Year 2022,
Volume: 8 Issue: 2, 1 - 5, 15.12.2022
Nizami Mustafa
,
Semra Korkmaz
References
- BRANNAN, D.A. & CLUNIE, J. (1980). Aspects of contemporary complex analysis. Academic Press, London and New York, USA.
- BRANNAN, D.A. & TAHA, T.S. (1986). On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Mathematics, 31, 70-77.
- DUREN, P.L. (1983). Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New- York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
- GRENANDER, U. & SZEGÖ, G. (1958). Toeplitz Form and Their Applications. California Monographs in Mathematical Sciences, University California Press, Berkeley
- FEKETE, M. & SZEGÖ, G. (1993). Eine Bemerkung Über Ungerade Schlichte Funktionen. Journal of the London Mathematical Society, 8, 85-89.
- LEWIN, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68.
- MUSTAFA, N. (2017). Fekete- Szegö Problem for Certain Subclass of Analytic and Bi- Univalent Functions. Journal of Scientific and Engineering Reserch, 4(8), 30-400.
- MUSTAFA, N. & GÜNDÜZ, M.C. (2019). The Fekete-Szegö Problem for Certain Class of Analytic and Univalent Functions. Journal of Scientific and Engineering Reserch, 6(5), 232-239.
- MUSTAFA, N. & MURUGUSUNDARAMOORTHY,G. (2021). Second Hankel for Mocanu Type Bi-Starlike Functions Related to Shell Shaped Region. Turkish Journal of Mathematics, 45, 1270-1286.
- NETANYAHU, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function. Archive for Rational Mechanics and Analysis, 32, 100-112.
- SRIVASTAVA, H.M., MISHRA, A.K. and GOCHHAYAT, P. (2010). Certain sublcasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192.
- ZAPRAWA, P. (2014). On the Fekete- Szegö Problem for the Classes of Bi-Univalent Functions. Bulletin of the Belgain Mathematical Society, 21, 169-178.
- XU, Q.H., XIAO, G. and SRIVASTAVA, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465.
Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions
Year 2022,
Volume: 8 Issue: 2, 1 - 5, 15.12.2022
Nizami Mustafa
,
Semra Korkmaz
Abstract
In this study, we introduce and examine a certain subclass of analytic functions on the open unit disk in the complex plane. Here, we give coefficient bound estimates and investigate the Fekete-Szegö problem for this class. Some interesting special cases of the results obtained here are also discussed.
References
- BRANNAN, D.A. & CLUNIE, J. (1980). Aspects of contemporary complex analysis. Academic Press, London and New York, USA.
- BRANNAN, D.A. & TAHA, T.S. (1986). On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Mathematics, 31, 70-77.
- DUREN, P.L. (1983). Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New- York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
- GRENANDER, U. & SZEGÖ, G. (1958). Toeplitz Form and Their Applications. California Monographs in Mathematical Sciences, University California Press, Berkeley
- FEKETE, M. & SZEGÖ, G. (1993). Eine Bemerkung Über Ungerade Schlichte Funktionen. Journal of the London Mathematical Society, 8, 85-89.
- LEWIN, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68.
- MUSTAFA, N. (2017). Fekete- Szegö Problem for Certain Subclass of Analytic and Bi- Univalent Functions. Journal of Scientific and Engineering Reserch, 4(8), 30-400.
- MUSTAFA, N. & GÜNDÜZ, M.C. (2019). The Fekete-Szegö Problem for Certain Class of Analytic and Univalent Functions. Journal of Scientific and Engineering Reserch, 6(5), 232-239.
- MUSTAFA, N. & MURUGUSUNDARAMOORTHY,G. (2021). Second Hankel for Mocanu Type Bi-Starlike Functions Related to Shell Shaped Region. Turkish Journal of Mathematics, 45, 1270-1286.
- NETANYAHU, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function. Archive for Rational Mechanics and Analysis, 32, 100-112.
- SRIVASTAVA, H.M., MISHRA, A.K. and GOCHHAYAT, P. (2010). Certain sublcasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192.
- ZAPRAWA, P. (2014). On the Fekete- Szegö Problem for the Classes of Bi-Univalent Functions. Bulletin of the Belgain Mathematical Society, 21, 169-178.
- XU, Q.H., XIAO, G. and SRIVASTAVA, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465.