Bitcoin Crypto-Asset Prediction: With an Application of Linear Autoregressive Integrated Moving Average Method, and Non-Linear Multi-Layered and Feedback Artificial Neural Network Models
Year 2025,
Volume: 25 Issue: 1, 157 - 174
Ersın Sünbül
,
Hamide Özyürek
Abstract
The aim of the study is to evaluate two commonly used time series methods for forecasting Bitcoin (BTC) prices: the Autoregressive Integrated Moving Average (ARIMA) and the Multilayer Perceptron (MLP) Neural Network. The dataset consists of weekly BTC values from the period between 2020 and mid-2022, containing a total of 135 observations. The analyses were conducted using R-Studio software. The stationarity of the data was checked using ADF, PP, and KPSS unit root tests. For predictions, a linear method, ARIMA, and a nonlinear method, the MLP Neural Network model, were utilized. Although the MLP model demonstrated better performance, it is challenging to indicate a definitive superiority due to its limitations. The relatively low performance of both models may be attributed to the extreme volatility and speculative nature of cryptocurrencies, along with their tendency to behave independently of their underlying structures.
Ethical Statement
Çalışmada etik onay gerektiren bir içerik bulunmamaktadır.
Supporting Institution
yok
Thanks
Sayın dergi kurulu, sekreterya, editör ve değerlendirici hakemlere sonsuz şükranlarımı sunarım
References
- Ahmad, M., Khan, Y. A., Jiang, C., Kazmi, S. J. H., & Abbas, S. Z. (2023). The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe. International Journal of Finance & Economics, 28(1), 528-543.https://doi.org/10.1002/ijfe.2434
- Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705.
- Amiri, A., Tavana, M., & Arman, H. (2024). An Integrated Fuzzy Analytic Network Process and Fuzzy Regression Method for Bitcoin Price Prediction. Internet of Things, 25, 101027. https://doi.org/10.1016/j.iot.2023.101027
- Aras, S., Nguyen, A., White, A., & He, S. (2017). Comparing and combining MLP and NEAT for time series forecasting. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46(2), 147-160. https://doi.org/10.5152/iujsb.2017.001
- Armstrong, J. S. (2001). Principles of forecasting: a handbook for researchers and practitioners. Springer Science & Business Media. https://doi.org/10.1007/978-0-306-47630-3.
- Bâra, A., & Oprea, S. V. (2024). An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend. Engineering Applications of Artificial Intelligence, 133, 107991. https://doi.org/10.1016/j.engappai.2024.107991
- Benli, Y. K., &Tosunoğlu, N. G. (2014). Evaluate the Morgan Stanley Capital International Index of the European Union countries and forecast by artificial neural networks. Ankara Hacı Bayram Veli University Journal of the Faculty of Economics and Administrative Sciences, 16(2), 72-87.
- Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
- Cheng, J., Tiwari, S., Khaled, D., Mahendru, M., & Shahzad, U. (2024). Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models. Technological Forecasting and Social Change, 198, 122938. https://doi.org/10.1016/j.techfore.2023.122938
- Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49, 1057–1072.
- Dierksmeier, C., & Seele, P. (2018). Cryptocurrencies and business ethics. Journal of Business Ethics, 152, 1-14. https://doi.org/10.1007/s10551-016-3298-0
- Eğrioğlu, E., & Baş, E. (2020). Zaman serisi ve öngörü yöntemleri, (R Uygulamalı). Nobel Akademik Yayıncılık: Ankara.
- Elmas, Ç. (2018). Yapay zekâ uygulamaları. Ankara: Seçkin Yayınları.
- Esenyel, N. M. (2016). Comparative analysis of statistical methods for estimating exchange rate. (Unpublished Master Thesis). İstanbul University, İstanbul.
- Fadlalla, A., & Amani, F. (2014). Predicting next trading day closing price of Qatar exchange index using technical indicators and artificial neural networks. Intelligent Systems in Accounting, Finance and Management, 21(4), 209-223. https://doi.org/10.1002/isaf.1358
- Fox, J. (2016). Applied regression analysis and generalized linear models. Sage Publications. ISBN: 978-1483364980.
- Han, P., Chen, H., Rasool, A., Jiang, Q., & Yang, M. (2025). MFB: A Generalized Multimodal Fusion Approach for Bitcoin Price Prediction Using Time-Lagged Sentiment and Indicator Features. Expert Systems with Applications, 261, 125515. https://doi.org/10.1016/j.eswa.2024.125515
- He, X., Li, Y., & Li, H. (2024). Revolutionizing Bitcoin price forecasts: A comparative study of advanced hybrid deep learning architectures. Finance Research Letters, 69, 106136. https://doi.org/10.1016/j.frl.2024.106136
- Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.05.002.
- Kang, W., Yuan, X., Zhang, X., Chen, Y., & Li, J. (2024). ChatGPT-based Sentiment Analysis and Risk Prediction in the Bitcoin Market. Procedia Computer Science, 242, 211-218. https://doi.org/10.1016/j.procs.2024.08.258
- Koo, E., & Kim, G. (2024). Centralized decomposition approach in LSTM for Bitcoin price prediction. Expert Systems with Applications, 237, 121401. https://doi.org/10.1016/j.eswa.2023.121401
- Kourentzes, N., Petropoulos, F., & Spiliotis, E. (2014). Forecasting: methods and applications. in the handbook of statistics, 30, 245-272. https://doi.org/10.1016/B978-0-12-417159-6.00011-2.
- Kumar, B., & Yadav, N. (2023). A novel hybrid model combining βSARMA and LSTM for time series forecasting. Applied Soft Computing, 134, 110019. https://doi.org/10.1016/j.asoc.2023.110019
- Kumar, M. (2009). Nonlinear prediction of the Standard & Poor's 500 and the hang seng index under a dynamic increasing sample. Asian Academy of Management Journal of Accounting & Finance, 5(2).
- Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the Null Hypothesis of Stationarity Against the Alternative of A Unit Root. Journal of Econometrics. 54 (1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
- Liu, Y., Tsyvinski, A., & Wu, X. (2022). Common risk factors in cryptocurrency. The Journal of Finance, 77(2), 1133-1177. https://doi.org/10.1111/jofi.13119
- Makridakis, S., Assimakopoulos, V., & Spiliotis, E. (2018). Objectivity, reproducibility and replicability in forecasting research. International Journal of Forecasting, 34(4), 835-838. https://doi.org/10.1016/j.ijforecast.2018.05.001.
- Mallikarjuna, M., & Rao, R. P. (2019). Application of ARIMA, ANN and hybrid models to forecast the SENSEX returns. Wealth, 8(1), 14-19.
- Mostafa, F., Saha, P., Islam, M. R., & Nguyen, N. (2021). GJR-GARCH volatility modeling under NIG and ANN for predicting top cryptocurrencies. Journal of Risk and Financial Management, 14(9), 421.
- Park, S., & Yang, J. S. (2024). Machine learning models based on bubble analysis for Bitcoin market crash prediction. Engineering Applications of Artificial Intelligence, 135, 108857. https://doi.org/10.1016/j.engappai.2024.108857
- Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regressions. Biometrica, (75), 335-346.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://www.jstor.org/stable/2958889.
- Sharifi, A., Simangan, D., & Kaneko, S. (2021). Three decades of research on climate change and peace: A bibliometrics analysis. Sustainability Science, 16, 1079-1095.
- Smith, M. L., Beyers, F. J. C., & De Villiers, J. P. (2016). A method of parameterising a feed forward multi-layered perceptron artificial neural network, with reference to South African financial markets. South African Actuarial Journal, 16(1), 35-67.
- Stebliuk, N., Volosova, N., Nebaba, N., Yudina, O., Korneyev, M., & Zhuravka, F. (2023). Economic trends forecasting in the development of hotel business enterprises.
- Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32, 101084. https://doi.org/10.1016/j.frl.2018.12.032
- Temur, A. S., & Yıldız, Ş. (2021). Comparison of forecasting performance of ARIMA LSTM and HYBRID models for the sales volume budget of a manufacturing enterprise. Istanbul Business Research, 50(1), 15-46. https://doi.org/10.26650/ibr.2021.51.0117
- Tosunoğlu, N., & Benli, Y. K. (2012). Morgan Stanley Capital International Türkiye endeksinin yapay sinir ağları ile öngörüsü. Ege Akademik Bakış, 12(4), 541-547.
- Wang, X, Smith, K.A., & Hyndman, R.J. (2006). Characteristic-based clustering for time series data, Data Mining and Knowledge Discovery, 13.
- Webel, K., & Ollech, D. (2020). A random forest-based approach to identifying the most informative seasonality tests. Deutsche Bundesbank's Discussion Paper series 55/2020.
- Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
Year 2025,
Volume: 25 Issue: 1, 157 - 174
Ersın Sünbül
,
Hamide Özyürek
Abstract
Çalışmanın amacı, Bitcoin (BTC) fiyatlarının tahmininde yaygın olarak kullanılan iki zaman serisi yöntemini, Otoregresif Entegre Hareketli Ortalama (ARIMA) ve Çok Katmanlı Algılayıcı (MLP) Yapay Sinir Ağları (YSA), değerlendirmektir. Veri seti, 2020 ile 2022'nin ortası arasındaki dönemdeki haftalık BTC değerlerinden oluşmaktadır ve toplamda 135 gözlem içermektedir. Analizlerde R-Studio yazılımı kullanılmıştır. Verilerin durağanlığı, ADF, PP ve KPSS birim kök testleri ile kontrol edilmiştir. Tahminler için lineer bir yöntem olan ARIMA ve doğrusal olmayan bir yöntem olan MLP, YSA modeli kullanılmıştır. YSA modelinin daha iyi performans göstermesine rağmen, sınırlamalar nedeniyle kesin bir üstünlük belirtmek zordur. Her iki modelin de düşük performans göstermesinin olası nedeni, kripto varlıkların aşırı dalgalı ve spekülatif değerler taşıması ile iç yapılarından bağımsız hareket etme eğilimleridir.
References
- Ahmad, M., Khan, Y. A., Jiang, C., Kazmi, S. J. H., & Abbas, S. Z. (2023). The impact of COVID‐19 on unemployment rate: An intelligent based unemployment rate prediction in selected countries of Europe. International Journal of Finance & Economics, 28(1), 528-543.https://doi.org/10.1002/ijfe.2434
- Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705.
- Amiri, A., Tavana, M., & Arman, H. (2024). An Integrated Fuzzy Analytic Network Process and Fuzzy Regression Method for Bitcoin Price Prediction. Internet of Things, 25, 101027. https://doi.org/10.1016/j.iot.2023.101027
- Aras, S., Nguyen, A., White, A., & He, S. (2017). Comparing and combining MLP and NEAT for time series forecasting. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 46(2), 147-160. https://doi.org/10.5152/iujsb.2017.001
- Armstrong, J. S. (2001). Principles of forecasting: a handbook for researchers and practitioners. Springer Science & Business Media. https://doi.org/10.1007/978-0-306-47630-3.
- Bâra, A., & Oprea, S. V. (2024). An ensemble learning method for Bitcoin price prediction based on volatility indicators and trend. Engineering Applications of Artificial Intelligence, 133, 107991. https://doi.org/10.1016/j.engappai.2024.107991
- Benli, Y. K., &Tosunoğlu, N. G. (2014). Evaluate the Morgan Stanley Capital International Index of the European Union countries and forecast by artificial neural networks. Ankara Hacı Bayram Veli University Journal of the Faculty of Economics and Administrative Sciences, 16(2), 72-87.
- Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
- Cheng, J., Tiwari, S., Khaled, D., Mahendru, M., & Shahzad, U. (2024). Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models. Technological Forecasting and Social Change, 198, 122938. https://doi.org/10.1016/j.techfore.2023.122938
- Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49, 1057–1072.
- Dierksmeier, C., & Seele, P. (2018). Cryptocurrencies and business ethics. Journal of Business Ethics, 152, 1-14. https://doi.org/10.1007/s10551-016-3298-0
- Eğrioğlu, E., & Baş, E. (2020). Zaman serisi ve öngörü yöntemleri, (R Uygulamalı). Nobel Akademik Yayıncılık: Ankara.
- Elmas, Ç. (2018). Yapay zekâ uygulamaları. Ankara: Seçkin Yayınları.
- Esenyel, N. M. (2016). Comparative analysis of statistical methods for estimating exchange rate. (Unpublished Master Thesis). İstanbul University, İstanbul.
- Fadlalla, A., & Amani, F. (2014). Predicting next trading day closing price of Qatar exchange index using technical indicators and artificial neural networks. Intelligent Systems in Accounting, Finance and Management, 21(4), 209-223. https://doi.org/10.1002/isaf.1358
- Fox, J. (2016). Applied regression analysis and generalized linear models. Sage Publications. ISBN: 978-1483364980.
- Han, P., Chen, H., Rasool, A., Jiang, Q., & Yang, M. (2025). MFB: A Generalized Multimodal Fusion Approach for Bitcoin Price Prediction Using Time-Lagged Sentiment and Indicator Features. Expert Systems with Applications, 261, 125515. https://doi.org/10.1016/j.eswa.2024.125515
- He, X., Li, Y., & Li, H. (2024). Revolutionizing Bitcoin price forecasts: A comparative study of advanced hybrid deep learning architectures. Finance Research Letters, 69, 106136. https://doi.org/10.1016/j.frl.2024.106136
- Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.05.002.
- Kang, W., Yuan, X., Zhang, X., Chen, Y., & Li, J. (2024). ChatGPT-based Sentiment Analysis and Risk Prediction in the Bitcoin Market. Procedia Computer Science, 242, 211-218. https://doi.org/10.1016/j.procs.2024.08.258
- Koo, E., & Kim, G. (2024). Centralized decomposition approach in LSTM for Bitcoin price prediction. Expert Systems with Applications, 237, 121401. https://doi.org/10.1016/j.eswa.2023.121401
- Kourentzes, N., Petropoulos, F., & Spiliotis, E. (2014). Forecasting: methods and applications. in the handbook of statistics, 30, 245-272. https://doi.org/10.1016/B978-0-12-417159-6.00011-2.
- Kumar, B., & Yadav, N. (2023). A novel hybrid model combining βSARMA and LSTM for time series forecasting. Applied Soft Computing, 134, 110019. https://doi.org/10.1016/j.asoc.2023.110019
- Kumar, M. (2009). Nonlinear prediction of the Standard & Poor's 500 and the hang seng index under a dynamic increasing sample. Asian Academy of Management Journal of Accounting & Finance, 5(2).
- Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the Null Hypothesis of Stationarity Against the Alternative of A Unit Root. Journal of Econometrics. 54 (1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
- Liu, Y., Tsyvinski, A., & Wu, X. (2022). Common risk factors in cryptocurrency. The Journal of Finance, 77(2), 1133-1177. https://doi.org/10.1111/jofi.13119
- Makridakis, S., Assimakopoulos, V., & Spiliotis, E. (2018). Objectivity, reproducibility and replicability in forecasting research. International Journal of Forecasting, 34(4), 835-838. https://doi.org/10.1016/j.ijforecast.2018.05.001.
- Mallikarjuna, M., & Rao, R. P. (2019). Application of ARIMA, ANN and hybrid models to forecast the SENSEX returns. Wealth, 8(1), 14-19.
- Mostafa, F., Saha, P., Islam, M. R., & Nguyen, N. (2021). GJR-GARCH volatility modeling under NIG and ANN for predicting top cryptocurrencies. Journal of Risk and Financial Management, 14(9), 421.
- Park, S., & Yang, J. S. (2024). Machine learning models based on bubble analysis for Bitcoin market crash prediction. Engineering Applications of Artificial Intelligence, 135, 108857. https://doi.org/10.1016/j.engappai.2024.108857
- Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regressions. Biometrica, (75), 335-346.
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://www.jstor.org/stable/2958889.
- Sharifi, A., Simangan, D., & Kaneko, S. (2021). Three decades of research on climate change and peace: A bibliometrics analysis. Sustainability Science, 16, 1079-1095.
- Smith, M. L., Beyers, F. J. C., & De Villiers, J. P. (2016). A method of parameterising a feed forward multi-layered perceptron artificial neural network, with reference to South African financial markets. South African Actuarial Journal, 16(1), 35-67.
- Stebliuk, N., Volosova, N., Nebaba, N., Yudina, O., Korneyev, M., & Zhuravka, F. (2023). Economic trends forecasting in the development of hotel business enterprises.
- Sun, X., Liu, M., & Sima, Z. (2020). A novel cryptocurrency price trend forecasting model based on LightGBM. Finance Research Letters, 32, 101084. https://doi.org/10.1016/j.frl.2018.12.032
- Temur, A. S., & Yıldız, Ş. (2021). Comparison of forecasting performance of ARIMA LSTM and HYBRID models for the sales volume budget of a manufacturing enterprise. Istanbul Business Research, 50(1), 15-46. https://doi.org/10.26650/ibr.2021.51.0117
- Tosunoğlu, N., & Benli, Y. K. (2012). Morgan Stanley Capital International Türkiye endeksinin yapay sinir ağları ile öngörüsü. Ege Akademik Bakış, 12(4), 541-547.
- Wang, X, Smith, K.A., & Hyndman, R.J. (2006). Characteristic-based clustering for time series data, Data Mining and Knowledge Discovery, 13.
- Webel, K., & Ollech, D. (2020). A random forest-based approach to identifying the most informative seasonality tests. Deutsche Bundesbank's Discussion Paper series 55/2020.
- Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.