Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 2, 27 - 36, 31.12.2024

Abstract

References

  • ALSPACH, D. E. (1981). A fixed point free nonexpansive map. Proceedings of the American Mathematical Society, 82(3), 423-424. ANSARI, A. A., & CHAUDHRY, V. K. (2012). On Köthe-Toeplitz duals of some new and generalized difference sequence spaces. Ital. J. Pure Appl. Math., 29: 135-148.
  • BEKTAŞ, Ç. A., ET, M., & ÇOLAK, R. (2004). Generalized difference sequence spaces and their dual spaces. Journal of Mathematical Analysis and Applications, 292(2): 423-432.
  • BERINDE, V., & PĂCURAR, M. (2021). Fixed points theorems for unsaturated and saturated classes of contractive mappings in Banach spaces. Symmetry, 13(4), 713.
  • BROWDER, F. E. (1965). Fixed-point theorems for noncompact mappings in Hilbert space. Proceedings of the National Academy of Sciences, 53(6), 1272-1276.
  • BROWDER, F. E. (1965). Nonexpansive nonlinear operators in a Banach space. Proceedings of the National Academy of Sciences, 54(4), 1041-1044.
  • ÇOLAK, R. (1989). On some generalized sequence spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 38: 35-46.
  • DALBY, T. (2024). Uniformly nonsquare Banach spaces have the fixed point property 1. arXiv preprint arXiv:2403.16007.
  • DOWLING, P. N., LENNARD, C. J., & TURETT, B. (2000). Some fixed point results in l^1 and c_0. Nonlinear Analysis-Series A Theory and Methods and Series B Real World Applications, 39(7), 929.
  • ET, M. (1996). On some generalized Cesàro difference sequence spaces. İstanbul University Science Faculty the Journal of Mathematics Physics and Astronomy, 55, 221-229.
  • ET, M., & ÇOLAK, R. (1995). On some generalized difference sequence spaces. Soochow Journal of Mathematics, 21(4), 377-386.
  • ET, M., & ESI, A. (2000). On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull. Malays. Math. Sci. Soc, 23(1), 25-32.
  • ET, M., & IŞIK, M. (2012). On pα-dual spaces of generalized difference sequence spaces. Applied Mathematics Letters, 25(10), 1486-1489.
  • EVEREST, T. M. (2013). Fixed points of nonexpansive maps on closed, bounded, convex sets in l^1 (Doctoral dissertation, University of Pittsburgh).
  • GOEBEL, K., & KIRK, W. A. (1973). A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia Math, 47(1), 135-140.
  • GOEBEL, K., & KIRK, W. A. (1990). Topics in metric fixed point theory. Cambridge Studies in Advanced Mathematics/Cambridge University Press, 28.
  • GOEBEL, K., & KUCZUMOW, T. (1979). Irregular convex sets with fixed-point property for nonexpansive mappings. In Colloquium Mathematicum (Vol. 2, No. 40, pp. 259-264).
  • GÖHDE, D. (1965). Zum prinzip der kontraktiven abbildung. Mathematische Nachrichten, 30(3‐4), 251-258. KACZOR, W., & PRUS, S. (2004). Fixed point properties of some sets in l^1. In Proceedings of the International Conference on Fixed Point Theory and Applications, 11p.
  • KIZMAZ, H. (1981). On certain sequence spaces. Canadian Mathematical Bulletin, 24(2):169-176. KIRK, W. A. (1965). A fixed point theorem for mappings which do not increase distances. The American mathematical monthly, 72(9):1004- 1006.
  • LIM, T. C. (1983). Fixed point theorems for uniformly Lipschitzian mappings in Lp spaces. Nonlinear Analysis: Theory, Methods & Applications, 7(5), 555-563.
  • LIN, P. K. (2008). There is an equivalent norm on ℓ1 that has the fixed point property. Nonlinear Analysis: Theory, Methods & Applications, 68(8):2303-2308.
  • HERNÁNDEZ-LINARES, C. A., & JAPÓN, M. A. (2012). Renormings and fixed point property in non-commutative L1-spaces II: Affine mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(13):5357-5361.
  • LINDERSTRAUSS, J., & TZAFRIRI, L. (1977). Classical Banach Spaces I: sequence spaces. Springer-Verlag. LINDENSTRAUSS, J., & TZAFRIRI, L. (2013). Classical Banach spaces II: function spaces (Vol. 97). Springer Science & Business Media.
  • LAEL, F., & HEIDARPOUR, Z. (2016). Fixed point theorems for a class of generalized nonexpansive mappings. Fixed Point Theory and Applications, 2016, 1-7.
  • OPPENHEIM, I. (2023). Banach property (T) for SL_n (Z) and its applications. Inventiones mathematicae, 234(2), 893-930.
  • ORHAN, C. (1983). Casaro Differance Sequence Spaces and Related Matrix Transformations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 32:55-63.
  • LAEL, F., & HEIDARPOUR, Z. (2016). Fixed point theorems for a class of generalized nonexpansive mappings. Fixed Point Theory and Applications, 2016, 1-7.
  • SCHAUDER, J. (1930). Der fixpunktsatz in funktionalraümen. Studia Mathematica, 2(1), 171-180. SHIUE, J. S. (1970). On the Cesaro sequence spaces. Tamkang J. Math, 1(1):19-25.
  • TRIPATHY, B. C., ESI, A., & TRIPATHY, B. (2005). On new types of generalized difference Cesaro sequence spaces. Soochow Journal of Mathematics, 31(3):333-340.

On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces

Year 2024, Volume: 10 Issue: 2, 27 - 36, 31.12.2024

Abstract

In 2000, Et and Esi introduced new type of generalized difference sequences by using the structure of Çolak’s work from 1989 where he defined new types of sequence spaces while Çolak was also inspired by Kızmaz’s idea about the difference operator he studied in 1981. Then, using Et and Esi’s structure, Ansari and Chaudhry, in 2012, introduced a new type of generalized difference sequence spaces. Changing Ansari and Chaudhry’s construction slightly, Et and Işık, in 2012, obtained new type of generalized difference sequence spaces which have equivalent norm to that of Ansari and Chaudhry’s type Banach spaces. Then, Et and Işık found α-duals of the Banach spaces they got and investigated geometric properties for them. In this study, we consider Et and Işık’s work and study α-duals of their generalized difference sequence spaces. We take their study in terms of fixed point theory and find large classes of closed, bounded and convex subsets in those duals with fixed point property for nonexpansive mappings.

Thanks

The first author is currently supported by The Scientific and Technological Research Council of Türkiye with the grant number 1059B192300789. The work had been conducted way before his grant.

References

  • ALSPACH, D. E. (1981). A fixed point free nonexpansive map. Proceedings of the American Mathematical Society, 82(3), 423-424. ANSARI, A. A., & CHAUDHRY, V. K. (2012). On Köthe-Toeplitz duals of some new and generalized difference sequence spaces. Ital. J. Pure Appl. Math., 29: 135-148.
  • BEKTAŞ, Ç. A., ET, M., & ÇOLAK, R. (2004). Generalized difference sequence spaces and their dual spaces. Journal of Mathematical Analysis and Applications, 292(2): 423-432.
  • BERINDE, V., & PĂCURAR, M. (2021). Fixed points theorems for unsaturated and saturated classes of contractive mappings in Banach spaces. Symmetry, 13(4), 713.
  • BROWDER, F. E. (1965). Fixed-point theorems for noncompact mappings in Hilbert space. Proceedings of the National Academy of Sciences, 53(6), 1272-1276.
  • BROWDER, F. E. (1965). Nonexpansive nonlinear operators in a Banach space. Proceedings of the National Academy of Sciences, 54(4), 1041-1044.
  • ÇOLAK, R. (1989). On some generalized sequence spaces. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 38: 35-46.
  • DALBY, T. (2024). Uniformly nonsquare Banach spaces have the fixed point property 1. arXiv preprint arXiv:2403.16007.
  • DOWLING, P. N., LENNARD, C. J., & TURETT, B. (2000). Some fixed point results in l^1 and c_0. Nonlinear Analysis-Series A Theory and Methods and Series B Real World Applications, 39(7), 929.
  • ET, M. (1996). On some generalized Cesàro difference sequence spaces. İstanbul University Science Faculty the Journal of Mathematics Physics and Astronomy, 55, 221-229.
  • ET, M., & ÇOLAK, R. (1995). On some generalized difference sequence spaces. Soochow Journal of Mathematics, 21(4), 377-386.
  • ET, M., & ESI, A. (2000). On Köthe-Toeplitz duals of generalized difference sequence spaces. Bull. Malays. Math. Sci. Soc, 23(1), 25-32.
  • ET, M., & IŞIK, M. (2012). On pα-dual spaces of generalized difference sequence spaces. Applied Mathematics Letters, 25(10), 1486-1489.
  • EVEREST, T. M. (2013). Fixed points of nonexpansive maps on closed, bounded, convex sets in l^1 (Doctoral dissertation, University of Pittsburgh).
  • GOEBEL, K., & KIRK, W. A. (1973). A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia Math, 47(1), 135-140.
  • GOEBEL, K., & KIRK, W. A. (1990). Topics in metric fixed point theory. Cambridge Studies in Advanced Mathematics/Cambridge University Press, 28.
  • GOEBEL, K., & KUCZUMOW, T. (1979). Irregular convex sets with fixed-point property for nonexpansive mappings. In Colloquium Mathematicum (Vol. 2, No. 40, pp. 259-264).
  • GÖHDE, D. (1965). Zum prinzip der kontraktiven abbildung. Mathematische Nachrichten, 30(3‐4), 251-258. KACZOR, W., & PRUS, S. (2004). Fixed point properties of some sets in l^1. In Proceedings of the International Conference on Fixed Point Theory and Applications, 11p.
  • KIZMAZ, H. (1981). On certain sequence spaces. Canadian Mathematical Bulletin, 24(2):169-176. KIRK, W. A. (1965). A fixed point theorem for mappings which do not increase distances. The American mathematical monthly, 72(9):1004- 1006.
  • LIM, T. C. (1983). Fixed point theorems for uniformly Lipschitzian mappings in Lp spaces. Nonlinear Analysis: Theory, Methods & Applications, 7(5), 555-563.
  • LIN, P. K. (2008). There is an equivalent norm on ℓ1 that has the fixed point property. Nonlinear Analysis: Theory, Methods & Applications, 68(8):2303-2308.
  • HERNÁNDEZ-LINARES, C. A., & JAPÓN, M. A. (2012). Renormings and fixed point property in non-commutative L1-spaces II: Affine mappings. Nonlinear Analysis: Theory, Methods & Applications, 75(13):5357-5361.
  • LINDERSTRAUSS, J., & TZAFRIRI, L. (1977). Classical Banach Spaces I: sequence spaces. Springer-Verlag. LINDENSTRAUSS, J., & TZAFRIRI, L. (2013). Classical Banach spaces II: function spaces (Vol. 97). Springer Science & Business Media.
  • LAEL, F., & HEIDARPOUR, Z. (2016). Fixed point theorems for a class of generalized nonexpansive mappings. Fixed Point Theory and Applications, 2016, 1-7.
  • OPPENHEIM, I. (2023). Banach property (T) for SL_n (Z) and its applications. Inventiones mathematicae, 234(2), 893-930.
  • ORHAN, C. (1983). Casaro Differance Sequence Spaces and Related Matrix Transformations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 32:55-63.
  • LAEL, F., & HEIDARPOUR, Z. (2016). Fixed point theorems for a class of generalized nonexpansive mappings. Fixed Point Theory and Applications, 2016, 1-7.
  • SCHAUDER, J. (1930). Der fixpunktsatz in funktionalraümen. Studia Mathematica, 2(1), 171-180. SHIUE, J. S. (1970). On the Cesaro sequence spaces. Tamkang J. Math, 1(1):19-25.
  • TRIPATHY, B. C., ESI, A., & TRIPATHY, B. (2005). On new types of generalized difference Cesaro sequence spaces. Soochow Journal of Mathematics, 31(3):333-340.
There are 28 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section makaleler
Authors

Veysel Nezir

Nizami Mustafa 0000-0002-2758-0274

Early Pub Date December 28, 2024
Publication Date December 31, 2024
Submission Date October 27, 2024
Acceptance Date December 18, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Nezir, V., & Mustafa, N. (2024). On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces. Eastern Anatolian Journal of Science, 10(2), 27-36.
AMA Nezir V, Mustafa N. On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces. Eastern Anatolian Journal of Science. December 2024;10(2):27-36.
Chicago Nezir, Veysel, and Nizami Mustafa. “On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-Duals of Certain Difference Sequence Spaces”. Eastern Anatolian Journal of Science 10, no. 2 (December 2024): 27-36.
EndNote Nezir V, Mustafa N (December 1, 2024) On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces. Eastern Anatolian Journal of Science 10 2 27–36.
IEEE V. Nezir and N. Mustafa, “On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces”, Eastern Anatolian Journal of Science, vol. 10, no. 2, pp. 27–36, 2024.
ISNAD Nezir, Veysel - Mustafa, Nizami. “On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-Duals of Certain Difference Sequence Spaces”. Eastern Anatolian Journal of Science 10/2 (December 2024), 27-36.
JAMA Nezir V, Mustafa N. On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces. Eastern Anatolian Journal of Science. 2024;10:27–36.
MLA Nezir, Veysel and Nizami Mustafa. “On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-Duals of Certain Difference Sequence Spaces”. Eastern Anatolian Journal of Science, vol. 10, no. 2, 2024, pp. 27-36.
Vancouver Nezir V, Mustafa N. On the Fixed Point Property for Nonexpansive Mappings on Large Classes in α-duals of Certain Difference Sequence Spaces. Eastern Anatolian Journal of Science. 2024;10(2):27-36.