
  • 40. Researchers L. Lunasin and Heart Health [Internet].2017. [22.03.2018]. Available from: http://lunasin.com/.
  • 41. Erdmann K, Cheung BW, Schroder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem. 2008;19(10):643-54.
  • 42. Ono T, Murakoshi M, Suzuki N, Iida N, Ohdera M, Iigo M, et al. Potent anti-obesity effect of enteric-coated lactoferrin: decrease in visceral fat accumulation in Japanese men and women with abdominal obesity after 8-week administration of enteric-coated lactoferrin tablets. Br J Nutr. 2010;104(11):1688-95.
  • 43. Kim MJ, Yang HJ, Hee Kim J, Ahn C-W, Ho Lee J, Sung Kim K, et al. Obesity-Related Metabolomic Analysis of Human Subjects in Black Soybean Peptide Intervention Study by Ultraperformance Liquid Chromatography and Quadrupole-Time-of-Flight Mass Spectrometry, 2013. 874981 p.
  • 44. Sah BNP, Vasiljevic T, McKechnie S, Donkor ON. Identification of Anticancer Peptides from Bovine Milk Proteins and Their Potential Roles in Management of Cancer: A Critical Review. Compr Rev Food Sci F. 2015;14(2):123-38.
  • 45. Martínez Leo EE, Martín Ortega AM, Segura Campos MR. Chapter 9 - Bioactive Peptides—Impact in Cancer Therapy. In: Grumezescu AM, Holban AM, editors. Therapeutic, Probiotic, and Unconventional Foods: Academic Press; 2018. p. 157-66.
  • 46. Yao S, Agyei D, Udenigwe CC. Chapter Four - Structural Basis of Bioactivity of Food Peptides in Promoting Metabolic Health. In: Toldrá F, editor. Advances in Food and Nutrition Research. 84: Academic Press; 2018. p. 145-81.
  • 47. Mojica L, Gonzalez de Mejia E, Granados-Silvestre MÁ, Menjivar M. Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. J Funct Foods. 2017;31:274-86.
  • 48. Siow H-L, Gan C-Y. Extraction, identification, and structure–activity relationship of antioxidative and α-amylase inhibitory peptides from cumin seeds (Cuminum cyminum). J Funct Foods. 2016;22:1-12.
  • 49. Majumder K, Chakrabarti S, Davidge ST, Wu J. Structure and activity study of egg protein ovotransferrin derived peptides (IRW and IQW) on endothelial inflammatory response and oxidative stress. J Agric Food Chem. 2013;61(9):2120-9.
  • 50. Huang W, Chakrabarti S, Majumder K, Jiang Y, Davidge ST, Wu J. Egg-derived peptide IRW inhibits TNF-alpha-induced inflammatory response and oxidative stress in endothelial cells. J Agric Food Chem. 2010;58(20):10840-6.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Health Care Administration
Journal Section Reviews
Authors

Ece Yalçın 0000-0002-4469-7255

Neslişah Rakıcıoğlu 0000-0001-8763-7407

Publication Date May 31, 2020
Submission Date May 2, 2019
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Yalçın, E., & Rakıcıoğlu, N. (2020). Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 10(2), 241-246. https://doi.org/10.33631/duzcesbed.559968
AMA Yalçın E, Rakıcıoğlu N. Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. J DU Health Sci Inst. May 2020;10(2):241-246. doi:10.33631/duzcesbed.559968
Chicago Yalçın, Ece, and Neslişah Rakıcıoğlu. “Biyoaktif Besin Peptitleri Ve Sağlık Üzerine Etkileri”. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 10, no. 2 (May 2020): 241-46. https://doi.org/10.33631/duzcesbed.559968.
EndNote Yalçın E, Rakıcıoğlu N (May 1, 2020) Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 10 2 241–246.
IEEE E. Yalçın and N. Rakıcıoğlu, “Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri”, J DU Health Sci Inst, vol. 10, no. 2, pp. 241–246, 2020, doi: 10.33631/duzcesbed.559968.
ISNAD Yalçın, Ece - Rakıcıoğlu, Neslişah. “Biyoaktif Besin Peptitleri Ve Sağlık Üzerine Etkileri”. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 10/2 (May 2020), 241-246. https://doi.org/10.33631/duzcesbed.559968.
JAMA Yalçın E, Rakıcıoğlu N. Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. J DU Health Sci Inst. 2020;10:241–246.
MLA Yalçın, Ece and Neslişah Rakıcıoğlu. “Biyoaktif Besin Peptitleri Ve Sağlık Üzerine Etkileri”. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol. 10, no. 2, 2020, pp. 241-6, doi:10.33631/duzcesbed.559968.
Vancouver Yalçın E, Rakıcıoğlu N. Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. J DU Health Sci Inst. 2020;10(2):241-6.