Research Article
BibTex RIS Cite

Development of Alkali-Activated Binders from Recycling Regional Tuff and Marble Wastes

Year 2023, , 371 - 387, 31.05.2023
https://doi.org/10.31202/ecjse.1225457

Abstract

The sustainability goals of the developing world have led many industries to recycle their wastes and reduce emitting greenhouse gases. To contribute to these environmental responsibilities, this study has focused on the development of eco-friendly binder materials from regional ground tuff and marble wastes by the activation of Na2SiO3 and NaOH or slaked lime (Ca(OH)2). The results of the study show that alkali-activated composites tend to the expansion, drying shrinkage cracking, leaching and efflorescence. The compressive strength values of the NaOH and Ca(OH)2-activated pastes have reached up to 15 MPa and 9 MPa, respectively. A reduction in the NaOH molarity has improved the compressive strength, dimensional stability and durability of tuff-based alkali-activated pastes.

References

  • [1]. Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K.H. and Alnahhal, M. F., “Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review”, Constr. Build. Mater., 2017, 148: 62-84.
  • [2]. Andrew, R. M., “Global CO2 emissions from cement production, 1928–2017”, Earth Syst. Sci. Data, 2018, 10: 2213-2239.
  • [3]. Bhutta, A., Farooq, M., Zanotti, C. and Banthia, N., “Pull-out behavior of different fibers in geopolymer mortars: effects of alkaline solution concentration and curing”, Mater. Struct., 2017, 50: 80.
  • [4]. Zhang, P., Zheng, Y., Wang, K. and Zhang, J., “A review on properties of fresh and hardened geopolymer mortar”, Compos. Part B Eng., 2018, 152: 79-95.
  • [5]. Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z. and Ramesh, S., “A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete”, Constr. Build. Mater., 2018, 186: 550-576.
  • [6]. Kolawole, J. T., Olusola, K. O., Babafemi, A. J., Olalusi, O. B. and Fanijo, E., “Blended cement binders containing bamboo leaf ash and ground clay brick waste for sustainable concrete”, Materialia, 2021, 15: 101045.
  • [7]. Espuelas, S., Echeverria, A. M., Marcelino, S., Prieto, E. and Seco, A., “Technical and environmental characterization of hydraulic and alkaline binders”, J. Clean. Prod., 2018, 196: 1306-1313.
  • [8]. Provis, J. L., “Alkali-activated materials”, Cem. Concr. Res., 2018, 114: 40-48.
  • [9]. Shwekat, K. and Wu, H.-C. “Benefit-cost analysis model of using class F fly ash-based green cement in masonry units”, J. Clean. Prod., 2018, 198: 443-451.
  • [10]. Adesina, A. “Performance of fibre reinforced alkali-activated composites – A review”, Materialia, 2020, 12: 100782.
  • [11]. Kaze, C. R., Tome, S., Lecomte-Nana, G. L., Adesina, A., Essaedi, H., Das, S. K., Alomayri, T., Kamseu, E. and Melo, U. C., “Development of alkali-activated composites from calcined iron-rich laterite soil”, Materialia, 2021, 15: 101032.
  • [12]. Provis, J. L., “Geopolymers and other alkali activated materials: why, how, and what?”, Mater. Struct., 2013, 47: 11-25.
  • [13]. van Deventer, J. S. J., Provis, J. L., Duxson, P. and Brice D. G., “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials”, Waste Biomass Valori., 2010, 1: 145-155.
  • [14]. Gökçe, H. S., Tuyan, M. and Nehdi, M. L., “Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review”, Constr. Build. Mater., 2021, 303: 124483.
  • [15]. Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., Ferreira da Silva, E., Velosa, A. and Rocha, F., “The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers”, Appl. Clay Sci., 2016, 126: 141-152.
  • [16]. Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., and Kumar, S., “Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives”, Environ. Sci. Pollut. Res. Int., 2017, 24: 4433-4446.
  • [17]. Bhagath Singh, G. V. P. and Subramaniam, K. V. L., “Effect of active components on strength development in alkali-activated low calcium fly ash cements”, Journal of Sustainable Cement-Based Materials, 2019, 8: 1-19.
  • [18]. Krishna, R. S., Mishra, J., Zribi, M., Adeniyi, F., Saha, S., Baklouti, S., Shaikh, F. U. A. and Gökçe, H. S. “A review on developments of environmentally friendly geopolymer technology”, 2021, Materialia 20: 101212.
  • [19]. McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A. and Corder, G. D., “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement”, J. Clean. Prod., 2011, 19: 1080-1090.
  • [20]. Clausi, M., Tarantino, S. C., Magnani, L. L., Riccardi, M. P., Tedeschi, C. and Zema, M., “Metakaolin as a precursor of materials for applications in Cultural Heritage: Geopolymer-based mortars with ornamental stone aggregates”, Appl. Clay Sci., 2016, 132-133: 589-599.
  • [21]. Sethi, H., Bansal, P. P. and Sharma, R., “Effect of addition of GGBS and glass powder on the properties of geopolymer concrete”, Iran J. Sci. Technol. Trans. Civ. Eng., 2019, 43: 607–617.
  • [22]. Bingöl, Ş., Bilim, C., Atiş, C. D. and Durak, U., “Durability properties of geopolymer mortars containing slag”, Iran J. Sci. Technol. Trans. Civ. Eng., 2020, 44: 561–569.
  • [23]. Khater, H. M. and Abd el Gawaad, H. A., “Characterization of alkali activated geopolymer mortar doped with MWCNT”, Constr. Build. Mater., 2016, 102: 329-337.
  • [24]. Hanjitsuwan, S., Phoo-ngernkham, T. and Damrongwiriyanupap, N., “Comparative study using Portland cement and calcium carbide residue as a promoter in bottom ash geopolymer mortar”, Constr. Build. Mater., 2017, 133: 128-134.
  • [25]. Kim, Y. Y., Lee, B. J., Saraswathy, V. and Kwon, S.-J., “Strength and durability performance of alkali-activated rice husk ash geopolymer mortar”, Sci. World J., 2014, 2014: 209584.
  • [26]. Nimwinya, E., Arjharn, W., Horpibulsuk, S., Phoo-Ngernkham, T. and Poowancum, A., “A sustainable calcined water treatment sludge and rice husk ash geopolymer”, J. Clean. Prod., 2016, 119: 128-134.
  • [27]. Xie, T. and Ozbakkaloglu, T., “Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature”, Ceram. Int., 2015, 41: 5945-5958.
  • [28]. Adak, D., Sarkar, M. and Mandal, S., “Structural performance of nano-silica modified fly-ash based geopolymer concrete”, Constr. Build. Mater., 2017, 137: 430-439.
  • [29]. Assi, L., Ghahari, S., Deaver, E., Leaphart, D. and Ziehl, P., “Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions”, Constr. Build. Mater., 2016, 123: 806-813.
  • [30]. Gunasekara, C., Law, D. W. and Setunge, S., “Long term permeation properties of different fly ash geopolymer concretes”, Constr. Build. Mater., 2016, 124: 352-362.
  • [31]. Pilehvar, S., Cao, V. D., Szczotok, A. M., Carmona, M., Valentini, L., Lanzón, M., Pamies, R. and Kjøniksen, A.-L., “Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials”, Constr. Build. Mater., 2018, 173: 28-39.
  • [32]. Nana, A., Epey, N., Rodrique, K. C., Deutou, J. G. N., Djobo, J. N. Y., Tomé, S., Alomayri, T. S., Ngouné, J., Kamseu, E. and Leonelli, C., “Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA)”, Materialia, 2021, 16: 101083.
  • [33]. Sharmin, A., Alengaram, U. J., Jumaat, M. Z., Yusuf, M. O., Kabir, S. M. A. and Bashar, I. I., “Influence of source materials and the role of oxide composition on the performance of ternary blended sustainable geopolymer mortar”, Constr. Build. Mater., 2017, 144: 608-623.
  • [34]. Firdous, R., Stephan, D. and Djobo, J. N. Y., “Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics”, Constr. Build. Mater., 2018, 190: 1251-1263.
  • [35]. Liebig, E. and Althaus, E., “Pozzolanic activity of volcanic tuff and suevite: Effects of calcination”, Cem. Concr. Res., 1998, 28: 567-575.
  • [36]. Türkmenoğlu, A. G. and Tankut, A., “Use of tuffs from central Turkey as admixture in pozzolanic cements: Assessment of their petrographical properties”, Cem. Concr. Res., 2002, 32: 629-637.
  • [37]. Çelik, M. Y. and Sabah, E., “Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution”, J. Environ. Manage., 2008, 87: 106-116.
  • [38]. Tekin, I., “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes”, Constr. Build. Mater., 2016, 127: 607-617.
  • [39]. Arel, H. Ş., “Recyclability of waste marble in concrete production”, J. Clean. Prod., 2016, 131: 179-188.
  • [40]. Lim YY, Pham TM, Kumar J., “Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and Durability studies”, Constr. and Build. Mater., 2021, 283:122795.
  • [41]. Tammam Y, Uysal M, Canpolat O, Kuranlı ÖF., “Effect of Waste Filler Materials and Recycled Waste Aggregates on the Production of Geopolymer Composites”, Arab J Sci Eng., 2022 Sep 9:1-8.
  • [42]. Altun, N. E., “Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control”, Fuel Process. Technol., 2014, 128: 461-470.
  • [43]. Xu, H. and van Deventer, J. S. J., “The geopolymerisation of alumino-silicate minerals”, Int. J. Miner. Process, 2000, 59: 247-266.
  • [44]. de Vargas, A. S., Dal Molin, D. C. C., Masuero, Â. B., Vilela, A. C. F., Castro-Gomes, J. and de Gutierrez, R. M., “Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators”, Cem. Concr. Compos., 2014, 53: 341-349.
  • [45]. Villa, C., Pecina, E. T., Torres, R. and Gómez, L., “Geopolymer synthesis using alkaline activation of natural zeolite”, Constr. Build. Mater., 2010, 24: 2084-2090.
  • [46]. Pekgöz, M., Tekin, İ., “The effects of different origins NaOH on the mechanical and microstructural properties of tuff-based alkali-activated pastes”, Turkish Journal of Engineering Research and Education, 2022, 1: 29-37.
  • [47]. Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K. and Kumar, S., “Mechanical properties and durability of volcanic ash based geopolymer mortars”, Constr. Build. Mater., 2016, 124: 606-614.
  • [48]. ASTM C187-16, Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste, ASTM International, West Conshohocken, PA, (2016).
  • [49]. ASTM C191-13, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat NeedleASTM International, West Conshohocken, PA, (2018).
  • [50]. ASTM C109/C109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)ASTM International, West Conshohocken, PA, (2017).
  • [51]. ASTM C642-06, Standard Test Method for Density, Absorption, and Voids in Hardened ConcreteASTM International, West Conshohocken, PA, (2013).
  • [52]. Cartwright, C., Rajabipour, F. and Radlińska, A., “Shrinkage characteristics of alkali-activated slag cements”, J. Mater. Civ. Eng., 2015, 27: B4014007.
  • [53]. Collins, F. and Sanjayan, J., “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete”, Cem. Concr. Res., 2000, 30: 1401-1406.
  • [54]. Häkkinen, T., “The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties”, Cem. Concr. Res., 1993, 23: 407–421.
  • [55]. Gökçe, H. S. and Tuyan, M., “Effect of mix design parameters on crack intensity of fly ash-based geopolymer mortar with high-volume paste”, 3rd International Conference on Civil and Environmental Engineering, İzmir, Turkey (2018).
  • [56]. Corinaldesi, V., Moriconi, G. and Naik, T. R., “Characterization of marble powder for its use in mortar and concrete”, Constr. Build. Mater., 2010, 24: 113-117.
  • [57]. Matschei, T., Lothenbach, B. and Glasser, F. P., “The role of calcium carbonate in cement hydration”, Cem. Concr. Res., 2007, 37: 551-558.
  • [58]. Gökçe, H. S., Tuyan, M., Ramyar, K. and Nehdi, M. L., “Development of eco-efficient fly ash-based alkali-activated and geopolymer composites with reduced alkaline activator dosage”, J. Mater. Civ. Eng., 2020, 32: 04019350.
  • [59]. Haga, K., Sutou, S. and Hironaga, M., “Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste”, Cem. Concr. Res., 2005, 35: 1764-1775.
  • [60]. Marczyk J, Ziejewska C, Pławecka K, Bąk A, Łach M, Korniejenko K, Hager I, Mikuła J, Lin WT, Hebda M. “Optimizing the L/S Ratio in Geopolymers for the Production of Large-Size Elements with 3D Printing Technology”, J. Mater., 2022, 15(9):3362.
  • [61]. Xu Z, Yue J, Pang G, Li R, Zhang P, Xu S. Influence of the activator concentration and solid/liquid ratio on the strength and shrinkage characteristics of alkali-activated slag geopolymer pastes. Advances in Civil Engineering. 2021 Feb 9;2021:1-1.
  • [62]. Matalkah, F., Salem, T., Shaafaey, M. and Soroushian, P., “Drying shrinkage of alkali activated binders cured at room temperature”, Constr. Build. Mater., 2019, 201: 563-570.
  • [63]. Jindal BB, Parveen, Singhal D, Goyal A., “Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete”, Trans. Indian Ceram. Soc., 2017, 76(4):258-65.
  • [64]. Ortega-Zavala, D. E., Santana-Carrillo, J. L., Burciaga-Díaz, O. and Escalante-García, I., “An initial study on alkali activated limestone binders”, Cem. Concr. Res., 2019, 120: 267-278.
  • [65]. Gao, K., Lin, K. and Wang, D., “Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers”, Constr. Build. Mater., 2014, 53: 503-510.
  • [66]. Zhang, Y., Sun, W. and Li, Z., “Composition design and microstructure characterization of geopolymer binder”, J. Chin. Ceram. Soc., 2008, 36(S1): 153-159.
Year 2023, , 371 - 387, 31.05.2023
https://doi.org/10.31202/ecjse.1225457

Abstract

References

  • [1]. Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K.H. and Alnahhal, M. F., “Incorporation of nano-materials in cement composite and geopolymer based paste and mortar – A review”, Constr. Build. Mater., 2017, 148: 62-84.
  • [2]. Andrew, R. M., “Global CO2 emissions from cement production, 1928–2017”, Earth Syst. Sci. Data, 2018, 10: 2213-2239.
  • [3]. Bhutta, A., Farooq, M., Zanotti, C. and Banthia, N., “Pull-out behavior of different fibers in geopolymer mortars: effects of alkaline solution concentration and curing”, Mater. Struct., 2017, 50: 80.
  • [4]. Zhang, P., Zheng, Y., Wang, K. and Zhang, J., “A review on properties of fresh and hardened geopolymer mortar”, Compos. Part B Eng., 2018, 152: 79-95.
  • [5]. Ng, C., Alengaram, U. J., Wong, L. S., Mo, K. H., Jumaat, M. Z. and Ramesh, S., “A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete”, Constr. Build. Mater., 2018, 186: 550-576.
  • [6]. Kolawole, J. T., Olusola, K. O., Babafemi, A. J., Olalusi, O. B. and Fanijo, E., “Blended cement binders containing bamboo leaf ash and ground clay brick waste for sustainable concrete”, Materialia, 2021, 15: 101045.
  • [7]. Espuelas, S., Echeverria, A. M., Marcelino, S., Prieto, E. and Seco, A., “Technical and environmental characterization of hydraulic and alkaline binders”, J. Clean. Prod., 2018, 196: 1306-1313.
  • [8]. Provis, J. L., “Alkali-activated materials”, Cem. Concr. Res., 2018, 114: 40-48.
  • [9]. Shwekat, K. and Wu, H.-C. “Benefit-cost analysis model of using class F fly ash-based green cement in masonry units”, J. Clean. Prod., 2018, 198: 443-451.
  • [10]. Adesina, A. “Performance of fibre reinforced alkali-activated composites – A review”, Materialia, 2020, 12: 100782.
  • [11]. Kaze, C. R., Tome, S., Lecomte-Nana, G. L., Adesina, A., Essaedi, H., Das, S. K., Alomayri, T., Kamseu, E. and Melo, U. C., “Development of alkali-activated composites from calcined iron-rich laterite soil”, Materialia, 2021, 15: 101032.
  • [12]. Provis, J. L., “Geopolymers and other alkali activated materials: why, how, and what?”, Mater. Struct., 2013, 47: 11-25.
  • [13]. van Deventer, J. S. J., Provis, J. L., Duxson, P. and Brice D. G., “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials”, Waste Biomass Valori., 2010, 1: 145-155.
  • [14]. Gökçe, H. S., Tuyan, M. and Nehdi, M. L., “Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review”, Constr. Build. Mater., 2021, 303: 124483.
  • [15]. Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., Ferreira da Silva, E., Velosa, A. and Rocha, F., “The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers”, Appl. Clay Sci., 2016, 126: 141-152.
  • [16]. Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K., and Kumar, S., “Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives”, Environ. Sci. Pollut. Res. Int., 2017, 24: 4433-4446.
  • [17]. Bhagath Singh, G. V. P. and Subramaniam, K. V. L., “Effect of active components on strength development in alkali-activated low calcium fly ash cements”, Journal of Sustainable Cement-Based Materials, 2019, 8: 1-19.
  • [18]. Krishna, R. S., Mishra, J., Zribi, M., Adeniyi, F., Saha, S., Baklouti, S., Shaikh, F. U. A. and Gökçe, H. S. “A review on developments of environmentally friendly geopolymer technology”, 2021, Materialia 20: 101212.
  • [19]. McLellan, B. C., Williams, R. P., Lay, J., van Riessen, A. and Corder, G. D., “Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement”, J. Clean. Prod., 2011, 19: 1080-1090.
  • [20]. Clausi, M., Tarantino, S. C., Magnani, L. L., Riccardi, M. P., Tedeschi, C. and Zema, M., “Metakaolin as a precursor of materials for applications in Cultural Heritage: Geopolymer-based mortars with ornamental stone aggregates”, Appl. Clay Sci., 2016, 132-133: 589-599.
  • [21]. Sethi, H., Bansal, P. P. and Sharma, R., “Effect of addition of GGBS and glass powder on the properties of geopolymer concrete”, Iran J. Sci. Technol. Trans. Civ. Eng., 2019, 43: 607–617.
  • [22]. Bingöl, Ş., Bilim, C., Atiş, C. D. and Durak, U., “Durability properties of geopolymer mortars containing slag”, Iran J. Sci. Technol. Trans. Civ. Eng., 2020, 44: 561–569.
  • [23]. Khater, H. M. and Abd el Gawaad, H. A., “Characterization of alkali activated geopolymer mortar doped with MWCNT”, Constr. Build. Mater., 2016, 102: 329-337.
  • [24]. Hanjitsuwan, S., Phoo-ngernkham, T. and Damrongwiriyanupap, N., “Comparative study using Portland cement and calcium carbide residue as a promoter in bottom ash geopolymer mortar”, Constr. Build. Mater., 2017, 133: 128-134.
  • [25]. Kim, Y. Y., Lee, B. J., Saraswathy, V. and Kwon, S.-J., “Strength and durability performance of alkali-activated rice husk ash geopolymer mortar”, Sci. World J., 2014, 2014: 209584.
  • [26]. Nimwinya, E., Arjharn, W., Horpibulsuk, S., Phoo-Ngernkham, T. and Poowancum, A., “A sustainable calcined water treatment sludge and rice husk ash geopolymer”, J. Clean. Prod., 2016, 119: 128-134.
  • [27]. Xie, T. and Ozbakkaloglu, T., “Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature”, Ceram. Int., 2015, 41: 5945-5958.
  • [28]. Adak, D., Sarkar, M. and Mandal, S., “Structural performance of nano-silica modified fly-ash based geopolymer concrete”, Constr. Build. Mater., 2017, 137: 430-439.
  • [29]. Assi, L., Ghahari, S., Deaver, E., Leaphart, D. and Ziehl, P., “Improvement of the early and final compressive strength of fly ash-based geopolymer concrete at ambient conditions”, Constr. Build. Mater., 2016, 123: 806-813.
  • [30]. Gunasekara, C., Law, D. W. and Setunge, S., “Long term permeation properties of different fly ash geopolymer concretes”, Constr. Build. Mater., 2016, 124: 352-362.
  • [31]. Pilehvar, S., Cao, V. D., Szczotok, A. M., Carmona, M., Valentini, L., Lanzón, M., Pamies, R. and Kjøniksen, A.-L., “Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials”, Constr. Build. Mater., 2018, 173: 28-39.
  • [32]. Nana, A., Epey, N., Rodrique, K. C., Deutou, J. G. N., Djobo, J. N. Y., Tomé, S., Alomayri, T. S., Ngouné, J., Kamseu, E. and Leonelli, C., “Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA)”, Materialia, 2021, 16: 101083.
  • [33]. Sharmin, A., Alengaram, U. J., Jumaat, M. Z., Yusuf, M. O., Kabir, S. M. A. and Bashar, I. I., “Influence of source materials and the role of oxide composition on the performance of ternary blended sustainable geopolymer mortar”, Constr. Build. Mater., 2017, 144: 608-623.
  • [34]. Firdous, R., Stephan, D. and Djobo, J. N. Y., “Natural pozzolan based geopolymers: A review on mechanical, microstructural and durability characteristics”, Constr. Build. Mater., 2018, 190: 1251-1263.
  • [35]. Liebig, E. and Althaus, E., “Pozzolanic activity of volcanic tuff and suevite: Effects of calcination”, Cem. Concr. Res., 1998, 28: 567-575.
  • [36]. Türkmenoğlu, A. G. and Tankut, A., “Use of tuffs from central Turkey as admixture in pozzolanic cements: Assessment of their petrographical properties”, Cem. Concr. Res., 2002, 32: 629-637.
  • [37]. Çelik, M. Y. and Sabah, E., “Geological and technical characterisation of Iscehisar (Afyon-Turkey) marble deposits and the impact of marble waste on environmental pollution”, J. Environ. Manage., 2008, 87: 106-116.
  • [38]. Tekin, I., “Properties of NaOH activated geopolymer with marble, travertine and volcanic tuff wastes”, Constr. Build. Mater., 2016, 127: 607-617.
  • [39]. Arel, H. Ş., “Recyclability of waste marble in concrete production”, J. Clean. Prod., 2016, 131: 179-188.
  • [40]. Lim YY, Pham TM, Kumar J., “Sustainable alkali activated concrete with fly ash and waste marble aggregates: Strength and Durability studies”, Constr. and Build. Mater., 2021, 283:122795.
  • [41]. Tammam Y, Uysal M, Canpolat O, Kuranlı ÖF., “Effect of Waste Filler Materials and Recycled Waste Aggregates on the Production of Geopolymer Composites”, Arab J Sci Eng., 2022 Sep 9:1-8.
  • [42]. Altun, N. E., “Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control”, Fuel Process. Technol., 2014, 128: 461-470.
  • [43]. Xu, H. and van Deventer, J. S. J., “The geopolymerisation of alumino-silicate minerals”, Int. J. Miner. Process, 2000, 59: 247-266.
  • [44]. de Vargas, A. S., Dal Molin, D. C. C., Masuero, Â. B., Vilela, A. C. F., Castro-Gomes, J. and de Gutierrez, R. M., “Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators”, Cem. Concr. Compos., 2014, 53: 341-349.
  • [45]. Villa, C., Pecina, E. T., Torres, R. and Gómez, L., “Geopolymer synthesis using alkaline activation of natural zeolite”, Constr. Build. Mater., 2010, 24: 2084-2090.
  • [46]. Pekgöz, M., Tekin, İ., “The effects of different origins NaOH on the mechanical and microstructural properties of tuff-based alkali-activated pastes”, Turkish Journal of Engineering Research and Education, 2022, 1: 29-37.
  • [47]. Djobo, J. N. Y., Elimbi, A., Tchakouté, H. K. and Kumar, S., “Mechanical properties and durability of volcanic ash based geopolymer mortars”, Constr. Build. Mater., 2016, 124: 606-614.
  • [48]. ASTM C187-16, Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste, ASTM International, West Conshohocken, PA, (2016).
  • [49]. ASTM C191-13, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat NeedleASTM International, West Conshohocken, PA, (2018).
  • [50]. ASTM C109/C109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or (50-mm) Cube Specimens)ASTM International, West Conshohocken, PA, (2017).
  • [51]. ASTM C642-06, Standard Test Method for Density, Absorption, and Voids in Hardened ConcreteASTM International, West Conshohocken, PA, (2013).
  • [52]. Cartwright, C., Rajabipour, F. and Radlińska, A., “Shrinkage characteristics of alkali-activated slag cements”, J. Mater. Civ. Eng., 2015, 27: B4014007.
  • [53]. Collins, F. and Sanjayan, J., “Effect of pore size distribution on drying shrinking of alkali-activated slag concrete”, Cem. Concr. Res., 2000, 30: 1401-1406.
  • [54]. Häkkinen, T., “The influence of slag content on the microstructure, permeability and mechanical properties of concrete Part 1 Microstructural studies and basic mechanical properties”, Cem. Concr. Res., 1993, 23: 407–421.
  • [55]. Gökçe, H. S. and Tuyan, M., “Effect of mix design parameters on crack intensity of fly ash-based geopolymer mortar with high-volume paste”, 3rd International Conference on Civil and Environmental Engineering, İzmir, Turkey (2018).
  • [56]. Corinaldesi, V., Moriconi, G. and Naik, T. R., “Characterization of marble powder for its use in mortar and concrete”, Constr. Build. Mater., 2010, 24: 113-117.
  • [57]. Matschei, T., Lothenbach, B. and Glasser, F. P., “The role of calcium carbonate in cement hydration”, Cem. Concr. Res., 2007, 37: 551-558.
  • [58]. Gökçe, H. S., Tuyan, M., Ramyar, K. and Nehdi, M. L., “Development of eco-efficient fly ash-based alkali-activated and geopolymer composites with reduced alkaline activator dosage”, J. Mater. Civ. Eng., 2020, 32: 04019350.
  • [59]. Haga, K., Sutou, S. and Hironaga, M., “Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste”, Cem. Concr. Res., 2005, 35: 1764-1775.
  • [60]. Marczyk J, Ziejewska C, Pławecka K, Bąk A, Łach M, Korniejenko K, Hager I, Mikuła J, Lin WT, Hebda M. “Optimizing the L/S Ratio in Geopolymers for the Production of Large-Size Elements with 3D Printing Technology”, J. Mater., 2022, 15(9):3362.
  • [61]. Xu Z, Yue J, Pang G, Li R, Zhang P, Xu S. Influence of the activator concentration and solid/liquid ratio on the strength and shrinkage characteristics of alkali-activated slag geopolymer pastes. Advances in Civil Engineering. 2021 Feb 9;2021:1-1.
  • [62]. Matalkah, F., Salem, T., Shaafaey, M. and Soroushian, P., “Drying shrinkage of alkali activated binders cured at room temperature”, Constr. Build. Mater., 2019, 201: 563-570.
  • [63]. Jindal BB, Parveen, Singhal D, Goyal A., “Predicting relationship between mechanical properties of low calcium fly ash-based geopolymer concrete”, Trans. Indian Ceram. Soc., 2017, 76(4):258-65.
  • [64]. Ortega-Zavala, D. E., Santana-Carrillo, J. L., Burciaga-Díaz, O. and Escalante-García, I., “An initial study on alkali activated limestone binders”, Cem. Concr. Res., 2019, 120: 267-278.
  • [65]. Gao, K., Lin, K. and Wang, D., “Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers”, Constr. Build. Mater., 2014, 53: 503-510.
  • [66]. Zhang, Y., Sun, W. and Li, Z., “Composition design and microstructure characterization of geopolymer binder”, J. Chin. Ceram. Soc., 2008, 36(S1): 153-159.
There are 66 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

İlker Tekin 0000-0001-7400-4790

Baraka Cıza 0000-0001-9111-887X

H. Süleyman Gökçe 0000-0002-6978-0135

Publication Date May 31, 2023
Submission Date December 28, 2022
Acceptance Date May 25, 2023
Published in Issue Year 2023

Cite

IEEE İ. Tekin, B. Cıza, and H. S. Gökçe, “Development of Alkali-Activated Binders from Recycling Regional Tuff and Marble Wastes”, ECJSE, vol. 10, no. 2, pp. 371–387, 2023, doi: 10.31202/ecjse.1225457.