Research Article
BibTex RIS Cite

On the Depth of Independence Complexes

Year 2017, Volume: 3 Issue: 1, 42 - 44, 30.04.2017

Abstract

Let G be a graph and I Gbe its edge ideal so we call Stanley-Reisner ring of G . The depth of a ring is a well-studied and important algebraic invariant in commutative algebra. In this paper we give some results on the depth of Stanley- Reisner rings of graphs and simplicial complexes. By depth Lemma we reduce the computing depth of a codismantlable graph into its induced subgraphs.




References

  • AUSLANDER M., BUCHSBAUM D. A., (1957). Homological dimension in local rings. Trans. Amer. Math Soc.; 85: no. 2, 390-405. BIYIKOĞLU T., CİVAN Y., (2014). Vertex decomposable graphs, codismantlability, Cohen- Macaulayness and Castelnuovo-Mumford regularity. Electronic J. Combin.; 16:2: 1-17. CHARTRAND G., ZHANG P., (2008). Chromatic graph theory. Chapman and Hall/CRC Press. DAO H., SCHWEIG J., (2013). Projective dimension, graph domination parameters, and independence complex homology, J. Combin. Theory. Ser. A; 120: 453-469. FRÖBERG R., (1990). On Stanley-Reisner rings, Topics in Algebra, Banach Center Publications, Polish Scientific Publishers; 26:2: 57-69. GITLER I., VALENCIA C.E., (2005). Bounds for invariants of edge-rings. Comm. Algebra; 33: 1603- 1616. KHOS-AHANG F., MORADI S., (2014). Rregularity and projective dimension of the edge ideal of 5 C -free vertex-decomposable graphs. Proc. AMS; 142:5: 1567- 1576. KUMMINI M., (2009). Regularity, depth and arithmetic rank of bipartite edge ideals. J Algebra Comb; 30: 4429-445. MOREY S., (2010). Depths of powers of the edge ideal of a tree, Comm. Algebra; 38: 4042-4055. REISNER G. A., (1976). Cohen-macaulay quotients of polynomial rings. Adv. in Maths.; 21: 30-49. VİLLARREAL R.H., (1990). Cohen Macaulay graphs. Manuscripta Maths.; 66: 3, 277-293. VİLLARREAL R.H., (2015). Monomial algebras, 2nd edition. Chapman and Hall/CRC Press.
Year 2017, Volume: 3 Issue: 1, 42 - 44, 30.04.2017

Abstract

References

  • AUSLANDER M., BUCHSBAUM D. A., (1957). Homological dimension in local rings. Trans. Amer. Math Soc.; 85: no. 2, 390-405. BIYIKOĞLU T., CİVAN Y., (2014). Vertex decomposable graphs, codismantlability, Cohen- Macaulayness and Castelnuovo-Mumford regularity. Electronic J. Combin.; 16:2: 1-17. CHARTRAND G., ZHANG P., (2008). Chromatic graph theory. Chapman and Hall/CRC Press. DAO H., SCHWEIG J., (2013). Projective dimension, graph domination parameters, and independence complex homology, J. Combin. Theory. Ser. A; 120: 453-469. FRÖBERG R., (1990). On Stanley-Reisner rings, Topics in Algebra, Banach Center Publications, Polish Scientific Publishers; 26:2: 57-69. GITLER I., VALENCIA C.E., (2005). Bounds for invariants of edge-rings. Comm. Algebra; 33: 1603- 1616. KHOS-AHANG F., MORADI S., (2014). Rregularity and projective dimension of the edge ideal of 5 C -free vertex-decomposable graphs. Proc. AMS; 142:5: 1567- 1576. KUMMINI M., (2009). Regularity, depth and arithmetic rank of bipartite edge ideals. J Algebra Comb; 30: 4429-445. MOREY S., (2010). Depths of powers of the edge ideal of a tree, Comm. Algebra; 38: 4042-4055. REISNER G. A., (1976). Cohen-macaulay quotients of polynomial rings. Adv. in Maths.; 21: 30-49. VİLLARREAL R.H., (1990). Cohen Macaulay graphs. Manuscripta Maths.; 66: 3, 277-293. VİLLARREAL R.H., (2015). Monomial algebras, 2nd edition. Chapman and Hall/CRC Press.
There are 1 citations in total.

Details

Journal Section Volume 3 Issue 1
Authors

Alper Ülker This is me

Publication Date April 30, 2017
Published in Issue Year 2017 Volume: 3 Issue: 1

Cite

APA Ülker, A. (2017). On the Depth of Independence Complexes. Eastern Anatolian Journal of Science, 3(1), 42-44.
AMA Ülker A. On the Depth of Independence Complexes. Eastern Anatolian Journal of Science. April 2017;3(1):42-44.
Chicago Ülker, Alper. “On the Depth of Independence Complexes”. Eastern Anatolian Journal of Science 3, no. 1 (April 2017): 42-44.
EndNote Ülker A (April 1, 2017) On the Depth of Independence Complexes. Eastern Anatolian Journal of Science 3 1 42–44.
IEEE A. Ülker, “On the Depth of Independence Complexes”, Eastern Anatolian Journal of Science, vol. 3, no. 1, pp. 42–44, 2017.
ISNAD Ülker, Alper. “On the Depth of Independence Complexes”. Eastern Anatolian Journal of Science 3/1 (April 2017), 42-44.
JAMA Ülker A. On the Depth of Independence Complexes. Eastern Anatolian Journal of Science. 2017;3:42–44.
MLA Ülker, Alper. “On the Depth of Independence Complexes”. Eastern Anatolian Journal of Science, vol. 3, no. 1, 2017, pp. 42-44.
Vancouver Ülker A. On the Depth of Independence Complexes. Eastern Anatolian Journal of Science. 2017;3(1):42-4.