Araştırma Makalesi
BibTex RIS Kaynak Göster

METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ

Yıl 2026, Sayı: Advanced Online Publication, 149 - 167
https://doi.org/10.46482/ebyuiibfdergi.1816735

Öz

Bu çalışmada, kargo firmalarının mobil uygulamalarında kullanıcı deneyimleri metin madenciliği ve çok kriterli karar verme (ÇKKV) yöntemleri ile analiz edilmiştir. Google Play ve App Store üzerinden toplanan kullanıcı yorumları, performans kriterlerinin belirlenmesi ve stratejik önerilerin geliştirilmesi amacıyla detaylı bir şekilde incelenmiştir. Elde edilen bulgular, özellikle TrendyolExpress’in kullanıcı memnuniyetinde diğer firmalara göre belirgin bir üstünlük sağladığını gösterirken Hepsijet ve Yurtiçi Kargo’nun iyileştirme alanları bulunduğunu ortaya koymaktadır. Metin madenciliği ile yapılan bigram analizleri, kullanıcı deneyimlerini derinlemesine anlamada önemli bir araç olarak işlev görmektedir. WENSLO ve LODECI yöntemlerinin uygulanması sonucunda SDB ve TP+ kriterlerinin, müşteri memnuniyetinin artırılmasında belirleyici olduğu tespit edilmiştir. Sonuç olarak bu çalışma, kargo firmalarının kullanıcı deneyimlerini geliştirmeye yönelik stratejik süreçlerde kullanılabilecek somut ve bilimsel bir temel sunmaktadır.

Kaynakça

  • Abdeen, M., Hamed, A., & Wu, X. (2021). Fighting the covid-19 infodemic in new articles and false publications: neonet, a text-based supervised machine learning algorithm. https://doi.org/10.20944/preprints202106.0482.v2
  • Adyatma, A., Afuan, L., & Maryanto, E. (2023). The effect of unigram and bigram in the naïve bayes multinomial for analyzing of comment sentiment of gojek application in google play store. Jurnal Teknik Informatika (Jutif), 4(6), 1535-1540. https://doi.org/10.52436/1.jutif.2023.4.6.1310
  • Albijanić, I., Milošević, M., & Jeremić, V. (2022). Exploring the factors which impact the customers’ online purchase intentions. Proceedings of the 4th International Conference on Statistics: Theory and Applications. https://doi.org/10.11159/icsta22.102
  • Algamash, F. A., Mashi, M. S., & Alam, M. N. (2022). Understanding the antecedents of use of e-commerce and consumers’ e-loyalty in Saudi Arabia amid the COVID-19 pandemic. Sustainability, 14(22), 14894. https://doi.org/10.3390/su142214894
  • Altrabsheh, N., Kontonatsios, G., & Korkontzelos, I. (2019). Evaluating the accuracy and efficiency of sentiment analysis pipelines with uima., 286-294. https://doi.org/10.1007/978-3-030-23281-8_23
  • Bani-Doumi, M., Serrano-Guerrero, J., Chiclana, F., Romero, F. P., & Olivas, J. A. (2024). A picture fuzzy set multi criteria decision-making approach to customize hospital recommendations based on patient feedback. Applied Soft Computing, 153, 111331. https://doi.org/10.1016/j.asoc.2024.111331
  • Chen, C. H., & Feng-lin, W. (2023). Exploring the innovative application of Azure cloud computing platform in cross-border e-commerce operation. Frontiers in Computing and Intelligent Systems, 4(2), 21–26. https://doi.org/10.54097/fcis.v4i2.9746
  • Cheng, C., Sakai, T., Alho, A. R., Cheah, L., & Ben‐Akiva, M. (2021). Exploring the relationship between locational and household characteristics and e-commerce home delivery demand. Logistics, 5(2), 29. https://doi.org/10.3390/logistics5020029
  • Çalı, S., & Balaman, Ş. Y. (2019). Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment. Computers & Industrial Engineering, 129, 315–332. https://doi.org/10.1016/j.cie.2019.01.051
  • Fan, Z.-P., Xi, Y., & Liu, Y. (2018). Supporting consumer’s purchase decision: A method for ranking products based on online multi-attribute product ratings. Soft Computing, 22(16), 5247–5261. https://doi.org/10.1007/s00500-017-2961-4
  • Heidary Dahooie, J., Raafat, R., Qorbani, A. R., & Daim, T. (2021). An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. Technological Forecasting and Social Change, 173, 121158. https://doi.org/10.1016/j.techfore.2021.121158
  • Hu, J., Zhang, X., Yang, Y., Liu, Y., & Chen, X. (2020). New doctors ranking system based on VIKOR method. International Transactions in Operational Research, 27(2), 1236–1261. https://doi.org/10.1111/itor.12569
  • Indrawan, G., Setiawan, H., & Gunadi, A. (2022). Multi-class svm classification comparison for health service satisfaction survey data in bahasa. Hightech and Innovation Journal, 3(4), 425-442. https://doi.org/10.28991/hij-2022-03-04-05
  • Ji, H., Yang, S., Jia, B., Zhang, M., & Su, B. (2024). Study on location selection of urban two-level joint express delivery stations considering fair cost allocation among enterprises. Transportation Research Record: Journal of the Transportation Research Board, 2678(10), 1551–1568. https://doi.org/10.1177/03611981241239651
  • Ji, P., Zhang, H.-Y., & Wang, J.-Q. (2019). A fuzzy decision support model with sentiment analysis for items comparison in e-commerce: The case study of http://PConline.com. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(10), 1993–2004. https://doi.org/10.1109/TSMC.2018.2875163
  • Laksono, S. I., Aritonang, Y. K., & Lesmono, D. (2020). The model for location routing problem with roaming delivery locations. Jurnal Teknik Industri, 21(2), 174–184. https://doi.org/10.22219/jtiumm.vol21.no2.174-184
  • Liang, R., & Wang, J. (2019). A linguistic intuitionistic cloud decision support model with sentiment analysis for product selection in e-commerce. International Journal of Fuzzy Systems, 21(3), 963–977. https://doi.org/10.1007/s40815-019-00606-0
  • Lu, H., Ning, K., Li, Y., Zhan, Q., Xie, J., & Wang, C. (2019). Utilizing recurrent neural network for topic discovery in short text scenarios1. Intelligent Data Analysis, 23(2), 259-277. https://doi.org/10.3233/ida-183842
  • Mock, W. Y. (2022). Rise of online shopping in Shopee: Is Shopee Xpress satisfying to consumers? International Journal of Tourism & Hospitality in Asia Pasific, 5(3), 105–116. https://doi.org/10.32535/ijthap.v5i3.1903
  • Ng, C., Lam, S., & Liu, K. (2022). Sentiment analysis on consumers’ opinions – Evaluating online retailers through analyzing sentiment for face masks during COVID-19 pandemic. Journal of Industrial and Production Engineering, 39(7), 535–551. https://doi.org/10.1080/21681015.2022.2070933
  • Pala, O., Atçeken, Ö., Omurtak, H., & Şimşir, B. (2024). BİST çimento sektöründe LODECI ve CRADIS ile finansal performans analizi. Alanya Akademik Bakış, 8(3), 956-970.
  • Pamucar, D., Ecer, F., Gligorić, Z., Gligorić, M., & Deveci, M. (2023). A novel WENSLO and ALWAS multicriteria methodology and its application to green growth performance evaluation. IEEE Transactions on Engineering Management, 71, 9510-9525.
  • Punetha, N., & Jain, G. (2023). Game theory and MCDM-based unsupervised sentiment analysis of restaurant reviews. Applied Intelligence, 53(17), 20152–20173. https://doi.org/10.1007/s10489-023-04471-1
  • Punetha, N., & Jain, G. (2023). Unsupervised sentiment analysis of Hindi reviews using MCDM and game model optimization techniques. Sādhanā, 48(4), 195. https://doi.org/10.1007/s12046-023-02255-4
  • Punetha, N., & Jain, G. (2025). Advancing sentiment analysis by addressing negation handling challenge via unsupervised mathematical approach. Social Network Analysis and Mining, 15(1), 20. https://doi.org/10.1007/s13278-025-01416-z
  • Raffington, J., Steinke, D., & Tulpan, D. (2020). Recognition of arthropod species names using bigram-based classification. https://doi.org/10.21203/rs.3.rs-26532/v1
  • Rocha, M., Santos, M., Fontes, R., Melo, A., Cunha-Oliveira, A., Miranda, A., … & Valentim, R. (2022). The text mining technique applied to the analysis of health interventions to combat congenital syphilis in brazil: the case of the “syphilis no!” project. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.855680
  • Seth, A., James, A., Kuantama, E., Mukhopadhyay, S. C., & Han, R. (2023). Aerodynamics and sensing analysis for efficient drone-based parcel delivery. 2023 16th International Conference on Sensing Technology (ICST), 1–6. https://doi.org/10.1109/icst59744.2023.10460847
  • Sharma, H., Tandon, A., Kapur, P. K., & Aggarwal, A. G. (2019). Ranking hotels using aspect ratings based sentiment classification and interval-valued neutrosophic TOPSIS. International Journal of System Assurance Engineering and Management, 10(5), 973–983. https://doi.org/10.1007/s13198-019-00827-4
  • Tayal, D. K., Yadav, S. K., & Arora, D. (2023). Personalized ranking of products using aspect-based sentiment analysis and Plithogenic sets. Multimedia Tools and Applications, 82(1), 1261–1287. https://doi.org/10.1007/s11042-022-13315-y
  • Vyas, V., Uma, V., & Ravi, K. (2022). Aspect-based approach to measure performance of financial services using voice of customer. Journal of King Saud University - Computer and Information Sciences, 34(5), 2262–2270. https://doi.org/10.1016/j.jksuci.2019.12.009
  • Wang, L., Wang, X., Peng, J., & Wang, J. (2020). The differences in hotel selection among various types of travellers: A comparative analysis with a useful bounded rationality behavioural decision support model. Tourism Management, 76, 103961. https://doi.org/10.1016/j.tourman.2019.103961
  • Wang, Z., Liu, H., & Fan, X. (2025). Hybrid machine learning and MCDM framework for consumer preference extraction and decision support in dynamic markets. Technology in Society, 82, 102926. https://doi.org/10.1016/j.techsoc.2025.102926
  • Wu, C., & Zhang, D. (2019). Ranking products with IF-based sentiment word framework and TODIM method. Kybernetes, 48(5), 990–1010. https://doi.org/10.1108/K-01-2018-0029
  • Xiao, S., & Chen, X. (2025). Measuring social media customer engagement with brands based on information entropy: An application case of luxury brand. Journal of Brand Management, 32(3), 184–202. https://doi.org/10.1057/s41262-024-00376-7
  • Yang, Z., Ouyang, T., Fu, X., & Peng, X. (2020). A decision‐making algorithm for online shopping using deep‐learning–based opinion pairs mining and q‐rung orthopair fuzzy interaction Heronian mean operators. International Journal of Intelligent Systems, 35(5), 783–825. https://doi.org/10.1002/int.22225
  • Yang, Z., Xiong, G., Cao, Z., Li, Y., & Huang, L. (2019). A decision method for online purchases considering dynamic information preference based on sentiment orientation classification and discrete DIFWA operators. IEEE Access, 7, 77008–77026. https://doi.org/10.1109/ACCESS.2019.2921403
  • Zhang, C., Tian, Y., Fan, L., & Li, Y. (2020). Customized ranking for products through online reviews: A method incorporating prospect theory with an improved VIKOR. Applied Intelligence, 50(6), 1725–1744. https://doi.org/10.1007/s10489-019-01577-3
  • Zhou, S., & Hudin, N. S. (2024). Advancing e-commerce user purchase prediction: Integration of time-series attention with event-based timestamp encoding and graph neural network-enhanced user profiling. PLOS ONE, 19(4), e0299087. https://doi.org/10.1371/journal.pone.0299087

USER EXPERIENCE ANALYSIS USING TEXT MINING AND THE WENSLO-LODECI METHODS: THE CASE OF MOBILE CARGO APPLICATIONS

Yıl 2026, Sayı: Advanced Online Publication, 149 - 167
https://doi.org/10.46482/ebyuiibfdergi.1816735

Öz

This study analyzes user experiences in the mobile applications of cargo companies by integrating text mining and multi-criteria decision-making (MCDM) methods. User reviews collected from Google Play and the App Store were examined in detail to identify performance criteria and to develop strategic recommendations. The findings indicate that TrendyolExpress exhibits a notable superiority over other firms in terms of user satisfaction, while Hepsijet and Yurtiçi Kargo have identifiable areas for improvement. Bigram analyses conducted through text mining functioned as an effective tool for gaining an in-depth understanding of user experiences. As a result of applying the WENSLO and LODECI methods, it was determined that the SDB and TP+ criteria are the most decisive factors in enhancing customer satisfaction. In conclusion, this study provides a concrete and scientific basis that can be utilized in strategic processes aimed at improving user experiences in cargo companies.

Kaynakça

  • Abdeen, M., Hamed, A., & Wu, X. (2021). Fighting the covid-19 infodemic in new articles and false publications: neonet, a text-based supervised machine learning algorithm. https://doi.org/10.20944/preprints202106.0482.v2
  • Adyatma, A., Afuan, L., & Maryanto, E. (2023). The effect of unigram and bigram in the naïve bayes multinomial for analyzing of comment sentiment of gojek application in google play store. Jurnal Teknik Informatika (Jutif), 4(6), 1535-1540. https://doi.org/10.52436/1.jutif.2023.4.6.1310
  • Albijanić, I., Milošević, M., & Jeremić, V. (2022). Exploring the factors which impact the customers’ online purchase intentions. Proceedings of the 4th International Conference on Statistics: Theory and Applications. https://doi.org/10.11159/icsta22.102
  • Algamash, F. A., Mashi, M. S., & Alam, M. N. (2022). Understanding the antecedents of use of e-commerce and consumers’ e-loyalty in Saudi Arabia amid the COVID-19 pandemic. Sustainability, 14(22), 14894. https://doi.org/10.3390/su142214894
  • Altrabsheh, N., Kontonatsios, G., & Korkontzelos, I. (2019). Evaluating the accuracy and efficiency of sentiment analysis pipelines with uima., 286-294. https://doi.org/10.1007/978-3-030-23281-8_23
  • Bani-Doumi, M., Serrano-Guerrero, J., Chiclana, F., Romero, F. P., & Olivas, J. A. (2024). A picture fuzzy set multi criteria decision-making approach to customize hospital recommendations based on patient feedback. Applied Soft Computing, 153, 111331. https://doi.org/10.1016/j.asoc.2024.111331
  • Chen, C. H., & Feng-lin, W. (2023). Exploring the innovative application of Azure cloud computing platform in cross-border e-commerce operation. Frontiers in Computing and Intelligent Systems, 4(2), 21–26. https://doi.org/10.54097/fcis.v4i2.9746
  • Cheng, C., Sakai, T., Alho, A. R., Cheah, L., & Ben‐Akiva, M. (2021). Exploring the relationship between locational and household characteristics and e-commerce home delivery demand. Logistics, 5(2), 29. https://doi.org/10.3390/logistics5020029
  • Çalı, S., & Balaman, Ş. Y. (2019). Improved decisions for marketing, supply and purchasing: Mining big data through an integration of sentiment analysis and intuitionistic fuzzy multi criteria assessment. Computers & Industrial Engineering, 129, 315–332. https://doi.org/10.1016/j.cie.2019.01.051
  • Fan, Z.-P., Xi, Y., & Liu, Y. (2018). Supporting consumer’s purchase decision: A method for ranking products based on online multi-attribute product ratings. Soft Computing, 22(16), 5247–5261. https://doi.org/10.1007/s00500-017-2961-4
  • Heidary Dahooie, J., Raafat, R., Qorbani, A. R., & Daim, T. (2021). An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. Technological Forecasting and Social Change, 173, 121158. https://doi.org/10.1016/j.techfore.2021.121158
  • Hu, J., Zhang, X., Yang, Y., Liu, Y., & Chen, X. (2020). New doctors ranking system based on VIKOR method. International Transactions in Operational Research, 27(2), 1236–1261. https://doi.org/10.1111/itor.12569
  • Indrawan, G., Setiawan, H., & Gunadi, A. (2022). Multi-class svm classification comparison for health service satisfaction survey data in bahasa. Hightech and Innovation Journal, 3(4), 425-442. https://doi.org/10.28991/hij-2022-03-04-05
  • Ji, H., Yang, S., Jia, B., Zhang, M., & Su, B. (2024). Study on location selection of urban two-level joint express delivery stations considering fair cost allocation among enterprises. Transportation Research Record: Journal of the Transportation Research Board, 2678(10), 1551–1568. https://doi.org/10.1177/03611981241239651
  • Ji, P., Zhang, H.-Y., & Wang, J.-Q. (2019). A fuzzy decision support model with sentiment analysis for items comparison in e-commerce: The case study of http://PConline.com. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(10), 1993–2004. https://doi.org/10.1109/TSMC.2018.2875163
  • Laksono, S. I., Aritonang, Y. K., & Lesmono, D. (2020). The model for location routing problem with roaming delivery locations. Jurnal Teknik Industri, 21(2), 174–184. https://doi.org/10.22219/jtiumm.vol21.no2.174-184
  • Liang, R., & Wang, J. (2019). A linguistic intuitionistic cloud decision support model with sentiment analysis for product selection in e-commerce. International Journal of Fuzzy Systems, 21(3), 963–977. https://doi.org/10.1007/s40815-019-00606-0
  • Lu, H., Ning, K., Li, Y., Zhan, Q., Xie, J., & Wang, C. (2019). Utilizing recurrent neural network for topic discovery in short text scenarios1. Intelligent Data Analysis, 23(2), 259-277. https://doi.org/10.3233/ida-183842
  • Mock, W. Y. (2022). Rise of online shopping in Shopee: Is Shopee Xpress satisfying to consumers? International Journal of Tourism & Hospitality in Asia Pasific, 5(3), 105–116. https://doi.org/10.32535/ijthap.v5i3.1903
  • Ng, C., Lam, S., & Liu, K. (2022). Sentiment analysis on consumers’ opinions – Evaluating online retailers through analyzing sentiment for face masks during COVID-19 pandemic. Journal of Industrial and Production Engineering, 39(7), 535–551. https://doi.org/10.1080/21681015.2022.2070933
  • Pala, O., Atçeken, Ö., Omurtak, H., & Şimşir, B. (2024). BİST çimento sektöründe LODECI ve CRADIS ile finansal performans analizi. Alanya Akademik Bakış, 8(3), 956-970.
  • Pamucar, D., Ecer, F., Gligorić, Z., Gligorić, M., & Deveci, M. (2023). A novel WENSLO and ALWAS multicriteria methodology and its application to green growth performance evaluation. IEEE Transactions on Engineering Management, 71, 9510-9525.
  • Punetha, N., & Jain, G. (2023). Game theory and MCDM-based unsupervised sentiment analysis of restaurant reviews. Applied Intelligence, 53(17), 20152–20173. https://doi.org/10.1007/s10489-023-04471-1
  • Punetha, N., & Jain, G. (2023). Unsupervised sentiment analysis of Hindi reviews using MCDM and game model optimization techniques. Sādhanā, 48(4), 195. https://doi.org/10.1007/s12046-023-02255-4
  • Punetha, N., & Jain, G. (2025). Advancing sentiment analysis by addressing negation handling challenge via unsupervised mathematical approach. Social Network Analysis and Mining, 15(1), 20. https://doi.org/10.1007/s13278-025-01416-z
  • Raffington, J., Steinke, D., & Tulpan, D. (2020). Recognition of arthropod species names using bigram-based classification. https://doi.org/10.21203/rs.3.rs-26532/v1
  • Rocha, M., Santos, M., Fontes, R., Melo, A., Cunha-Oliveira, A., Miranda, A., … & Valentim, R. (2022). The text mining technique applied to the analysis of health interventions to combat congenital syphilis in brazil: the case of the “syphilis no!” project. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.855680
  • Seth, A., James, A., Kuantama, E., Mukhopadhyay, S. C., & Han, R. (2023). Aerodynamics and sensing analysis for efficient drone-based parcel delivery. 2023 16th International Conference on Sensing Technology (ICST), 1–6. https://doi.org/10.1109/icst59744.2023.10460847
  • Sharma, H., Tandon, A., Kapur, P. K., & Aggarwal, A. G. (2019). Ranking hotels using aspect ratings based sentiment classification and interval-valued neutrosophic TOPSIS. International Journal of System Assurance Engineering and Management, 10(5), 973–983. https://doi.org/10.1007/s13198-019-00827-4
  • Tayal, D. K., Yadav, S. K., & Arora, D. (2023). Personalized ranking of products using aspect-based sentiment analysis and Plithogenic sets. Multimedia Tools and Applications, 82(1), 1261–1287. https://doi.org/10.1007/s11042-022-13315-y
  • Vyas, V., Uma, V., & Ravi, K. (2022). Aspect-based approach to measure performance of financial services using voice of customer. Journal of King Saud University - Computer and Information Sciences, 34(5), 2262–2270. https://doi.org/10.1016/j.jksuci.2019.12.009
  • Wang, L., Wang, X., Peng, J., & Wang, J. (2020). The differences in hotel selection among various types of travellers: A comparative analysis with a useful bounded rationality behavioural decision support model. Tourism Management, 76, 103961. https://doi.org/10.1016/j.tourman.2019.103961
  • Wang, Z., Liu, H., & Fan, X. (2025). Hybrid machine learning and MCDM framework for consumer preference extraction and decision support in dynamic markets. Technology in Society, 82, 102926. https://doi.org/10.1016/j.techsoc.2025.102926
  • Wu, C., & Zhang, D. (2019). Ranking products with IF-based sentiment word framework and TODIM method. Kybernetes, 48(5), 990–1010. https://doi.org/10.1108/K-01-2018-0029
  • Xiao, S., & Chen, X. (2025). Measuring social media customer engagement with brands based on information entropy: An application case of luxury brand. Journal of Brand Management, 32(3), 184–202. https://doi.org/10.1057/s41262-024-00376-7
  • Yang, Z., Ouyang, T., Fu, X., & Peng, X. (2020). A decision‐making algorithm for online shopping using deep‐learning–based opinion pairs mining and q‐rung orthopair fuzzy interaction Heronian mean operators. International Journal of Intelligent Systems, 35(5), 783–825. https://doi.org/10.1002/int.22225
  • Yang, Z., Xiong, G., Cao, Z., Li, Y., & Huang, L. (2019). A decision method for online purchases considering dynamic information preference based on sentiment orientation classification and discrete DIFWA operators. IEEE Access, 7, 77008–77026. https://doi.org/10.1109/ACCESS.2019.2921403
  • Zhang, C., Tian, Y., Fan, L., & Li, Y. (2020). Customized ranking for products through online reviews: A method incorporating prospect theory with an improved VIKOR. Applied Intelligence, 50(6), 1725–1744. https://doi.org/10.1007/s10489-019-01577-3
  • Zhou, S., & Hudin, N. S. (2024). Advancing e-commerce user purchase prediction: Integration of time-series attention with event-based timestamp encoding and graph neural network-enhanced user profiling. PLOS ONE, 19(4), e0299087. https://doi.org/10.1371/journal.pone.0299087
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İş Sistemleri (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Alparslan Oğuz 0000-0003-1920-5674

Yunus Emre Özenoğlu 0000-0001-5051-4622

Okan Alkan 0000-0002-6526-1645

Gönderilme Tarihi 3 Kasım 2025
Kabul Tarihi 3 Aralık 2025
Erken Görünüm Tarihi 15 Aralık 2025
Yayımlandığı Sayı Yıl 2026 Sayı: Advanced Online Publication

Kaynak Göster

APA Oğuz, A., Özenoğlu, Y. E., & Alkan, O. (2025). METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi(Advanced Online Publication), 149-167. https://doi.org/10.46482/ebyuiibfdergi.1816735
AMA Oğuz A, Özenoğlu YE, Alkan O. METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ. ebyuiibfdergisi. Aralık 2025;(Advanced Online Publication):149-167. doi:10.46482/ebyuiibfdergi.1816735
Chicago Oğuz, Alparslan, Yunus Emre Özenoğlu, ve Okan Alkan. “METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ”. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, sy. Advanced Online Publication (Aralık 2025): 149-67. https://doi.org/10.46482/ebyuiibfdergi.1816735.
EndNote Oğuz A, Özenoğlu YE, Alkan O (01 Aralık 2025) METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Advanced Online Publication 149–167.
IEEE A. Oğuz, Y. E. Özenoğlu, ve O. Alkan, “METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ”, ebyuiibfdergisi, sy. Advanced Online Publication, ss. 149–167, Aralık2025, doi: 10.46482/ebyuiibfdergi.1816735.
ISNAD Oğuz, Alparslan vd. “METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ”. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi Advanced Online Publication (Aralık2025), 149-167. https://doi.org/10.46482/ebyuiibfdergi.1816735.
JAMA Oğuz A, Özenoğlu YE, Alkan O. METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ. ebyuiibfdergisi. 2025;:149–167.
MLA Oğuz, Alparslan vd. “METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ”. Erzincan Binali Yıldırım Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, sy. Advanced Online Publication, 2025, ss. 149-67, doi:10.46482/ebyuiibfdergi.1816735.
Vancouver Oğuz A, Özenoğlu YE, Alkan O. METİN MADENCİLİĞİ VE WENSLO-LODECI YÖNTEMLERİ İLE KULLANICI DENEYİMİ ANALİZİ: KARGO MOBİL UYGULAMALARI ÖRNEGİ. ebyuiibfdergisi. 2025(Advanced Online Publication):149-67.