Research Article
BibTex RIS Cite

Metisilin Dirençli Staphylococcus aureus Suşlarına karşı Karvakrol ve Oksasilinin Kombinasyon Aktivitesinin İn Vitro Değerlendirilmesi

Year 2020, Volume: 10 Issue: 2, 138 - 144, 31.05.2020
https://doi.org/10.33631/duzcesbed.633259

Abstract

Amaç: Metisilin
dirençli Staphylococcus aureus (MRSA)
antibiyotiklere en dirençli bakterilerden biridir. Birçok antibiyotiğin bu
bakterilerin neden olduğu infeksiyonları tedavi etmede yetersiz kaldığı
bilinmektedir. Bitki türevli antibakteriyeller yeni terapötiklerin kaynağı
olarak dikkat çekmektedirler. Karvakrol, çeşitli uçucu yağlarda bulunan
monoterpenik fenol bileşiğidir ve birçok patojene karşı antimikrobiyal aktivite
göstermektedir. Bu çalışmada on klinik MRSA suşuna karşı karvakrol ve
oksasilinin kombinasyon aktivitesi değerlendirilmiştir.

Gereç ve
Yöntemler:
MRSA
suşlarına karşı karvakrol ve oksasilinin Minimum İnhibitör Konsantrasyonlarını
(MİK) saptamak için broth mikrodilüsyon metodu uygulanmıştır. Karvakrol ve
oksasilinin kombinasyon aktivitesi checkerboard sinerji testi ile
belirlenmiştir. Her iki antimikrobiyalin ve kombinasyonlarının MRSA-6 suşunda
membran hasarına neden olup olmadığı ise membran boyunca hücre dışına sızan
nükleik asit miktarının UV spektrofotometre ile ölçülmesiyle saptanmıştır.

Bulgular: Karvakrol 64-256
µg/ml aralığındaki MİK değerleri ile tüm MRSA suşlarına karşı antibakteriyel
aktivite göstermiştir. Karvakrol ve oksasilinin yedi suşa karşı sinerjistik
etki gösterdiği saptanmıştır (FICI≤0,5). Karvakrol, MRSA-6 suşunda membran
hasarına neden olmuştur. Oksasilin ile kombinasyonu sonucunda, MRSA-6 suşunun

membran
hasarındaki artış istatistiksel olarak anlamlı bulunmuştur (p<0,001).







Sonuç: Bu çalışmanın
sonuçlarına göre, karvakrol MRSA suşlarına karşı oksasilinin antibakteriyel
aktivitesini arttırmıştır. Bu yüzden karvakrol oksasilin ile birlikte MRSA
suşlarına karşı yeni bir antimikrobiyal ajan olarak kullanılabilir. Bununla
birlikte, bu çalışmanın sonuçları daha ileri çalışmalar ile desteklenmelidir.

Supporting Institution

Çalışma için herhangi bir kurumdan destek alınmamıştır.

References

  • 1. Boswihi SS, Udo EE. Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. CMRP. 2018; 8(1): 18-24.
  • 2. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010; 375(9725): 1557-68.
  • 3. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PloS One. 2011; 6(4): e17936.
  • 4. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013; 20(8-9): 714-8.
  • 5. Otto M. MRSA virulence and spread. Cell Microbiol. 2012; 14(10): 1513-21.
  • 6. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010; 23(3): 616-87.
  • 7. Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, et al. Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother. 2001; 45(11): 3198-201.
  • 8. Zhao WH, Hu ZQ, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001; 45(6): 1737-42.
  • 9. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med. 2015; 15(1): 178.
  • 10. Ben Arfa A, Combes S, Preziosi‐Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 2006; 43(2): 149-54.
  • 11. Cacciatore I, Di Giulio M, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, et al. Carvacrol codrugs: a new approach in the antimicrobial plan. PloS One. 2015; 10(4): e0120937.
  • 12. Periago PM, Moezelaar R. Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int J Food Microbiol. 2001; 68(1-2): 141-8.
  • 13. Sözmen F, Uysal B, Köse EO, Aktaş Ö, Cinbilgel I, Oksal BS. Extraction of the essential oil from endemic Origanum bilgeri PH Davis with two different methods: comparison of the oil composition and antibacterial activity. Chem Biodivers. 2012; 9(7): 1356-63.
  • 14. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-fifth ınformational supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
  • 15. Moody J. Synergism testing: broth microdilution checkerboard and broth macrodilution methods. In: Garcia LS, editor. Clinical Microbiology Procedures Handbook. Washington, DC: ASM Press; 2010. p. 5.12.11-5.12.23.
  • 16. Devi KP, Sakthivel R, Nisha SA, Suganthy N, Pandian SK. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Arch Pharm Res. 2013; 36(3): 282-92.
  • 17. Zuo GY, Wang GC, Zhao YB, Xu GL, Hao XY, Han J, et al. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J Ethnopharmacol. 2008; 120(2): 287-90.
  • 18. Dias C, Aires A, Saavedra MJ. Antimicrobial activity of isothiocyanates from cruciferous plants against methicillin-resistant Staphylococcus aureus (MRSA). Int J Mol Sci. 2014; 15(11): 19552-61.
  • 19. Eryılmaz M, Tosun A, Tümen İ. Pinaceae and Cupressaceae Familyalarına Ait Bazı Türlerin Antimikrobiyal Aktivitesi. Turk J Pharm Sci. 2016; 13(1): 35-40.
  • 20. Pehlivan M, Sevindik M. Antioxidant and antimicrobial activities of Salvia multicaulis. Turkish JAF Sci Tech. 2018; 6(5): 628-31.
  • 21. Lee YS, Kang OH, Choi JG, Oh YC, Chae HS, Kim JH, et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol. 2008; 46(3): 283-8.
  • 22. Mun SH, Kang OH, Kong R, Zhou T, Kim SA, Shin DW, et al. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J Pharm Sci. 2018; 137(4): 317-23.
  • 23. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001; 91(3): 453-62.
  • 24. Nostro A, Papalia T. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov. 2012; 7(1): 28-35.
  • 25. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol. 2008; 47(3): 174-9.
  • 26. Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front Microbiol. 2015; 6: 165.
  • 27. Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Jang HJ, et al. Antibacterial activity of methyl gallate isolated from Galla Rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules. 2009; 14(5): 1773-80.
  • 28. Odabaş Köse E, Koyuncu Özyurt Ö. Kolistin Dirençli Acinetobacter baumannii Suşlarına Karşı Karvakrol ile Kolistin Kombinasyonunun in vitro Değerlendirilmesi. Türk Mikrobiyoloji Cem Derg. 2019; 49(2): 67-73.
  • 29. Palaniappan K, Holley RA. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol. 2010; 140(2-3): 164-8.
  • 30. Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002; 68(4): 1561-8.
  • 31. Langeveld WT, Veldhuizen EJ, Burt SA. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 2014; 40(1): 76-94. 32. Boucher H, Miller LG, Razonable RR. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2010; 51(Supplement 2): 183-97.

In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains

Year 2020, Volume: 10 Issue: 2, 138 - 144, 31.05.2020
https://doi.org/10.33631/duzcesbed.633259

Abstract

Aim:
Methicillin-resistant
Staphylococcus
aureus
(MRSA) is one of the most resistant bacteria to antibiotics. Many
antibiotics are known to be insufficient to treat infections caused by these
bacteria. Plant-derived antibacterials have drawn more attention as a source of
new therapeutics. Carvacrol is a monoterpenic phenol compound found in various
essential oils and shows antimicrobial activity against many pathogens. In this
study, the combination activity of carvacrol and oxacillin against ten MRSA
clinical strains was evaluated.

Material and
Methods:

To determine Minimum Inhibitory Concentrations (MIC) of carvacrol and oxacillin
against ten MRSA clinical strains, broth microdilution method was performed.
The combination activity of carvacrol and oxacillin was determined with
checkerboard synergy test. Whether both antimicrobials and their combinations
caused membrane damage in MRSA-6 strain was detected by measuring the amount of
nucleic acid leaking out of the cell across membrane with UV spectrophotometer.

Results: Carvacrol showed
antibacterial activity against all MRSA strains with MIC values in the range of
64-256 µg/ml. The synergistic effect (FICI≤0.5) between carvacrol and oxacillin
was determined against seven strains. Carvacrol caused a membrane damage on
MRSA-6 strain.
  As a result of combination
with oxacillin,
  the increase in the
membrane damage of MRSA-6 strain was found to be statistically significant
(p<0.001).







Conclusion:
According to the results of this study, carvacrol increased the antibacterial
effect of oxacillin against MRSA strains. Thus, carvacrol can be used in
combination with oxacillin against MRSA as a novel antimicrobial agent.
However, the results of this study should be supported by further studies.

References

  • 1. Boswihi SS, Udo EE. Methicillin-resistant Staphylococcus aureus: an update on the epidemiology, treatment options and infection control. CMRP. 2018; 8(1): 18-24.
  • 2. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. Lancet. 2010; 375(9725): 1557-68.
  • 3. Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, et al. A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PloS One. 2011; 6(4): e17936.
  • 4. Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013; 20(8-9): 714-8.
  • 5. Otto M. MRSA virulence and spread. Cell Microbiol. 2012; 14(10): 1513-21.
  • 6. David MZ, Daum RS. Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev. 2010; 23(3): 616-87.
  • 7. Shimizu M, Shiota S, Mizushima T, Ito H, Hatano T, Yoshida T, et al. Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob Agents Chemother. 2001; 45(11): 3198-201.
  • 8. Zhao WH, Hu ZQ, Okubo S, Hara Y, Shimamura T. Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2001; 45(6): 1737-42.
  • 9. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med. 2015; 15(1): 178.
  • 10. Ben Arfa A, Combes S, Preziosi‐Belloy L, Gontard N, Chalier P. Antimicrobial activity of carvacrol related to its chemical structure. Lett Appl Microbiol. 2006; 43(2): 149-54.
  • 11. Cacciatore I, Di Giulio M, Fornasari E, Di Stefano A, Cerasa LS, Marinelli L, et al. Carvacrol codrugs: a new approach in the antimicrobial plan. PloS One. 2015; 10(4): e0120937.
  • 12. Periago PM, Moezelaar R. Combined effect of nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus. Int J Food Microbiol. 2001; 68(1-2): 141-8.
  • 13. Sözmen F, Uysal B, Köse EO, Aktaş Ö, Cinbilgel I, Oksal BS. Extraction of the essential oil from endemic Origanum bilgeri PH Davis with two different methods: comparison of the oil composition and antibacterial activity. Chem Biodivers. 2012; 9(7): 1356-63.
  • 14. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-fifth ınformational supplement. CLSI document M100-S25. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
  • 15. Moody J. Synergism testing: broth microdilution checkerboard and broth macrodilution methods. In: Garcia LS, editor. Clinical Microbiology Procedures Handbook. Washington, DC: ASM Press; 2010. p. 5.12.11-5.12.23.
  • 16. Devi KP, Sakthivel R, Nisha SA, Suganthy N, Pandian SK. Eugenol alters the integrity of cell membrane and acts against the nosocomial pathogen Proteus mirabilis. Arch Pharm Res. 2013; 36(3): 282-92.
  • 17. Zuo GY, Wang GC, Zhao YB, Xu GL, Hao XY, Han J, et al. Screening of Chinese medicinal plants for inhibition against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). J Ethnopharmacol. 2008; 120(2): 287-90.
  • 18. Dias C, Aires A, Saavedra MJ. Antimicrobial activity of isothiocyanates from cruciferous plants against methicillin-resistant Staphylococcus aureus (MRSA). Int J Mol Sci. 2014; 15(11): 19552-61.
  • 19. Eryılmaz M, Tosun A, Tümen İ. Pinaceae and Cupressaceae Familyalarına Ait Bazı Türlerin Antimikrobiyal Aktivitesi. Turk J Pharm Sci. 2016; 13(1): 35-40.
  • 20. Pehlivan M, Sevindik M. Antioxidant and antimicrobial activities of Salvia multicaulis. Turkish JAF Sci Tech. 2018; 6(5): 628-31.
  • 21. Lee YS, Kang OH, Choi JG, Oh YC, Chae HS, Kim JH, et al. Synergistic effects of the combination of galangin with gentamicin against methicillin-resistant Staphylococcus aureus. J Microbiol. 2008; 46(3): 283-8.
  • 22. Mun SH, Kang OH, Kong R, Zhou T, Kim SA, Shin DW, et al. Punicalagin suppresses methicillin resistance of Staphylococcus aureus to oxacillin. J Pharm Sci. 2018; 137(4): 317-23.
  • 23. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001; 91(3): 453-62.
  • 24. Nostro A, Papalia T. Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov. 2012; 7(1): 28-35.
  • 25. Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol. 2008; 47(3): 174-9.
  • 26. Magi G, Marini E, Facinelli B. Antimicrobial activity of essential oils and carvacrol, and synergy of carvacrol and erythromycin, against clinical, erythromycin-resistant Group A Streptococci. Front Microbiol. 2015; 6: 165.
  • 27. Choi JG, Kang OH, Lee YS, Oh YC, Chae HS, Jang HJ, et al. Antibacterial activity of methyl gallate isolated from Galla Rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules. 2009; 14(5): 1773-80.
  • 28. Odabaş Köse E, Koyuncu Özyurt Ö. Kolistin Dirençli Acinetobacter baumannii Suşlarına Karşı Karvakrol ile Kolistin Kombinasyonunun in vitro Değerlendirilmesi. Türk Mikrobiyoloji Cem Derg. 2019; 49(2): 67-73.
  • 29. Palaniappan K, Holley RA. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int J Food Microbiol. 2010; 140(2-3): 164-8.
  • 30. Ultee A, Bennik MHJ, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002; 68(4): 1561-8.
  • 31. Langeveld WT, Veldhuizen EJ, Burt SA. Synergy between essential oil components and antibiotics: a review. Crit Rev Microbiol. 2014; 40(1): 76-94. 32. Boucher H, Miller LG, Razonable RR. Serious infections caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2010; 51(Supplement 2): 183-97.
There are 31 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Articles
Authors

Elif Odabaş Köse 0000-0002-3943-571X

Özlem Koyuncu Özyurt This is me 0000-0003-1260-0671

Publication Date May 31, 2020
Submission Date October 15, 2019
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Odabaş Köse, E., & Koyuncu Özyurt, Ö. (2020). In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 10(2), 138-144. https://doi.org/10.33631/duzcesbed.633259
AMA Odabaş Köse E, Koyuncu Özyurt Ö. In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains. J DU Health Sci Inst. May 2020;10(2):138-144. doi:10.33631/duzcesbed.633259
Chicago Odabaş Köse, Elif, and Özlem Koyuncu Özyurt. “In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin Against Methicillin-Resistant Staphylococcus Aureus Strains”. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 10, no. 2 (May 2020): 138-44. https://doi.org/10.33631/duzcesbed.633259.
EndNote Odabaş Köse E, Koyuncu Özyurt Ö (May 1, 2020) In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 10 2 138–144.
IEEE E. Odabaş Köse and Ö. Koyuncu Özyurt, “In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains”, J DU Health Sci Inst, vol. 10, no. 2, pp. 138–144, 2020, doi: 10.33631/duzcesbed.633259.
ISNAD Odabaş Köse, Elif - Koyuncu Özyurt, Özlem. “In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin Against Methicillin-Resistant Staphylococcus Aureus Strains”. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 10/2 (May 2020), 138-144. https://doi.org/10.33631/duzcesbed.633259.
JAMA Odabaş Köse E, Koyuncu Özyurt Ö. In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains. J DU Health Sci Inst. 2020;10:138–144.
MLA Odabaş Köse, Elif and Özlem Koyuncu Özyurt. “In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin Against Methicillin-Resistant Staphylococcus Aureus Strains”. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol. 10, no. 2, 2020, pp. 138-44, doi:10.33631/duzcesbed.633259.
Vancouver Odabaş Köse E, Koyuncu Özyurt Ö. In Vitro Evaluation of the Combination Activity of Carvacrol and Oxacillin against Methicillin-Resistant Staphylococcus aureus Strains. J DU Health Sci Inst. 2020;10(2):138-44.