Review
BibTex RIS Cite

Yapay Zekâ Çağında Dijital Uçurumu Yeniden Düşünmek: Eğitime Yönelik Altı Boyutlu Bir Kavramsal Çerçeve

Year 2025, Volume: 13 Issue: 17, 1 - 28, 31.12.2025

Abstract

Bu çalışma, üretken yapay zekâ (ÜYZ) çağında dijital uçurumun niteliğini yeniden değerlendirmekte ve literatürde parçalı olarak ele alınan tartışmaları bütünleşik bir kuramsal çerçevede bir araya getirmektedir. Dijital uçurum geleneksel olarak erişim, beceri ve kullanım çıktıları üzerinden tanımlansa da, ÜYZ’nin hızlı yayılımı bu alanları hem derinleştirmekte hem de teknolojik gelişmeler ile toplumsal eşitsizlikler arasındaki etkileşim sonucunda farklı şekillerde yeniden tanımlamaktadır. Çalışma, dijital uçurumun üç temel boyutunu (erişim; beceri/dijital–algoritmik–ÜYZ okuryazarlıkları; çıktı ve fayda) ve bunları çapraz olarak etkileyen üç sosyoteknik ekseni (etik düzenlemeler ve yönetim, coğrafya ve kurumsal kapasite, kültür–dil–epistemik adalet) birlikte ele alan bir kavramsal model önermektedir. Bu model, ÜYZ’nin ortaya çıkardığı eşitsizliklerin yalnızca erişim veya bireysel kullanım becerilerinden değil, aynı zamanda kurumsal farklılıklardan, politik düzenlemelerden ve epistemik temsil sorunlarından da beslendiğini göstermektedir. Eğitim bağlamına uygulandığında, bu yaklaşım öğrenci, öğretmen ve kurum düzeyinde ortaya çıkan farklılaşmaları sistematik biçimde görünür kılmakta ve ÜYZ çağındaki dijital eşitsizliklerin anlaşılmasına yönelik özgün bir analiz çerçevesi sunmaktadır. Çalışma ayrıca dijital uçurumu azaltmaya yönelik politika önerilerini mikro, kurumsal ve makro düzeyleri kapsayan bir yönetim perspektifinden tartışmaktadır.

References

  • Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of economic perspectives, 33(2), 3-30. https://doi.org/10.1257/jep.33.2.3
  • Archambault, S. G. (2023). Expanding on the frames: Making a case for algorithmic literacy. Communications in Information Literacy, 17(2), 11. https://doi.org/10.15760/comminfolit.2023.17.2.11
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Mitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21), 610–623. https://doi.org/10.1145/3442188.3445922
  • Birhane, A. (2021). Algorithmic injustice: A relational ethics approach. Patterns, 2(2), 100205. https://doi.org/10.1016/j.patter.2021.100205
  • Brynjolfsson, E., & McAfee, A. (2015). Will humans go the way of horses. Foreign Aff., 94, 8.
  • Capraro, V., Lentsch, A., Acemoglu, D., Akgun, S., Akhmedova, A., Bilancini, E., ... & Viale, R. (2024). The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS nexus, 3(6), pgae191. https://doi.org/10.1093/pnasnexus/pgae191
  • Couldry, N., & Mejias, U. A. (2019). The costs of connection: How data is colonizing human life and appropriating it for capitalism.Stanford University Press.
  • Cruces, G. A., Amarante, V., & Lotitto, E. (2024). Generative artificial intelligence and its implications for labor markets in developing countries: a review essay. Documentos de Trabajo del CEDLAS. http://sedici.unlp.edu.ar/handle/10915/174949
  • Daepp, M. I., & Counts, S. (2025). The Emerging Generative Artificial Intelligence Divide in the United States. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 19, pp. 443-456). https://doi.org/10.1609/icwsm.v19i1.35825
  • Eshet, Y. (2012). Thinking in the digital era: A revised model for digital literacy. Issues in informing science and information technology, 9(2), 267-276.
  • García-López, I. M., & Trujillo-Liñán, L. (2025). Ethical and regulatory challenges of Generative AI in education: a systematic review. In Frontiers in Education (Vol. 10, p. 1681252). Frontiers. https://doi.org/10.3389/feduc.2025.1565938
  • Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86–92. https://doi.org/10.1145/3458723
  • Gonzales, S. (2024). AI literacy and the new Digital Divide — A global call for action. UNESCO. https://www.unesco.org/ethics-ai/en/articles/ai-literacy-and-new-digital-divide-global-call-action
  • Hargittai, E. (2001). Second-level digital divide: Mapping differences in people's online skills. arXiv preprint cs/0109068. https://doi.org/10.48550/arXiv.cs/0109068
  • Lythreatis, S., Singh, S. K., & El-Kassar, A. N. (2022). The digital divide: A review and future research agenda. Technological Forecasting and Social Change, 175, 121359. https://doi.org/10.1016/j.techfore.2021.121359
  • Matsieli, M., & Mutula, S. (2025). Generative AI and the 4 Society: Ethical Reflections from Libraries. Information, 16(9), 771. https://doi.org/10.3390/info16090771
  • Mohammed, A. L., Kutar, M., & Albakri, M. (2024). Conceptualising the artificial intelligence divide: A systematic literature review and research agenda. In UK Academy for Information Systems Conference Proceedings 2024 (Article 14). https://aisel.aisnet.org/ukais2024/14/
  • Nguyen, T. N., & Truong, H. T. (2025). Trends and emerging themes in the effects of generative artificial intelligence in education: A systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 21(4), em2613. https://doi.org/10.29333/ejmste/16124
  • Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York University Press.
  • Oeldorf-Hirsch, A., & Neubaum, G. (2025). What do we know about algorithmic literacy? The status quo and a research agenda for a growing field. New Media & Society, 27(2), 681-701. https://doi.org/10.1177/14614448231182662
  • Shoval, D. H. (2025). Artificial intelligence in higher education: Bridging or widening the educational divide? Education Sciences, 15(5), 637. https://doi.org/10.3390/educsci15050637
  • Srnicek, N. (2017). Platform capitalism. Polity Press.
  • UNDP. (2025). The Next Great Divergence: Why AI May Widen Inequality Between Countries. United Nations Development Programme. https://www.undp.org/asia-pacific/publications/next-great-divergence
  • Van Dijk, J. (2020). The digital divide. John Wiley & Sons.
  • Van Dijk, J. A. (2006). Digital divide research, achievements and shortcomings. Poetics, 34(4-5), 221-235. https://doi.org/10.1016/j.poetic.2006.05.004
  • Vesna, L., Sawale, P. S., Kaul, P., Pal, S., & Murthy, B. S. R. (2025). Digital divide in AI-powered education: Challenges and solutions for equitable learning. Journal of Information Systems Engineering and Management, 10(21s), 300–308. https://doi.org/10.52783/jisem.v10i21s.3327
  • Vieriu, A. M. (2025). The impact of artificial intelligence (AI) on students’ learning processes and academic performance. Education Sciences, 15(3), 343. https://doi.org/10.3390/educsci15030343
  • Wang, N., Wang, X., & Su, Y. S. (2024). Critical analysis of the technological affordances, challenges and future directions of Generative AI in education: a systematic review. Asia Pacific Journal of Education, 44(1), 139-155. https://doi.org/10.1080/02188791.2024.2305156
  • Xiaoyu, W., Zainuddin, Z., & Hai Leng, C. (2025). Generative artificial intelligence in pedagogical practices: a systematic review of empirical studies (2022–2024). Cogent Education, 12(1), 2485499. https://doi.org/10.1080/2331186X.2025.2485499
  • Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.

The Generative AI Era and the Reconfiguration of the Digital Divide: A Six-Dimension Educational Framework

Year 2025, Volume: 13 Issue: 17, 1 - 28, 31.12.2025

Abstract

This study reassesses the nature of the digital divide in the age of generative artificial intelligence (GenAI) and integrates fragmented discussions in the literature into a coherent conceptual framework. Although the digital divide has traditionally been defined through differences in access, skills, and usage outcomes, the rapid diffusion of generative AI deepens these dimensions and reshapes them through the interaction between technological developments and existing social inequalities. The study proposes a conceptual model that brings together three core dimensions of the digital divide (access; skills/digital–algorithmic–GenAI literacies; outcomes and benefits) and three cross-cutting sociotechnical axes (ethical regulations and governance, geography and institutional capacity, culture–language–epistemic justice). This model demonstrates that inequalities emerging in the context of generative AI stem not only from access or individual usage skills but also from institutional disparities, regulatory environments, and challenges of epistemic representation. When applied to the field of education, the model systematically highlights variations at the student, teacher, and institutional levels, offering a novel analytical lens for understanding digital inequalities in the generative AI era. The study further discusses policy recommendations for mitigating the digital divide from a governance perspective that encompasses micro, institutional, and macro levels.

References

  • Acemoglu, D., & Restrepo, P. (2019). Automation and new tasks: How technology displaces and reinstates labor. Journal of economic perspectives, 33(2), 3-30. https://doi.org/10.1257/jep.33.2.3
  • Archambault, S. G. (2023). Expanding on the frames: Making a case for algorithmic literacy. Communications in Information Literacy, 17(2), 11. https://doi.org/10.15760/comminfolit.2023.17.2.11
  • Bender, E. M., Gebru, T., McMillan-Major, A., & Mitchell, S. (2021). On the dangers of stochastic parrots: Can language models be too big? Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ’21), 610–623. https://doi.org/10.1145/3442188.3445922
  • Birhane, A. (2021). Algorithmic injustice: A relational ethics approach. Patterns, 2(2), 100205. https://doi.org/10.1016/j.patter.2021.100205
  • Brynjolfsson, E., & McAfee, A. (2015). Will humans go the way of horses. Foreign Aff., 94, 8.
  • Capraro, V., Lentsch, A., Acemoglu, D., Akgun, S., Akhmedova, A., Bilancini, E., ... & Viale, R. (2024). The impact of generative artificial intelligence on socioeconomic inequalities and policy making. PNAS nexus, 3(6), pgae191. https://doi.org/10.1093/pnasnexus/pgae191
  • Couldry, N., & Mejias, U. A. (2019). The costs of connection: How data is colonizing human life and appropriating it for capitalism.Stanford University Press.
  • Cruces, G. A., Amarante, V., & Lotitto, E. (2024). Generative artificial intelligence and its implications for labor markets in developing countries: a review essay. Documentos de Trabajo del CEDLAS. http://sedici.unlp.edu.ar/handle/10915/174949
  • Daepp, M. I., & Counts, S. (2025). The Emerging Generative Artificial Intelligence Divide in the United States. In Proceedings of the International AAAI Conference on Web and Social Media (Vol. 19, pp. 443-456). https://doi.org/10.1609/icwsm.v19i1.35825
  • Eshet, Y. (2012). Thinking in the digital era: A revised model for digital literacy. Issues in informing science and information technology, 9(2), 267-276.
  • García-López, I. M., & Trujillo-Liñán, L. (2025). Ethical and regulatory challenges of Generative AI in education: a systematic review. In Frontiers in Education (Vol. 10, p. 1681252). Frontiers. https://doi.org/10.3389/feduc.2025.1565938
  • Gebru, T., Morgenstern, J., Vecchione, B., Vaughan, J. W., Wallach, H., Daumé III, H., & Crawford, K. (2021). Datasheets for datasets. Communications of the ACM, 64(12), 86–92. https://doi.org/10.1145/3458723
  • Gonzales, S. (2024). AI literacy and the new Digital Divide — A global call for action. UNESCO. https://www.unesco.org/ethics-ai/en/articles/ai-literacy-and-new-digital-divide-global-call-action
  • Hargittai, E. (2001). Second-level digital divide: Mapping differences in people's online skills. arXiv preprint cs/0109068. https://doi.org/10.48550/arXiv.cs/0109068
  • Lythreatis, S., Singh, S. K., & El-Kassar, A. N. (2022). The digital divide: A review and future research agenda. Technological Forecasting and Social Change, 175, 121359. https://doi.org/10.1016/j.techfore.2021.121359
  • Matsieli, M., & Mutula, S. (2025). Generative AI and the 4 Society: Ethical Reflections from Libraries. Information, 16(9), 771. https://doi.org/10.3390/info16090771
  • Mohammed, A. L., Kutar, M., & Albakri, M. (2024). Conceptualising the artificial intelligence divide: A systematic literature review and research agenda. In UK Academy for Information Systems Conference Proceedings 2024 (Article 14). https://aisel.aisnet.org/ukais2024/14/
  • Nguyen, T. N., & Truong, H. T. (2025). Trends and emerging themes in the effects of generative artificial intelligence in education: A systematic review. Eurasia Journal of Mathematics, Science and Technology Education, 21(4), em2613. https://doi.org/10.29333/ejmste/16124
  • Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York University Press.
  • Oeldorf-Hirsch, A., & Neubaum, G. (2025). What do we know about algorithmic literacy? The status quo and a research agenda for a growing field. New Media & Society, 27(2), 681-701. https://doi.org/10.1177/14614448231182662
  • Shoval, D. H. (2025). Artificial intelligence in higher education: Bridging or widening the educational divide? Education Sciences, 15(5), 637. https://doi.org/10.3390/educsci15050637
  • Srnicek, N. (2017). Platform capitalism. Polity Press.
  • UNDP. (2025). The Next Great Divergence: Why AI May Widen Inequality Between Countries. United Nations Development Programme. https://www.undp.org/asia-pacific/publications/next-great-divergence
  • Van Dijk, J. (2020). The digital divide. John Wiley & Sons.
  • Van Dijk, J. A. (2006). Digital divide research, achievements and shortcomings. Poetics, 34(4-5), 221-235. https://doi.org/10.1016/j.poetic.2006.05.004
  • Vesna, L., Sawale, P. S., Kaul, P., Pal, S., & Murthy, B. S. R. (2025). Digital divide in AI-powered education: Challenges and solutions for equitable learning. Journal of Information Systems Engineering and Management, 10(21s), 300–308. https://doi.org/10.52783/jisem.v10i21s.3327
  • Vieriu, A. M. (2025). The impact of artificial intelligence (AI) on students’ learning processes and academic performance. Education Sciences, 15(3), 343. https://doi.org/10.3390/educsci15030343
  • Wang, N., Wang, X., & Su, Y. S. (2024). Critical analysis of the technological affordances, challenges and future directions of Generative AI in education: a systematic review. Asia Pacific Journal of Education, 44(1), 139-155. https://doi.org/10.1080/02188791.2024.2305156
  • Xiaoyu, W., Zainuddin, Z., & Hai Leng, C. (2025). Generative artificial intelligence in pedagogical practices: a systematic review of empirical studies (2022–2024). Cogent Education, 12(1), 2485499. https://doi.org/10.1080/2331186X.2025.2485499
  • Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. PublicAffairs.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Instructional Technologies
Journal Section Review
Authors

Sezan Sezgin 0000-0002-0878-591X

Submission Date November 29, 2025
Acceptance Date December 28, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 13 Issue: 17

Cite

APA Sezgin, S. (2025). Yapay Zekâ Çağında Dijital Uçurumu Yeniden Düşünmek: Eğitime Yönelik Altı Boyutlu Bir Kavramsal Çerçeve. Mehmet Akif Ersoy Üniversitesi Eğitim Bilimleri Enstitüsü Dergisi, 13(17), 1-28.

Mehmet Akif Ersoy University Journal of Institute of Educational Sciences (MAKÜ-EBED) is a national, peer-reviewed, and scientific journal that aims to contribute to science by sharing developments in educational sciences, field education, and teacher training both in Turkey and worldwide on a scientific platform. Our journal is published online once a year, and all articles are offered as open access.