Research Article
BibTex RIS Cite

Birleştirme Yığma Modellemesiyle Üretilen 3B Yazıcıda PLA+’ın Farklı Proses Parametrelerinin Çekme Dayanımları Üzerindeki Etkileri

Year 2023, , 160 - 174, 31.01.2023
https://doi.org/10.31202/ecjse.1179492

Abstract

Birleştirmeli yığma modellemesi (BYM), son derece kontrollü bir şekilde termoplastik polimer katmanlar ile parçaların üretildiği 3B baskı tekniğidir. Ancak, BYM kullanılarak hazır parçaların üretimi baskı teknikleri arasında oldukça zordur. Bunun yanında, mümkün olan ayarlarla ve düşük maliyetli 3B yazıcılarla basılan parçaların mekanik özellikleri de değişkenlik göstermektedir. Ekstrüzyon sıcaklığı, dolgu deseni, baskı hızı ve katman yüksekliği gibi üretim parametrelerinin son parçanın kalitesini ve mekanik özelliklerini önemli ölçüde etkilediği bilinmektedir. Bu çalışmada, tarafımızdan imal edilen kartezyen tipi bir 3B yazıcıda, PLA+ malzeme kullanılarak hazırlanan numunelerin çekme dayanımı, baskı hızı ve dolgu deseni parametrelerine bağlı olarak incelenmiştir. ASTM D638-(IV) standardına göre farklı dolgu desenine, baskı hızına ve dolgu yoğunluğuna sahip toplam 36 adet test parçası hazırlanmıştır. Basılan parçalar çekme özelliklerinin belirlenebilmesi için çekme test makinesine tabi tutulmuşlardır. Parçaların çekme dayanımları ve üretim süreleri sinyal-gürültü (SN) oranına dayalı olarak analizleri yapılıp optimize edilmiştir. Sonuçlar, triangles geometrik desen, %100 dolgu yoğunluğu ve 40 mm/sn baskı hızında en iyi çekme dayanımı sergilendiğini ortaya koymaktadır. En düşük üretim süresi, gyroid geometrik desenlerde gözlemlenmiştir.

Supporting Institution

Kırşehir Ahi Evran Üniversitesi

Project Number

MMF.A4.21.007

Thanks

Bu çalışma; Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından MMF.A4.21.007 nolu proje ile desteklenmiştir. Bu çalışmanın yazarları, vermiş oldukları desteklerden ötürü KAEÜ-BAP’a teşekkürlerini sunar.

References

  • Groover MP. Part II Engineering Materials. Fundam Mod Manuf Mater 2010:98–132.
  • Gibson I, Rosen D, Stucker B. (BOOK)Directed Energy Deposition Processes. In: Additive Manufacturing Technologies. 2015.
  • Dizon JRC, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 2018;20:44–67. https://doi.org/10.1016/j.addma.2017.12.002.
  • Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54–64. https://doi.org/10.1016/j.dental.2015.09.018.
  • Agrawaal H, Thompson JE. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open 2021;3:100036. https://doi.org/10.1016/j.talo.2021.100036.
  • Berman B. 3-D printing: The new industrial revolution. Bus Horiz 2012;55:155–62. https://doi.org/10.1016/j.bushor.2011.11.003.
  • Murr LE. Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication. J Mater Sci Technol 2016;32:987–95. https://doi.org/10.1016/j.jmst.2016.08.011.
  • Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J Food Eng 2018;220:20–7. https://doi.org/10.1016/j.jfoodeng.2017.04.034.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng 2018;143:172–96. https://doi.org/10.1016/j.compositesb.2018.02.012.
  • Wang S, Ma Y, Deng Z, Zhang S, Cai J. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym Test 2020;86:106483. https://doi.org/10.1016/j.polymertesting.2020.106483.
  • Oladapo BI, Ismail SO, Afolalu TD, Olawade DB, Zahedi M. Review on 3D printing: Fight against COVID-19. Mater Chem Phys 2021;258:123943. https://doi.org/10.1016/j.matchemphys.2020.123943.
  • Tino A, Collange C, Seznec A. SIMT-X: Extending Single-Instruction Multi-Threading to Out-of-Order Cores. ACM Trans Archit Code Optim 2020;17. https://doi.org/10.1145/3392032.
  • Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct 2017;182:36–53. https://doi.org/10.1016/j.compstruct.2017.08.088.
  • Gupta MK, Mia M, Pruncu CI, Kapłonek W, Nadolny K, Patra K, et al. Parametric optimization and process capability analysis for machining of nickel-based superalloy. Int J Adv Manuf Technol 2019;102:3995–4009. https://doi.org/10.1007/s00170-019-03453-3.
  • Bekas DG, Hou Y, Liu Y, Panesar A. 3D printing to enable multifunctionality in polymer-based composites: A review. Compos Part B Eng 2019;179:107540. https://doi.org/10.1016/j.compositesb.2019.107540.
  • Latif U. Pengaruh Dan Peran “Media” Terhadap Siklus Penerapan Nilai-Nilai Dakwah Di Era Digitalisasi. At-Taujih Bimbing Dan Konseling Islam 2021;4:1. https://doi.org/10.22373/taujih.v4i2.11754.
  • Buckner CA, Lafrenie RM, Dénommée JA, Caswell JM, Want DA, Gan GG, et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech 2016;11:13.
  • Cano-Vicent A, Tambuwala MM, Hassan SS, Barh D, Aljabali AAA, Birkett M, et al. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit Manuf 2021;47. https://doi.org/10.1016/j.addma.2021.102378.
  • Jadhav H, Jadhav A, Takkalkar P, Hossain N, Nizammudin S, Zahoor M, et al. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. vol. 27. 2020. https://doi.org/10.1007/s10965-020-02287-y.
  • Li G, Aspler J, Kingsland A, Cormier L, Zou X. 3D printing - A review of technologies, market and opportunities for the forestry industry. Fibre Value Chain Conf Expo 2015 Pulp Pap Bioenergy Bioprod 2015;5:55–63.
  • Fehri S, Cinelli P, Coltelli M-B, Anguillesi I, Lazzeri A. Thermal Properties of Plasticized Poly (Lactic Acid) (PLA) Containing Nucleating Agent. Int J Chem Eng Appl 2016;7:85–8. https://doi.org/10.7763/ijcea.2016.v7.548.
  • Mrugalska B, Trzcielinski S, Karwowski W, Nicolantonio M Di. Advances in Intelligent Systems and Computing 1216 Advances in Manufacturing , Production Management and Process Control Proceedings of the AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing , Advanced. 2020. https://doi.org/10.1007/978-3-030-51981-0.
  • Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D‐printed PLA–stainless‐steel polymeric composite through fused deposition modelling‐based additive manufacturing process for biomedical applications. Med Devices Sensors 2020;3:1–21. https://doi.org/10.1002/mds3.10080.
  • Yang TC, Yeh CH. Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (): The effects of printing speed. Polymers (Basel) 2020;12:1334. https://doi.org/10.3390/POLYM12061334.
  • Riddick JC, Haile MA, Wahlde R Von, Cole DP, Bamiduro O, Johnson TE. Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit Manuf 2016;11:49–59. https://doi.org/10.1016/j.addma.2016.03.007.
  • Ansari AA, Kamil M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater Today Proc 2021;45:5462–8. https://doi.org/10.1016/j.matpr.2021.02.137.
  • Torres J, Cole M, Owji A, DeMastry Z, Gordon AP. An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp J 2016;22:387–404. https://doi.org/10.1108/RPJ-07-2014-0083.
  • Rao RV, Rai DP. Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm. Eng Sci Technol an Int J 2016;19:587–603. https://doi.org/10.1016/j.jestch.2015.09.008.
  • Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Test 2018;69:157–66. https://doi.org/10.1016/j.polymertesting.2018.05.020.
  • Gordelier TJ, Thies PR, Turner L, Johanning L. Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review. Rapid Prototyp J 2019;25:953–71. https://doi.org/10.1108/RPJ-07-2018-0183.
  • Günay M, Gündüz S, Yılmaz H, Yaşar N, Kaçar R. PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu. J Polytech 2019;0900:73–9. https://doi.org/10.2339/politeknik.422795.
  • Arjun P, Bidhun VK, Lenin UK, Amritha VP, Pazhamannil RV, Govindan P. Effects of process parameters and annealing on the tensile strength of 3D printed carbon fiber reinforced polylactic acid. Mater Today Proc 2022;62:7379–84. https://doi.org/10.1016/j.matpr.2022.02.142.
  • Moradi M, Aminzadeh A, Rahmatabadi D, Hakimi A. Experimental investigation on mechanical characterization of 3D printed PLA produced by fused deposition modeling (FDM). Mater Res Express 2021;8. https://doi.org/10.1088/2053-1591/abe8f3.
  • Akhoundi B, Behravesh AH. Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Exp Mech 2019;59:883–97. https://doi.org/10.1007/s11340-018-00467-y.
  • Gowthaman CLYS. U. Chandrasekhar Lung-Jieh Yang S. Gowthaman. vol. 2. 2018.
  • Infill settings [Internet]. Ultimaker Support. Ultimaker; 2020 [cited 2022 September 15]. Available from: https://support.ultimaker.com/hc/en-us/articles/360012607079-Infill-settings.

The Effects of Different Process Parameters of PLA+ on Tensile Strengths in 3D Printer Produced by Fused Deposition Modeling

Year 2023, , 160 - 174, 31.01.2023
https://doi.org/10.31202/ecjse.1179492

Abstract

Fused Deposition Modeling (FDM) is a three-dimensional (3D) printing technique in which parts are produced with thermoplastic polymer layers in a highly controlled manner. However, the production of ready-made parts using FDM is quite tricky. At the same time, the mechanical properties of parts printed with current print parameters and low-cost 3D printers also vary. The quality and mechanical characteristics of the final part are influenced by production parameters such as the extrusion temperature, infill density, infill pattern, print speed, and layer height. This study focused on the effects of the infill pattern, infill density and print speed parameters on the tensile strength and production time of model structures printed with PLA+ material. The tensile strength of the printed parts have been determined by a WDM-100E model tensile testing machine. In addition, the tensile strengths and production times of the parts have been optimized by the signal-to-noise (SN) ratio analysis. The results reveal that triangle infill pattern exhibits the best tensile strength at 40 mm/sec printing speed and 100% infill density. On the other hand, the lowest production time is observed in the gyroid infill pattern.

Project Number

MMF.A4.21.007

References

  • Groover MP. Part II Engineering Materials. Fundam Mod Manuf Mater 2010:98–132.
  • Gibson I, Rosen D, Stucker B. (BOOK)Directed Energy Deposition Processes. In: Additive Manufacturing Technologies. 2015.
  • Dizon JRC, Espera AH, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf 2018;20:44–67. https://doi.org/10.1016/j.addma.2017.12.002.
  • Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54–64. https://doi.org/10.1016/j.dental.2015.09.018.
  • Agrawaal H, Thompson JE. Additive manufacturing (3D printing) for analytical chemistry. Talanta Open 2021;3:100036. https://doi.org/10.1016/j.talo.2021.100036.
  • Berman B. 3-D printing: The new industrial revolution. Bus Horiz 2012;55:155–62. https://doi.org/10.1016/j.bushor.2011.11.003.
  • Murr LE. Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication. J Mater Sci Technol 2016;32:987–95. https://doi.org/10.1016/j.jmst.2016.08.011.
  • Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. J Food Eng 2018;220:20–7. https://doi.org/10.1016/j.jfoodeng.2017.04.034.
  • Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng 2018;143:172–96. https://doi.org/10.1016/j.compositesb.2018.02.012.
  • Wang S, Ma Y, Deng Z, Zhang S, Cai J. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym Test 2020;86:106483. https://doi.org/10.1016/j.polymertesting.2020.106483.
  • Oladapo BI, Ismail SO, Afolalu TD, Olawade DB, Zahedi M. Review on 3D printing: Fight against COVID-19. Mater Chem Phys 2021;258:123943. https://doi.org/10.1016/j.matchemphys.2020.123943.
  • Tino A, Collange C, Seznec A. SIMT-X: Extending Single-Instruction Multi-Threading to Out-of-Order Cores. ACM Trans Archit Code Optim 2020;17. https://doi.org/10.1145/3392032.
  • Parandoush P, Lin D. A review on additive manufacturing of polymer-fiber composites. Compos Struct 2017;182:36–53. https://doi.org/10.1016/j.compstruct.2017.08.088.
  • Gupta MK, Mia M, Pruncu CI, Kapłonek W, Nadolny K, Patra K, et al. Parametric optimization and process capability analysis for machining of nickel-based superalloy. Int J Adv Manuf Technol 2019;102:3995–4009. https://doi.org/10.1007/s00170-019-03453-3.
  • Bekas DG, Hou Y, Liu Y, Panesar A. 3D printing to enable multifunctionality in polymer-based composites: A review. Compos Part B Eng 2019;179:107540. https://doi.org/10.1016/j.compositesb.2019.107540.
  • Latif U. Pengaruh Dan Peran “Media” Terhadap Siklus Penerapan Nilai-Nilai Dakwah Di Era Digitalisasi. At-Taujih Bimbing Dan Konseling Islam 2021;4:1. https://doi.org/10.22373/taujih.v4i2.11754.
  • Buckner CA, Lafrenie RM, Dénommée JA, Caswell JM, Want DA, Gan GG, et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech 2016;11:13.
  • Cano-Vicent A, Tambuwala MM, Hassan SS, Barh D, Aljabali AAA, Birkett M, et al. Fused deposition modelling: Current status, methodology, applications and future prospects. Addit Manuf 2021;47. https://doi.org/10.1016/j.addma.2021.102378.
  • Jadhav H, Jadhav A, Takkalkar P, Hossain N, Nizammudin S, Zahoor M, et al. Potential of polylactide based nanocomposites-nanopolysaccharide filler for reinforcement purpose: a comprehensive review. vol. 27. 2020. https://doi.org/10.1007/s10965-020-02287-y.
  • Li G, Aspler J, Kingsland A, Cormier L, Zou X. 3D printing - A review of technologies, market and opportunities for the forestry industry. Fibre Value Chain Conf Expo 2015 Pulp Pap Bioenergy Bioprod 2015;5:55–63.
  • Fehri S, Cinelli P, Coltelli M-B, Anguillesi I, Lazzeri A. Thermal Properties of Plasticized Poly (Lactic Acid) (PLA) Containing Nucleating Agent. Int J Chem Eng Appl 2016;7:85–8. https://doi.org/10.7763/ijcea.2016.v7.548.
  • Mrugalska B, Trzcielinski S, Karwowski W, Nicolantonio M Di. Advances in Intelligent Systems and Computing 1216 Advances in Manufacturing , Production Management and Process Control Proceedings of the AHFE 2020 Virtual Conferences on Human Aspects of Advanced Manufacturing , Advanced. 2020. https://doi.org/10.1007/978-3-030-51981-0.
  • Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D‐printed PLA–stainless‐steel polymeric composite through fused deposition modelling‐based additive manufacturing process for biomedical applications. Med Devices Sensors 2020;3:1–21. https://doi.org/10.1002/mds3.10080.
  • Yang TC, Yeh CH. Morphology and mechanical properties of 3D printed wood fiber/polylactic acid composite parts using Fused Deposition Modeling (): The effects of printing speed. Polymers (Basel) 2020;12:1334. https://doi.org/10.3390/POLYM12061334.
  • Riddick JC, Haile MA, Wahlde R Von, Cole DP, Bamiduro O, Johnson TE. Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling. Addit Manuf 2016;11:49–59. https://doi.org/10.1016/j.addma.2016.03.007.
  • Ansari AA, Kamil M. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Mater Today Proc 2021;45:5462–8. https://doi.org/10.1016/j.matpr.2021.02.137.
  • Torres J, Cole M, Owji A, DeMastry Z, Gordon AP. An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments. Rapid Prototyp J 2016;22:387–404. https://doi.org/10.1108/RPJ-07-2014-0083.
  • Rao RV, Rai DP. Optimization of fused deposition modeling process using teaching-learning-based optimization algorithm. Eng Sci Technol an Int J 2016;19:587–603. https://doi.org/10.1016/j.jestch.2015.09.008.
  • Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym Test 2018;69:157–66. https://doi.org/10.1016/j.polymertesting.2018.05.020.
  • Gordelier TJ, Thies PR, Turner L, Johanning L. Optimising the FDM additive manufacturing process to achieve maximum tensile strength: a state-of-the-art review. Rapid Prototyp J 2019;25:953–71. https://doi.org/10.1108/RPJ-07-2018-0183.
  • Günay M, Gündüz S, Yılmaz H, Yaşar N, Kaçar R. PLA Esaslı Numunelerde Çekme Dayanımı İçin 3D Baskı İşlem Parametrelerinin Optimizasyonu. J Polytech 2019;0900:73–9. https://doi.org/10.2339/politeknik.422795.
  • Arjun P, Bidhun VK, Lenin UK, Amritha VP, Pazhamannil RV, Govindan P. Effects of process parameters and annealing on the tensile strength of 3D printed carbon fiber reinforced polylactic acid. Mater Today Proc 2022;62:7379–84. https://doi.org/10.1016/j.matpr.2022.02.142.
  • Moradi M, Aminzadeh A, Rahmatabadi D, Hakimi A. Experimental investigation on mechanical characterization of 3D printed PLA produced by fused deposition modeling (FDM). Mater Res Express 2021;8. https://doi.org/10.1088/2053-1591/abe8f3.
  • Akhoundi B, Behravesh AH. Effect of Filling Pattern on the Tensile and Flexural Mechanical Properties of FDM 3D Printed Products. Exp Mech 2019;59:883–97. https://doi.org/10.1007/s11340-018-00467-y.
  • Gowthaman CLYS. U. Chandrasekhar Lung-Jieh Yang S. Gowthaman. vol. 2. 2018.
  • Infill settings [Internet]. Ultimaker Support. Ultimaker; 2020 [cited 2022 September 15]. Available from: https://support.ultimaker.com/hc/en-us/articles/360012607079-Infill-settings.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Faik Yılan 0000-0001-7166-8604

İbrahim Baki Şahin 0000-0001-8090-9748

Fatih Koç 0000-0002-4751-2340

Levent Urtekin 0000-0003-4348-4749

Project Number MMF.A4.21.007
Publication Date January 31, 2023
Submission Date September 23, 2022
Acceptance Date January 21, 2023
Published in Issue Year 2023

Cite

IEEE F. Yılan, İ. B. Şahin, F. Koç, and L. Urtekin, “The Effects of Different Process Parameters of PLA+ on Tensile Strengths in 3D Printer Produced by Fused Deposition Modeling”, ECJSE, vol. 10, no. 1, pp. 160–174, 2023, doi: 10.31202/ecjse.1179492.