Research Article
BibTex RIS Cite
Year 2020, Volume: 6 Issue: 2, 22 - 34, 16.12.2020

Abstract

References

  • AGRANOVICH, Z.S., MARCHENCO, V.A., (1963). The inverse problem of scattering theory, Gordon and Breach Science Publisher, New York-London,.
  • AMIROV, R.K., (2006). On Sturm-Liouville operators with discontiniuity conditions inside an interval, Journal of Mathematical Analysis and Applications, 137, 163-176.
  • BELLMANN, R, (1970). Introduktion to matrix analysis (2nd ed.) McGraw-Hill................................................................................
  • BOAS, R.P., (1954). Entire functions, Academic press, New York,.................................................................................................................
  • CARVENT, J.M., DAVISON, W.D. (1969). Oscillation theory and computational procedures for matrix Sturm-Liouville eigenvalue problems with an application to the hydrogen molecular ion, Journal of Physics A Mathematical and General. (2) 278-292.
  • ERGÜN, A., AMİROV, R.K, (2019). Direct and Inverse problem for Diffusion operator with Discontinuoity points, TWMS J. App. Eng. Math. 9, 9-21.
  • GASYMOV, M.G., GUSEINOV, G.Sh, (1981). Determination diffusion operator on spectral data, SSSR Dokl. 37, 19-23. ......................
  • GUSEINOV, G.Sh. (1985). On the spectral analysis of a quadratic pencil of Sturm-Liouville operators, Soviet Mathematics Doklayd. 32, 859-862....................
  • KAUFFMAN, R.M., ZHANG, H.K, (2003). A class of ordinary differential operators with jump boundary conditions, Evolution equations, Lecture notes in Pure and Appl. Math. 234, 253-274....................
  • KONG, Q. (2002). Multiplicities of eigenvalues of a vector-valued Sturm-Liouville Problem, Mathematica. 49, (1-2), 119-127....................
  • KOYUNBAKAN, H., PANAKHOV, E.S. (2007). Half inverse problem for diffusion operators on the finite interval, J. Math. Anal. Appl. 326, 1024-1030.
  • LEVITAN, B. M. (1984). Inverse Sturm-Liouville Problems, Moscow: Nauka, (Engl.Transl.1987 (Utrecth: VNU Science Press).
  • LEVITAN, B.M., SARGSYAN, I.S. (1975). Introduction to Spectral Theory, Amer. Math. Soc. .............................................................
  • MARCHENCO, V.A., (1986). Sturm-Liouville Operators and Applications. AMS: Chelsea Publishing, ....................................
  • MUKHTAROV, O., YAKUBOV, S. (2002). Problem for ordinary differential equations with transmission conditions, Appl. Anal. 81, 1033-1064.
  • MULLER, G. (1985). The reflectivity method: a tutorial, J. Geophys. 58, 153-174..........................
  • SHEN, C. L., SHIEH, C. (1999). On the multiplicity of eigenvalues of a vectorial Sturm-Liouville differential equations and some related spectral problems, Proc. Amer. Math. Soc. 127, 2943-2952.
  • TITCHMARSH, E.C. (1932). The Theory of Functions, Oxford at the clarendon press, London, 1932..........................
  • VAKANAS, L.P. (1994). A scattering parameter based method for the transient analysis of lossy coupled nonlinearly terminated transmission line systems in high-speed microelectronic circuits. IEEE Transactions on Components Packaging and Manufacturing Technology Part B. 17, 472-479·
  • WANG, A.P., SUN, J., ZETTL, A. (2007). Two-interval Sturm-Liouville operators in modified Hilbert spaces, Journal of Mathematical Analysis and Applications. 328, 390-399.............
  • YANG, C.F., HUANG, Z.Y., YANG, X.P. (2007). The multiplicity of spectra of a vectorial Sturm-Liouville differential equation of dimension two and some applications, Rock Mountain Journal of Mathematics, 37 , 1379-1398................
  • YURKO, V. A. (2007). Introduction to the Theory of Inverse Spectral Problems. Russian: Fizmatlit.........................................

The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions

Year 2020, Volume: 6 Issue: 2, 22 - 34, 16.12.2020

Abstract

In this paper, we are studied m-dimensional vectorial diffusion equation with jump conditions inside a finite interval. We obtain some conclusions about multiplicity of the eigenvalues based on the estimation of solutions. Asymptotic formules of eigenfunctions in each interval are obtained. Also, properties related to the characteristic function of the problem are given and proven. We prove that, under certain conditions on potential matrix, the problem can only have a finite number of eigenvalues with multiplicity m.

References

  • AGRANOVICH, Z.S., MARCHENCO, V.A., (1963). The inverse problem of scattering theory, Gordon and Breach Science Publisher, New York-London,.
  • AMIROV, R.K., (2006). On Sturm-Liouville operators with discontiniuity conditions inside an interval, Journal of Mathematical Analysis and Applications, 137, 163-176.
  • BELLMANN, R, (1970). Introduktion to matrix analysis (2nd ed.) McGraw-Hill................................................................................
  • BOAS, R.P., (1954). Entire functions, Academic press, New York,.................................................................................................................
  • CARVENT, J.M., DAVISON, W.D. (1969). Oscillation theory and computational procedures for matrix Sturm-Liouville eigenvalue problems with an application to the hydrogen molecular ion, Journal of Physics A Mathematical and General. (2) 278-292.
  • ERGÜN, A., AMİROV, R.K, (2019). Direct and Inverse problem for Diffusion operator with Discontinuoity points, TWMS J. App. Eng. Math. 9, 9-21.
  • GASYMOV, M.G., GUSEINOV, G.Sh, (1981). Determination diffusion operator on spectral data, SSSR Dokl. 37, 19-23. ......................
  • GUSEINOV, G.Sh. (1985). On the spectral analysis of a quadratic pencil of Sturm-Liouville operators, Soviet Mathematics Doklayd. 32, 859-862....................
  • KAUFFMAN, R.M., ZHANG, H.K, (2003). A class of ordinary differential operators with jump boundary conditions, Evolution equations, Lecture notes in Pure and Appl. Math. 234, 253-274....................
  • KONG, Q. (2002). Multiplicities of eigenvalues of a vector-valued Sturm-Liouville Problem, Mathematica. 49, (1-2), 119-127....................
  • KOYUNBAKAN, H., PANAKHOV, E.S. (2007). Half inverse problem for diffusion operators on the finite interval, J. Math. Anal. Appl. 326, 1024-1030.
  • LEVITAN, B. M. (1984). Inverse Sturm-Liouville Problems, Moscow: Nauka, (Engl.Transl.1987 (Utrecth: VNU Science Press).
  • LEVITAN, B.M., SARGSYAN, I.S. (1975). Introduction to Spectral Theory, Amer. Math. Soc. .............................................................
  • MARCHENCO, V.A., (1986). Sturm-Liouville Operators and Applications. AMS: Chelsea Publishing, ....................................
  • MUKHTAROV, O., YAKUBOV, S. (2002). Problem for ordinary differential equations with transmission conditions, Appl. Anal. 81, 1033-1064.
  • MULLER, G. (1985). The reflectivity method: a tutorial, J. Geophys. 58, 153-174..........................
  • SHEN, C. L., SHIEH, C. (1999). On the multiplicity of eigenvalues of a vectorial Sturm-Liouville differential equations and some related spectral problems, Proc. Amer. Math. Soc. 127, 2943-2952.
  • TITCHMARSH, E.C. (1932). The Theory of Functions, Oxford at the clarendon press, London, 1932..........................
  • VAKANAS, L.P. (1994). A scattering parameter based method for the transient analysis of lossy coupled nonlinearly terminated transmission line systems in high-speed microelectronic circuits. IEEE Transactions on Components Packaging and Manufacturing Technology Part B. 17, 472-479·
  • WANG, A.P., SUN, J., ZETTL, A. (2007). Two-interval Sturm-Liouville operators in modified Hilbert spaces, Journal of Mathematical Analysis and Applications. 328, 390-399.............
  • YANG, C.F., HUANG, Z.Y., YANG, X.P. (2007). The multiplicity of spectra of a vectorial Sturm-Liouville differential equation of dimension two and some applications, Rock Mountain Journal of Mathematics, 37 , 1379-1398................
  • YURKO, V. A. (2007). Introduction to the Theory of Inverse Spectral Problems. Russian: Fizmatlit.........................................
There are 22 citations in total.

Details

Primary Language English
Journal Section makaleler
Authors

Abdullah Ergün 0000-0002-2795-8097

Publication Date December 16, 2020
Published in Issue Year 2020 Volume: 6 Issue: 2

Cite

APA Ergün, A. (2020). The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions. Eastern Anatolian Journal of Science, 6(2), 22-34.
AMA Ergün A. The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions. Eastern Anatolian Journal of Science. December 2020;6(2):22-34.
Chicago Ergün, Abdullah. “The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation With Discontinuous Conditions”. Eastern Anatolian Journal of Science 6, no. 2 (December 2020): 22-34.
EndNote Ergün A (December 1, 2020) The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions. Eastern Anatolian Journal of Science 6 2 22–34.
IEEE A. Ergün, “The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions”, Eastern Anatolian Journal of Science, vol. 6, no. 2, pp. 22–34, 2020.
ISNAD Ergün, Abdullah. “The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation With Discontinuous Conditions”. Eastern Anatolian Journal of Science 6/2 (December 2020), 22-34.
JAMA Ergün A. The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions. Eastern Anatolian Journal of Science. 2020;6:22–34.
MLA Ergün, Abdullah. “The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation With Discontinuous Conditions”. Eastern Anatolian Journal of Science, vol. 6, no. 2, 2020, pp. 22-34.
Vancouver Ergün A. The Multiplicity of Eigenvalues of A Vectorial Singular Diffusion Equation with Discontinuous Conditions. Eastern Anatolian Journal of Science. 2020;6(2):22-34.