Research Article
BibTex RIS Cite

Alüminyum Köpük Üretiminde Alüminyum Döküm Cürufu İlavesinin Mekanik Özelliklere ve Mikroyapıya Etkisi

Year 2022, , 996 - 1004, 30.09.2022
https://doi.org/10.31202/ecjse.1020426

Abstract

Bu çalışmada, Al köpükler, 6063 Al alaşım döküm cürufu ve Borik asit kullanılarak üretilmiştir. Köpük malzemeler 130 ºC’de 1 saat ve 550 ºC’de 3 saat sinterlenmiştir. Mikroyapı optik ve taramalı elektron mikroskoplarla (SEM) analiz edilmiştir. Basma mukavemeti basma test cihazıyla ölçülmüştür. Cüruf miktarının artmasıyla gözeneklilik % 34,8’den % 37,8’e, basma dayanımı 12,43 MPa’dan 20,25 MPa’a ve sertlik 98 HV’dan 115 HV’a artmıştır.

References

  • Zhou J., Gao Z., Cuitino A. M., and Soboyejo W. O., “Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams,” Mater. Sci. Eng. A, 2004, 386 (1-2): 118-128.
  • Mahadev C., Sreenivasa G, and Shivakumar K. M., “A Review on Prodution of Aluminium Metal Foams,” in IOP Conference Series: Materials Science and Engineering, 2018.
  • Luo Y., Yu S., Liu J., Zhu X, and Luo Y., “Compressive property and energy absorption characteristic of open-cell SiCp/AlSi9Mg composite foams,” J. Alloys Compd.,2010, 499, (2): 227-230.
  • Roy, S., Gibmeier J., Schell K. G., Bucharsky E. C., Weidenmann K. A., Wanner A., and Hoffmann M. J.,“Internal load transfer in an interpenetrating metal/ceramic composite material studied using energy dispersive synchrotron X-ray diffraction,” Mater. Sci. Eng A., 2019, 753, 247-252.
  • Bălţătescu O., Florea R. M, Roman C., Rusu I., and Carcea I., “Stabilized aluminum foams, unique material for industrial applications,” J. Optoelectron. Adv. Mater., 2013, 15, (7-8): 823-832.
  • Hipke T., Hohlfeld J., and Rybandt S., “Functionally Aluminum Foam Composites for Building Industry,” Procedia Mater. Sci., 2014, 4, 133-138.
  • Bienvenu Y., “Application and future of solid foams,” Comptes Rendus Phys., 2014, 15, (8-9): 719-730.
  • Ramachandra S., Sudheer Kumar P., and Ramamurty U., “Impact energy absorption in an Al foam at low velocities,” Scr. Mater., 2003, 49, (8): 741-745.
  • Li Y. G., Wei Y. H., Hou L. F., Guo C. L., and Yang S. Q., “Fabrication and compressive behaviour of an aluminium foam composite,” J. Alloys Compd., 2015, 649, 76-81.
  • Jeon I. and Asahina T., “The effect of structural defects on the compressive behavior of closed-cell Al foam,” Acta Mater., 2005, 53, (12): 3415-3423.
  • Lamanna E., Gupta N., Cappa P., Strbik O. M., and Cho K., “Evaluation of the dynamic properties of an aluminum syntactic foam core sandwich,” J. Alloys Compd.,2017, 695, 2987-2994.
  • Lin Y., Zhang Q., Chang J., Wang H., Feng X., and Wang J., “Microstructural characterization and compression mechanical response of glass hollow spheres/Al syntactic foams with different Mg additions,” Mater. Sci. Eng. A, 2019, 766.
  • Yao R., Zhang B., Yin G., and Zhao Z., “Energy absorption behaviors of foam-filled holed tube subjected to axial crushing: Experimental and theoretical investigations,” Mechanics of Advanced Materials and Structures ,2021, 28, (24): 2501-2514.
  • Katona B., Szlancsik A., Tábi T., and Orbulov I. N., “Compressive characteristics and low frequency damping of aluminium matrix syntactic foams,” Mater. Sci. Eng. A,2019, 739, 140-148.
  • He S, Lv Y, Chen S, Dai G, Liu J and Huo M, “Gradient regulation and compressive properties of density-graded aluminum foam”, Materials Science and Engineering A, 2020, 772, 138658.
  • Ragani J., Donnadieu P., Tassin C., and. Blandin J. J, “High-temperature deformation of the γ-Mg17Al12 complex metallic alloy,” Scr. Mater., 2011, 3, (65):253-256.
  • Singh R, Arora R, and Sharma J. D., “Effect of viscosity enhancing agents on quasi-static compression behavior of aluminum foams,” Mater. Today Proc., 2021, 39, 1661-1666.
  • Tripathi O., Singh D. P., Dwivedi V. K., and Agarwal M., “A focused review on aluminum metallic foam: Processing, properties, and applications,” Mater. Today Proc., 2020, 47, 6622-6627.
  • Korpe N. O., Dürger N. B., Dur D., and Celikyürek I., “Effects of Compacting Pressure and Sintering Temperature on the Properties of Highly Porous Pure Aluminum Produced with Boric Acid (H3BO3),” Powder Metall. Met. Ceram. 2021, 59, (11): 661-671.
  • Yaman B., Onuklu E., and Korpe N. O., “The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams,” J. Mater. Eng. Perform., 2017 26, (9): 4319-4328.
  • Korpe N. O., Ozkan E., and Tasci U., “Production of aluminium–fly ash particulate composite by powder metallurgy technique using boric acid as foaming agent,” Advances in Materials and Processing Technologies 2017, 3, (1):145-154.
  • Yücel O., Car E., “ Alüminyum curuflarının değerlendirilmesi ve kalsiyum alüminat sentetik curuf yapıcı üretimi” “36 Türk Mühendis ve Mimar Odaları Birliği Metalurji ve Malzeme Mühendisleri Odası Metalurji Sayı:175 Ağustos 2015, 35-43.
  • Degischer, H. P., Kriszt, B. (EDX.). (2002). Handbook of cellular metals: production, processing, applications. Wiley-vch. ISBN 3-527-29320-5.
  • J.Yu C., Eifert H. H., Banhart J, and. Baumeister J, “Metal foaming by a powder metallurgy method: Production, properties and applications,” Materials Research Innovations, 1998, 2, (3):181-188.
  • Topcu I., Gulsoy H. O., Kadioglu N., and Gulluoglu A. N., “Processing and mechanical properties of B4C reinforced Al matrix composites,” J. Alloys Compd.,2009, 482, (1-2): 516-521.
  • Ryan G., Pandit A., and Apatsidis D. P., “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, 2006, 27, (13): 2651-2670.
  • Jiang B., Zhao N. Q., Shi C. S., Du X. W., Li J. J., and Man H. C. H. C., “A novel method for making open cell aluminum foams by powder sintering process,” Mater. Lett.,2005, 59, (26): 3333-3336.
  • Yang Y. J., Han F. S., Yang D. K., and Zheng K., “Compressive behaviour of open cell Al–Al2O3 composite foams fabricated by sintering and dissolution process,” 2013, 23, (4): 502-504.
  • Körpe N. Ö. and Kiremitci S., “Borik Asit (H3BO3) Kullanılarak Üretilen Saf Çinko ve Çinko Alaşımı (ZA27) Köpük Malzemelerin Basma Davranışlarının İncelenmesi,” El-Cezerî Fen ve Mühendislik Dergisi, 2022, 9, (2): 656-668.

Effect of Aluminum Casting Dross Addition on Mechanical Properties and Microstructure in Aluminum Foam Production

Year 2022, , 996 - 1004, 30.09.2022
https://doi.org/10.31202/ecjse.1020426

Abstract

In the study, Al foams were produced using 6063 Al alloy casting dross and Boric acid. Foam materials were sintered at 130 ºC for 1 hour and at 550 ºC for 3 hours. The microstructure was analyzed with optical and scanning electron microscopes (SEM). Compression strength was measured with a compression tester. The porosity increased from 34.8% to 37.8%, the compressive strength increased from 12.43 MPa to 20.25 MPa, and the hardness increased from 98 HV to 115 HV with increasing dross amount.

References

  • Zhou J., Gao Z., Cuitino A. M., and Soboyejo W. O., “Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams,” Mater. Sci. Eng. A, 2004, 386 (1-2): 118-128.
  • Mahadev C., Sreenivasa G, and Shivakumar K. M., “A Review on Prodution of Aluminium Metal Foams,” in IOP Conference Series: Materials Science and Engineering, 2018.
  • Luo Y., Yu S., Liu J., Zhu X, and Luo Y., “Compressive property and energy absorption characteristic of open-cell SiCp/AlSi9Mg composite foams,” J. Alloys Compd.,2010, 499, (2): 227-230.
  • Roy, S., Gibmeier J., Schell K. G., Bucharsky E. C., Weidenmann K. A., Wanner A., and Hoffmann M. J.,“Internal load transfer in an interpenetrating metal/ceramic composite material studied using energy dispersive synchrotron X-ray diffraction,” Mater. Sci. Eng A., 2019, 753, 247-252.
  • Bălţătescu O., Florea R. M, Roman C., Rusu I., and Carcea I., “Stabilized aluminum foams, unique material for industrial applications,” J. Optoelectron. Adv. Mater., 2013, 15, (7-8): 823-832.
  • Hipke T., Hohlfeld J., and Rybandt S., “Functionally Aluminum Foam Composites for Building Industry,” Procedia Mater. Sci., 2014, 4, 133-138.
  • Bienvenu Y., “Application and future of solid foams,” Comptes Rendus Phys., 2014, 15, (8-9): 719-730.
  • Ramachandra S., Sudheer Kumar P., and Ramamurty U., “Impact energy absorption in an Al foam at low velocities,” Scr. Mater., 2003, 49, (8): 741-745.
  • Li Y. G., Wei Y. H., Hou L. F., Guo C. L., and Yang S. Q., “Fabrication and compressive behaviour of an aluminium foam composite,” J. Alloys Compd., 2015, 649, 76-81.
  • Jeon I. and Asahina T., “The effect of structural defects on the compressive behavior of closed-cell Al foam,” Acta Mater., 2005, 53, (12): 3415-3423.
  • Lamanna E., Gupta N., Cappa P., Strbik O. M., and Cho K., “Evaluation of the dynamic properties of an aluminum syntactic foam core sandwich,” J. Alloys Compd.,2017, 695, 2987-2994.
  • Lin Y., Zhang Q., Chang J., Wang H., Feng X., and Wang J., “Microstructural characterization and compression mechanical response of glass hollow spheres/Al syntactic foams with different Mg additions,” Mater. Sci. Eng. A, 2019, 766.
  • Yao R., Zhang B., Yin G., and Zhao Z., “Energy absorption behaviors of foam-filled holed tube subjected to axial crushing: Experimental and theoretical investigations,” Mechanics of Advanced Materials and Structures ,2021, 28, (24): 2501-2514.
  • Katona B., Szlancsik A., Tábi T., and Orbulov I. N., “Compressive characteristics and low frequency damping of aluminium matrix syntactic foams,” Mater. Sci. Eng. A,2019, 739, 140-148.
  • He S, Lv Y, Chen S, Dai G, Liu J and Huo M, “Gradient regulation and compressive properties of density-graded aluminum foam”, Materials Science and Engineering A, 2020, 772, 138658.
  • Ragani J., Donnadieu P., Tassin C., and. Blandin J. J, “High-temperature deformation of the γ-Mg17Al12 complex metallic alloy,” Scr. Mater., 2011, 3, (65):253-256.
  • Singh R, Arora R, and Sharma J. D., “Effect of viscosity enhancing agents on quasi-static compression behavior of aluminum foams,” Mater. Today Proc., 2021, 39, 1661-1666.
  • Tripathi O., Singh D. P., Dwivedi V. K., and Agarwal M., “A focused review on aluminum metallic foam: Processing, properties, and applications,” Mater. Today Proc., 2020, 47, 6622-6627.
  • Korpe N. O., Dürger N. B., Dur D., and Celikyürek I., “Effects of Compacting Pressure and Sintering Temperature on the Properties of Highly Porous Pure Aluminum Produced with Boric Acid (H3BO3),” Powder Metall. Met. Ceram. 2021, 59, (11): 661-671.
  • Yaman B., Onuklu E., and Korpe N. O., “The Usability of Boric Acid as an Alternative Foaming Agent on the Fabrication of Al/Al2O3 Composite Foams,” J. Mater. Eng. Perform., 2017 26, (9): 4319-4328.
  • Korpe N. O., Ozkan E., and Tasci U., “Production of aluminium–fly ash particulate composite by powder metallurgy technique using boric acid as foaming agent,” Advances in Materials and Processing Technologies 2017, 3, (1):145-154.
  • Yücel O., Car E., “ Alüminyum curuflarının değerlendirilmesi ve kalsiyum alüminat sentetik curuf yapıcı üretimi” “36 Türk Mühendis ve Mimar Odaları Birliği Metalurji ve Malzeme Mühendisleri Odası Metalurji Sayı:175 Ağustos 2015, 35-43.
  • Degischer, H. P., Kriszt, B. (EDX.). (2002). Handbook of cellular metals: production, processing, applications. Wiley-vch. ISBN 3-527-29320-5.
  • J.Yu C., Eifert H. H., Banhart J, and. Baumeister J, “Metal foaming by a powder metallurgy method: Production, properties and applications,” Materials Research Innovations, 1998, 2, (3):181-188.
  • Topcu I., Gulsoy H. O., Kadioglu N., and Gulluoglu A. N., “Processing and mechanical properties of B4C reinforced Al matrix composites,” J. Alloys Compd.,2009, 482, (1-2): 516-521.
  • Ryan G., Pandit A., and Apatsidis D. P., “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, 2006, 27, (13): 2651-2670.
  • Jiang B., Zhao N. Q., Shi C. S., Du X. W., Li J. J., and Man H. C. H. C., “A novel method for making open cell aluminum foams by powder sintering process,” Mater. Lett.,2005, 59, (26): 3333-3336.
  • Yang Y. J., Han F. S., Yang D. K., and Zheng K., “Compressive behaviour of open cell Al–Al2O3 composite foams fabricated by sintering and dissolution process,” 2013, 23, (4): 502-504.
  • Körpe N. Ö. and Kiremitci S., “Borik Asit (H3BO3) Kullanılarak Üretilen Saf Çinko ve Çinko Alaşımı (ZA27) Köpük Malzemelerin Basma Davranışlarının İncelenmesi,” El-Cezerî Fen ve Mühendislik Dergisi, 2022, 9, (2): 656-668.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Pinar Uyan 0000-0003-0411-9773

Neşe Öztürk Körpe 0000-0002-6868-8126

Publication Date September 30, 2022
Submission Date November 8, 2021
Acceptance Date June 6, 2022
Published in Issue Year 2022

Cite

IEEE P. Uyan and N. Öztürk Körpe, “Alüminyum Köpük Üretiminde Alüminyum Döküm Cürufu İlavesinin Mekanik Özelliklere ve Mikroyapıya Etkisi”, ECJSE, vol. 9, no. 3, pp. 996–1004, 2022, doi: 10.31202/ecjse.1020426.