Research Article
BibTex RIS Cite
Year 2023, , 388 - 400, 31.05.2023
https://doi.org/10.31202/ecjse.1227182

Abstract

References

  • [1]. M. S. Kanca, I. N. Qader, M. N. Qadir, and K. Mediha, “Recent improvements in various renewable energies and their effects on the environment and economy: a review article,” El-Cezerî Journal of Science and Engineering, vol. 8, no. 2, pp. 909-930, 2021.
  • [2]. S. Rehman, M. M. Alam, L. M. Alhems, M. M. Rafique, “Horizontal axis wind turbine blade design methodologies for efficiency enhancement—a review,” Energies, vol. 11, no. 3 pp. 1-34, 2018.
  • [3]. J. P. Jensen and K. Skelton, “Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 165-176, 2018.
  • [4]. I. Gul and A. Kolip, “Parça kanatlı savonius rüzgâr türbin performansının incelenmesi,” El-Cezerî Journal of Science and Engineering, vol. 5, no. 3, pp. 816-827, 2018.
  • [5]. M. O. L. Hansen, Aerodynamics of Wind Turbine, 2nd ed., London, UK: Earthscan, 2008, pp. 18-26.
  • [6]. C. G. Anderson, Wind Turbines: Theory and Practice, New York, USA: Cambridge University Press, 2020, pp. 34-63.
  • [7]. P. Å. Krogstad and J. Lund, “An experimental and numerical study of the performance of a model turbine,” Wind Energy, vol. 15, no. 3, pp. 443-457, 2012.
  • [8]. W. J. Zhu, W. Z. Shen, J. N. Sørensen,, “Integrated airfoil and blade design method for large wind turbines,” Renewable Energy, vol. 70, pp. 172-183, 2014.
  • [9]. C. J. Bai and W. C. Wang, “Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs),” Renewable and Sustainable Energy Reviews, vol. 63, pp. 506-519, 2016.
  • [10]. M. Hasan, A. El-Shahat, and M. Rahman, “Performance investigation of three combined airfoils bladed small scale horizontal axis wind turbine by BEM and CFD analysis,” Journal of Power and Energy Engineering, vol. 5, no. 5, pp. 14-27, 2017.
  • [11]. İ. Karasu, M. Özden, and M. S. Genç, “Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers,” Journal of Fluids Engineering, vol. 140, no. 12, 121102, 2018.
  • [12]. A. Aşkan and S. Tangöz, “The impact of aspect ratio on aerodynamic performance and flow separation behavior of a model wing composed from different profiles,” Journal of Energy Systems, vol. 2, no. 4, pp. 224-237, 2018.
  • [13]. N. Khlaifat, A. Altaee, J. Zhou, and Y. Huang, “A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using computational fluid dynamics modelling,” AIMS Energy, vol. 8, no. 3, pp. 493-524, 2020.
  • [14]. A. Shourangiz-Haghighi, M. A. Haghnegahdar, L. Wang, M. Mussetta, A. Kolios, and M. Lander, “State of the art in the optimisation of wind turbine performance using CFD”, Archives of Computational Methods in Engineering, vol. 27, no. 2, pp. 413-431, 2020.
  • [15]. H. E. Tanurun, İ. Ata, M. E. Canlı, and A. Acır, “Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi,” Politeknik Dergisi, vol. 23, no. 2, pp 371-381, 2020.
  • [16]. A. Eltayesh, F. Castellani, M. Burlando, M. B. Hanna, A. S. Huzayyin, H. M. El-Batsh, and M. Becchetti, “Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine,” Alexandria Engineering Journal, vol. 60, pp. 3931-3944, 2021.
  • [17]. I. Gov, “Rotor spacing and blade number effect on the thrust, torque, and power of a coaxial rotor,” El-Cezerî Journal of Science and Engineering, vol. 7, no. 2, pp. 487-502, 2020.
  • [18]. Y. F. Gorgulu, M. A., Ozgur, and R. Kose, “CFD analysis of a NACA 0009 aerofoil at a low Reynolds number,” Politeknik Dergisi, vol. 24, no. 3, pp. 1237-1242, 2021.
  • [19]. W. Yossri, S. B. Ayed, and A. Abdelkefi, “Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: computational fluid dynamics investigation,” Energy, vol. 229, 120739, 2021.
  • [20]. B. Ji, K. Zhong, Q. Xiong, P. Qiu, X. Zhang, and L. Wang, “CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model,” Energy, vol. 249, 123670, 2022.
  • [21]. C. V. Rodriguez and C. Celis, “Design optimization methodology of small horizontal axis wind turbine blades using a hybrid CFD/BEM/GA approach,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 6, 254, 2022.
  • [22]. H. Inan and M. Kaplan, “Alt Yüzeyi Modifiye Edilmiş NACA 63-415 Kanat Profilinin Aerodinamik Performansının Sayısal Analizi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 34, pp. 121-125, 2022.
  • [23]. F. Bertagnolio, N. N. Sørensen, J. Johansen, and P. Fuglsang, Wind turbine airfoil catalogue, Denmark, Forskningscenter Risoe, Risoe-R-1280 (EN), 2001.
  • [24]. U. Elibuyuk and I. Uçgul, “Rüzgâr türbinleri, çeşitleri ve rüzgâr enerjisi depolama yöntemleri,” Journal of YEKARUM, vol. 2, no. 3, pp. 1-14, 2014.
  • [25]. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32 no. 8, pp. 1598-1605, 1994.
  • [26]. ANSYS FLUENT 19.2, Theory Guide, Ansys Inc., Canonsburg PA, USA, 2018.
  • [27]. M. Bakırcı and S. Yılmaz, “Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines,” Engineering Science and Technology, an International Journal, vol. 21, no. 6, pp. 1128-1142, 2018.

Kanat Profili Geometrisindeki Değişikliğin Yatay Eksenli Rüzgâr Türbini Performansına Etkisinin HAD Yöntemi ile İncelenmesi

Year 2023, , 388 - 400, 31.05.2023
https://doi.org/10.31202/ecjse.1227182

Abstract

Sürdürülebilir enerji kaynağı olarak rüzgâr türbinleri rüzgârın kinetik enerjisini elektrik enerjisi dönüştüren sistemlerdir. Rüzgâr türbinlerinde kanat profillerinin geometrisi kanat yüzeyinde oluşan aerodinamik kuvvetlerin büyüklüğünü etkilemektedir. Bu çalışmada farklı rüzgâr hızlarında (4-16 m/s) standart NACA 63-415 kanat profilinin geometrik şeklinin kanat performansına etkisi SST k-ω türbülans modeli ile ANSYS Workbench programını kullanarak araştırılmıştır. Standart kanat profilinin HAD sonuçları deneysel çalışmayla doğrulanmıştır. Birinci adımda, standart kanat profilinin yüzeyinin şekli değiştirilerek NCAY30 ve NCAYÜY 30 kanat profilleri üretilmiştir. İkinci adımda, katı kanat modelleri kanat boyunca 1 m aralıklarla 7° hücum açısı, 7 kanat uç hız oranı ve 20 m kanat uzunluğu için optimum veter uzunlukları ve bağlama açıları hesaplanarak SOLIDWORKS programı kullanılarak katı kanat modelleri oluşturulmuştur. Maksimum Cp değeri 0,511 olarak 16 m/s rüzgâr hızında NCAYÜY 30 kanat modeli ile elde edilmiştir ve bu kanat modeli standart NACA 63-415 kanat modeline göre Cp değerini %10,62 artırmıştır. NCAYÜY 30 kanat modeli için maksimum kanat hızı standart kanat modelinden %7,2 daha fazladır. Bu çalışmada geliştirilen iki aşamalı yöntem rüzgâr türbini kanat tasarımı ile ilgili gelecekteki araştırmalara yardımcı olacağı düşünülmektedir.

References

  • [1]. M. S. Kanca, I. N. Qader, M. N. Qadir, and K. Mediha, “Recent improvements in various renewable energies and their effects on the environment and economy: a review article,” El-Cezerî Journal of Science and Engineering, vol. 8, no. 2, pp. 909-930, 2021.
  • [2]. S. Rehman, M. M. Alam, L. M. Alhems, M. M. Rafique, “Horizontal axis wind turbine blade design methodologies for efficiency enhancement—a review,” Energies, vol. 11, no. 3 pp. 1-34, 2018.
  • [3]. J. P. Jensen and K. Skelton, “Wind turbine blade recycling: experiences, challenges and possibilities in a circular economy,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 165-176, 2018.
  • [4]. I. Gul and A. Kolip, “Parça kanatlı savonius rüzgâr türbin performansının incelenmesi,” El-Cezerî Journal of Science and Engineering, vol. 5, no. 3, pp. 816-827, 2018.
  • [5]. M. O. L. Hansen, Aerodynamics of Wind Turbine, 2nd ed., London, UK: Earthscan, 2008, pp. 18-26.
  • [6]. C. G. Anderson, Wind Turbines: Theory and Practice, New York, USA: Cambridge University Press, 2020, pp. 34-63.
  • [7]. P. Å. Krogstad and J. Lund, “An experimental and numerical study of the performance of a model turbine,” Wind Energy, vol. 15, no. 3, pp. 443-457, 2012.
  • [8]. W. J. Zhu, W. Z. Shen, J. N. Sørensen,, “Integrated airfoil and blade design method for large wind turbines,” Renewable Energy, vol. 70, pp. 172-183, 2014.
  • [9]. C. J. Bai and W. C. Wang, “Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs),” Renewable and Sustainable Energy Reviews, vol. 63, pp. 506-519, 2016.
  • [10]. M. Hasan, A. El-Shahat, and M. Rahman, “Performance investigation of three combined airfoils bladed small scale horizontal axis wind turbine by BEM and CFD analysis,” Journal of Power and Energy Engineering, vol. 5, no. 5, pp. 14-27, 2017.
  • [11]. İ. Karasu, M. Özden, and M. S. Genç, “Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers,” Journal of Fluids Engineering, vol. 140, no. 12, 121102, 2018.
  • [12]. A. Aşkan and S. Tangöz, “The impact of aspect ratio on aerodynamic performance and flow separation behavior of a model wing composed from different profiles,” Journal of Energy Systems, vol. 2, no. 4, pp. 224-237, 2018.
  • [13]. N. Khlaifat, A. Altaee, J. Zhou, and Y. Huang, “A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using computational fluid dynamics modelling,” AIMS Energy, vol. 8, no. 3, pp. 493-524, 2020.
  • [14]. A. Shourangiz-Haghighi, M. A. Haghnegahdar, L. Wang, M. Mussetta, A. Kolios, and M. Lander, “State of the art in the optimisation of wind turbine performance using CFD”, Archives of Computational Methods in Engineering, vol. 27, no. 2, pp. 413-431, 2020.
  • [15]. H. E. Tanurun, İ. Ata, M. E. Canlı, and A. Acır, “Farklı açıklık oranlarındaki NACA-0018 rüzgâr türbini kanat modeli performansının sayısal ve deneysel incelenmesi,” Politeknik Dergisi, vol. 23, no. 2, pp 371-381, 2020.
  • [16]. A. Eltayesh, F. Castellani, M. Burlando, M. B. Hanna, A. S. Huzayyin, H. M. El-Batsh, and M. Becchetti, “Experimental and numerical investigation of the effect of blade number on the aerodynamic performance of a small-scale horizontal axis wind turbine,” Alexandria Engineering Journal, vol. 60, pp. 3931-3944, 2021.
  • [17]. I. Gov, “Rotor spacing and blade number effect on the thrust, torque, and power of a coaxial rotor,” El-Cezerî Journal of Science and Engineering, vol. 7, no. 2, pp. 487-502, 2020.
  • [18]. Y. F. Gorgulu, M. A., Ozgur, and R. Kose, “CFD analysis of a NACA 0009 aerofoil at a low Reynolds number,” Politeknik Dergisi, vol. 24, no. 3, pp. 1237-1242, 2021.
  • [19]. W. Yossri, S. B. Ayed, and A. Abdelkefi, “Airfoil type and blade size effects on the aerodynamic performance of small-scale wind turbines: computational fluid dynamics investigation,” Energy, vol. 229, 120739, 2021.
  • [20]. B. Ji, K. Zhong, Q. Xiong, P. Qiu, X. Zhang, and L. Wang, “CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model,” Energy, vol. 249, 123670, 2022.
  • [21]. C. V. Rodriguez and C. Celis, “Design optimization methodology of small horizontal axis wind turbine blades using a hybrid CFD/BEM/GA approach,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 44, no. 6, 254, 2022.
  • [22]. H. Inan and M. Kaplan, “Alt Yüzeyi Modifiye Edilmiş NACA 63-415 Kanat Profilinin Aerodinamik Performansının Sayısal Analizi,” Avrupa Bilim ve Teknoloji Dergisi, vol. 34, pp. 121-125, 2022.
  • [23]. F. Bertagnolio, N. N. Sørensen, J. Johansen, and P. Fuglsang, Wind turbine airfoil catalogue, Denmark, Forskningscenter Risoe, Risoe-R-1280 (EN), 2001.
  • [24]. U. Elibuyuk and I. Uçgul, “Rüzgâr türbinleri, çeşitleri ve rüzgâr enerjisi depolama yöntemleri,” Journal of YEKARUM, vol. 2, no. 3, pp. 1-14, 2014.
  • [25]. F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32 no. 8, pp. 1598-1605, 1994.
  • [26]. ANSYS FLUENT 19.2, Theory Guide, Ansys Inc., Canonsburg PA, USA, 2018.
  • [27]. M. Bakırcı and S. Yılmaz, “Theoretical and computational investigations of the optimal tip-speed ratio of horizontal-axis wind turbines,” Engineering Science and Technology, an International Journal, vol. 21, no. 6, pp. 1128-1142, 2018.
There are 27 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Hakan İnan 0000-0001-7654-9460

Mahmut Kaplan 0000-0003-2675-9229

Publication Date May 31, 2023
Submission Date December 30, 2022
Acceptance Date May 19, 2023
Published in Issue Year 2023

Cite

IEEE H. İnan and M. Kaplan, “Kanat Profili Geometrisindeki Değişikliğin Yatay Eksenli Rüzgâr Türbini Performansına Etkisinin HAD Yöntemi ile İncelenmesi”, El-Cezeri Journal of Science and Engineering, vol. 10, no. 2, pp. 388–400, 2023, doi: 10.31202/ecjse.1227182.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png