Research Article
BibTex RIS Cite
Year 2022, Volume: 8 Issue: 2, 1 - 5, 15.12.2022

Abstract

References

  • BRANNAN, D.A. & CLUNIE, J. (1980). Aspects of contemporary complex analysis. Academic Press, London and New York, USA.
  • BRANNAN, D.A. & TAHA, T.S. (1986). On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Mathematics, 31, 70-77.
  • DUREN, P.L. (1983). Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New- York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
  • GRENANDER, U. & SZEGÖ, G. (1958). Toeplitz Form and Their Applications. California Monographs in Mathematical Sciences, University California Press, Berkeley
  • FEKETE, M. & SZEGÖ, G. (1993). Eine Bemerkung Über Ungerade Schlichte Funktionen. Journal of the London Mathematical Society, 8, 85-89.
  • LEWIN, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68.
  • MUSTAFA, N. (2017). Fekete- Szegö Problem for Certain Subclass of Analytic and Bi- Univalent Functions. Journal of Scientific and Engineering Reserch, 4(8), 30-400.
  • MUSTAFA, N. & GÜNDÜZ, M.C. (2019). The Fekete-Szegö Problem for Certain Class of Analytic and Univalent Functions. Journal of Scientific and Engineering Reserch, 6(5), 232-239.
  • MUSTAFA, N. & MURUGUSUNDARAMOORTHY,G. (2021). Second Hankel for Mocanu Type Bi-Starlike Functions Related to Shell Shaped Region. Turkish Journal of Mathematics, 45, 1270-1286.
  • NETANYAHU, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function. Archive for Rational Mechanics and Analysis, 32, 100-112.
  • SRIVASTAVA, H.M., MISHRA, A.K. and GOCHHAYAT, P. (2010). Certain sublcasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192.
  • ZAPRAWA, P. (2014). On the Fekete- Szegö Problem for the Classes of Bi-Univalent Functions. Bulletin of the Belgain Mathematical Society, 21, 169-178.
  • XU, Q.H., XIAO, G. and SRIVASTAVA, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465.

Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions

Year 2022, Volume: 8 Issue: 2, 1 - 5, 15.12.2022

Abstract

In this study, we introduce and examine a certain subclass of analytic functions on the open unit disk in the complex plane. Here, we give coefficient bound estimates and investigate the Fekete-Szegö problem for this class. Some interesting special cases of the results obtained here are also discussed.

References

  • BRANNAN, D.A. & CLUNIE, J. (1980). Aspects of contemporary complex analysis. Academic Press, London and New York, USA.
  • BRANNAN, D.A. & TAHA, T.S. (1986). On some classes of bi-univalent functions. Studia Univ. Babes-Bolyai Mathematics, 31, 70-77.
  • DUREN, P.L. (1983). Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New- York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
  • GRENANDER, U. & SZEGÖ, G. (1958). Toeplitz Form and Their Applications. California Monographs in Mathematical Sciences, University California Press, Berkeley
  • FEKETE, M. & SZEGÖ, G. (1993). Eine Bemerkung Über Ungerade Schlichte Funktionen. Journal of the London Mathematical Society, 8, 85-89.
  • LEWIN, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society, 18, 63-68.
  • MUSTAFA, N. (2017). Fekete- Szegö Problem for Certain Subclass of Analytic and Bi- Univalent Functions. Journal of Scientific and Engineering Reserch, 4(8), 30-400.
  • MUSTAFA, N. & GÜNDÜZ, M.C. (2019). The Fekete-Szegö Problem for Certain Class of Analytic and Univalent Functions. Journal of Scientific and Engineering Reserch, 6(5), 232-239.
  • MUSTAFA, N. & MURUGUSUNDARAMOORTHY,G. (2021). Second Hankel for Mocanu Type Bi-Starlike Functions Related to Shell Shaped Region. Turkish Journal of Mathematics, 45, 1270-1286.
  • NETANYAHU, E. (1969). The minimal distance of the image boundary from the origin and the second coefficient of a univalent function. Archive for Rational Mechanics and Analysis, 32, 100-112.
  • SRIVASTAVA, H.M., MISHRA, A.K. and GOCHHAYAT, P. (2010). Certain sublcasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23, 1188-1192.
  • ZAPRAWA, P. (2014). On the Fekete- Szegö Problem for the Classes of Bi-Univalent Functions. Bulletin of the Belgain Mathematical Society, 21, 169-178.
  • XU, Q.H., XIAO, G. and SRIVASTAVA, H.M. (2012). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation, 218, 11461-11465.
There are 13 citations in total.

Details

Primary Language English
Journal Section makaleler
Authors

Nizami Mustafa 0000-0002-2758-0274

Semra Korkmaz 0000-0002-7846-9779

Publication Date December 15, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

APA Mustafa, N., & Korkmaz, S. (2022). Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions. Eastern Anatolian Journal of Science, 8(2), 1-5.
AMA Mustafa N, Korkmaz S. Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions. Eastern Anatolian Journal of Science. December 2022;8(2):1-5.
Chicago Mustafa, Nizami, and Semra Korkmaz. “Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions”. Eastern Anatolian Journal of Science 8, no. 2 (December 2022): 1-5.
EndNote Mustafa N, Korkmaz S (December 1, 2022) Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions. Eastern Anatolian Journal of Science 8 2 1–5.
IEEE N. Mustafa and S. Korkmaz, “Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions”, Eastern Anatolian Journal of Science, vol. 8, no. 2, pp. 1–5, 2022.
ISNAD Mustafa, Nizami - Korkmaz, Semra. “Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions”. Eastern Anatolian Journal of Science 8/2 (December 2022), 1-5.
JAMA Mustafa N, Korkmaz S. Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions. Eastern Anatolian Journal of Science. 2022;8:1–5.
MLA Mustafa, Nizami and Semra Korkmaz. “Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions”. Eastern Anatolian Journal of Science, vol. 8, no. 2, 2022, pp. 1-5.
Vancouver Mustafa N, Korkmaz S. Coefficient Bound Estimates and Fekete-Szegö Problem for a Certain Class Analytic Functions. Eastern Anatolian Journal of Science. 2022;8(2):1-5.