Research Article
BibTex RIS Cite
Year 2023, , 492 - 505, 30.09.2023
https://doi.org/10.31202/ecjse.1247180

Abstract

References

  • [1]. A. Nella and A. S. Gandhi, “A survey on microstrip antennas for portable wireless communication system applications,” 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 2017, pp. 2156-2165.
  • [2]. R. S. Daniel, “A CPW-fed rectangular nested loop antenna for Penta band Wireless Applications,” AEU - International Journal of Electronics and Communications, vol. 139, no. 3, pp. 16-24, 2021.
  • [3]. S. Ibnyaich, L. Wakrim, and M. M. R. Hassani, “Nonuniform semi-patches for designing an Ultra-wideband PIFA antenna by using genetic algorithm optimization,” Wireless Personal Communications, vol. 117, no. 2, pp. 957-969, 2020.
  • [4]. E. A. Aydın, “3D-printed graphene-based bow-tie microstrip antenna design and analysis for Ultra-Wideband Applications,” Polymers, vol. 13, no. 21, p. 3724-3744, 2021.
  • [5]. K. L. Chung and C.-H. Wong, “Wang-shaped patch antenna for wireless communications,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 638-640, 2010.
  • [6]. K. Sumathi, “Pentagon-shaped MIMO antenna for INSAT C band applications,” Arabian Journal for Science and Engineering, vol. 47, no. 3, pp. 3611-3618, 2022.
  • [7]. A. G. Ambekar and A. A. Deshmukh, “E-shape microstrip antenna for dual frequency WLAN application,” Progress In Electromagnetics Research C, vol. 104, pp. 13-24, 2020.
  • [8]. A. M. Abdulhussein, A. H. Khidhi, and A. A. Naser, “Omnidirectional microstrip patch antenna for 2.4 GHz wireless communications,” 3rd International Conference in Physical Science and Advanced Materials (PAM 2021), Istanbul, Turkey, 2021, pp. 012051.
  • [9]. L. Lizzi, R. Azaro, G. Oliveri, and A. Massa, “Printed UWB antenna operating over multiple mobile wireless standards,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1429-1432, 2011.
  • [10]. K. Yadav, A. Jain, N. M. Osman Sid Ahmed, S. A. Saad Hamad, G. Dhiman, and S. D. Alotaibi, “Internet of thing-based Koch fractal curve fractal antennas for wireless applications,” IETE Journal of Research, pp. 1-10, 2022.
  • [11]. O. Benkhadda, M. Saih, K. Chaji, S. Ahmad, and A. Reha, “A compact dual-band CPW-fed slot monopole antenna for WIFI, WLAN and WiMAX applications,” Arabian Journal for Science and Engineering, 2022.
  • [12]. H. Alam and M. Y. Jamal, “A novel modified T slot to realize wideband circularly polarized patch antenna for low-cost planar 2.4 ghz wireless LAN, Bluetooth, GPS applications,” IETE Journal of Research, pp. 1-6, 2021.
  • [13]. R. Azim, M. T. Islam, and N. Misran, “Microstrip line-fed printed planar monopole antenna for UWB applications,” Arabian Journal for Science and Engineering, vol. 38, no. 9, pp. 2415-2422, 2013.
  • [14]. D. Rishishwar and L. Shrivastava “Rectangular microstrip patch antenna with FSS and slotted patch to enhance bandwidth at 2.4 GHz for WLAN applications,” International Journal of Technology Enhancements and Emerging Engineering Research (IJTEEE), vol. 2, no. 4, pp. 59-62, 2014.
  • [15]. Z. A. Nassr, S. N. Zabri, N. A. Shairi, Z. Zakaria, A. Othman, and A. M. Zobilah, “Performance improvement of a slotted square patch antenna using FSS superstrate for wireless application,” International Conference on Telecommunication, Electronic and Computer Engineering, Melaka, Malaysia, 2019, p. 012030.
  • [16]. T. D. Amalraj and R. Savarimuthu, “Design and analysis of microstrip patch antenna using periodic EBG structure for C-band applications,” Wireless Personal Communications, vol. 109, no. 3, pp. 2077-2094, 2019.
  • [17]. R. Biswas, A. Nandi, M. K. Parsha, and B. Basu, “High isolation, wide aperture antenna array using auxiliary feeds and EBG surface for 5G communication,” Arabian Journal for Science and Engineering, vol. 47, no. 11, pp. 14935-14945, 2022.
  • [18]. I. Catalkaya, “A Broadband High Gain Antenna with Parasitic Elements for Wireless Applications”, Journal of Aeronautics and Space Technologies (JAST), vol. 13, no. 1, pp. 121-128, 2020.
  • [19]. S. Rekha and S. R. Jino Ramson, “Parasitically isolated 4-element MIMO antenna for 5G/WLAN applications,” Arabian Journal for Science and Engineering, vol. 47, no. 11, pp. 14711-14720, 2022.
  • [20]. K. W. S. Al Kharusi, N. Ramli, S. Khan, M. T. Ali, M. A. Halim “Gain enhancement of rectangular microstrip patch antenna using air gap at 2.4 GHz.” International Journal of Nanoelectronics and Materials, vol. 13, no.19, pp. 211-224, 2020.
  • [21]. D. Uzer and S. S. Gultekin, “An investigation of shorting pin effects on circular disc microstrip antennas,” International Journal of Applied Mathematics, Electronics and Computers, vol. 3, no. 3, p. 218, 2015.
  • [22]. X. Yang, L. Ge, J. Wang, and C.-Y.-D. Sim, “A differentially driven dual-polarized high-gain stacked patch antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 7, pp. 1181–1185, 2018.
  • [23]. Y. A. Sheikh, K. N. Paracha, S. Ahmad, A. R. Bhatti, A. D. Butt, and S. K. Rahim, “Analysis of compact dual-band Metamaterial-based patch antenna design for Wearable Application,” Arabian Journal for Science and Engineering, vol. 47, no. 3, pp. 3509-3518, 2021.
  • [24]. A. Bakhtiari, R. A. Sadeghzadeh, and M. N. Moghadasi, “Gain enhanced miniaturized microstrip patch antenna using metamaterial Superstrates,” IETE Journal of Research, vol. 65, no. 5, pp. 635-640, 2018.
  • [25]. L. Lizzi, F. Viani, E. Zeni, and A. Massa, “A DVBH/GSM/UMTS planar antenna for multimode wireless devices,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 568-571, 2009.
  • [26]. J. Row and Y. Liou, “Broadband short-circuited triangular patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 7, pp. 2137-2141, 2006.
  • [27]. C. H. See, R. A. Abd-Alhameed, D. Zhou, T. H. Lee, and P. S. Excell, “A crescent-shaped multiband planar monopole antenna for mobile wireless applications,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 152-155, 2010.
  • [28]. B. Wang, F. Zhang, T. Li, Q. Li and J. Ren, "A novel wideband circular patch antenna for wireless communication," 2014 International Symposium on Antennas and Propagation Conference Proceedings, Kaohsiung, Taiwan, 2014, pp. 545-546.
  • [29]. M. Aneesh, A. Singh, K. Kamakshi, and J. A. Ansari, “Performance investigations of S-shaped RMSA using multilayer perceptron neural network for S-band applications,” Radioelectronics and Communications Systems, vol. 62, no. 8, pp. 400-408, 2019.
  • [30]. P. K. Abbassi, N. M. Badra, A. M. M. A. Allam and A. El-Rafei, "WiFi Antenna Design and Modeling using Artificial Neural Networks," 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2019, pp. 270-274.
  • [31]. M. Sagik, O. Altintas, E. Unal, E. Ozdemir, M. Demirci, S. Colak, and M. Karaaslan, “Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach,” Wireless Personal Communications, vol. 118, no. 1, pp. 109-124, 2021.
  • [32]. A. Kayabasi, A. Toktas, A. Akdagli, M. B. Bicer, D. Ustun “Applications of ANN and ANFIS to predict the resonant frequency of L-shaped compact microstrip antennas,” The Applied Computational Electromagnetics Society Journal (ACES), vol. 29, no. 6, pp. 460-469, 2021.
  • [33] Z. Yang, Y. Zhang, L. Zhu, L. Huang, F. Hu, Y. Du and X. Li, “MSCNN-LSTM model for predicting return loss of the UHF antenna in HF-UHF RFID tag antenna” Computers, Materials & Continua, vol. 75, no. 2, pp. 2889-2904, 2023.
  • [34] R. Karanam and D. Kahkar, “Artificial neural network optimized ultra-wide band fractal antenna for vehicular communication applications.” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 12, 2022.
  • [35] D. Sami Khafaga, A. Ali Alhussan, E.-S. M. El-kenawy, A. Ibrahim, S. H. Abd Elkhalik, S. Y. El-Mashad and A. A. Abdelhamid, “Improved prediction of metamaterial antenna bandwidth using adaptive optimization of LSTM,” Computers, Materials & Continua, vol. 73, no. 1, pp. 865-881, 2022.

Optimization of Monopole Consecutive Square-Shaped Patch Antenna with ANN for Wireless Communicaton Systems

Year 2023, , 492 - 505, 30.09.2023
https://doi.org/10.31202/ecjse.1247180

Abstract

In recent years, Artificial Neural Network (ANN) applications in antenna structures have gained significant traction due to their potential to reduce design and calculation times, offering optimization and prediction capabilities. This study introduces a novel monopole patch antenna design featuring a consecutive square-shaped broadband microstrip-line-fed antenna. The proposed antenna exhibits an impressive impedance bandwidth of 68% (1.55 - 2.82 GHz), a remarkable return loss of -47.25 dB, and a directivity gain of 2.77 dBi. Simulation studies were conducted using CST™ Studio Suite electromagnetic simulation software. The ANN model developed based on feed-forward backpropagation demonstrates exceptional agreement with the simulation results, showcasing an accuracy of 99.61805% and performing 2769.231 times faster. With advancing technology, ANNs present an effective solution for addressing complex antenna design challenges arising from escalating data rate requirements and uninterrupted data transmission. These results open promising avenues for further advancements in antenna design aided by ANN applications.

References

  • [1]. A. Nella and A. S. Gandhi, “A survey on microstrip antennas for portable wireless communication system applications,” 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 2017, pp. 2156-2165.
  • [2]. R. S. Daniel, “A CPW-fed rectangular nested loop antenna for Penta band Wireless Applications,” AEU - International Journal of Electronics and Communications, vol. 139, no. 3, pp. 16-24, 2021.
  • [3]. S. Ibnyaich, L. Wakrim, and M. M. R. Hassani, “Nonuniform semi-patches for designing an Ultra-wideband PIFA antenna by using genetic algorithm optimization,” Wireless Personal Communications, vol. 117, no. 2, pp. 957-969, 2020.
  • [4]. E. A. Aydın, “3D-printed graphene-based bow-tie microstrip antenna design and analysis for Ultra-Wideband Applications,” Polymers, vol. 13, no. 21, p. 3724-3744, 2021.
  • [5]. K. L. Chung and C.-H. Wong, “Wang-shaped patch antenna for wireless communications,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 638-640, 2010.
  • [6]. K. Sumathi, “Pentagon-shaped MIMO antenna for INSAT C band applications,” Arabian Journal for Science and Engineering, vol. 47, no. 3, pp. 3611-3618, 2022.
  • [7]. A. G. Ambekar and A. A. Deshmukh, “E-shape microstrip antenna for dual frequency WLAN application,” Progress In Electromagnetics Research C, vol. 104, pp. 13-24, 2020.
  • [8]. A. M. Abdulhussein, A. H. Khidhi, and A. A. Naser, “Omnidirectional microstrip patch antenna for 2.4 GHz wireless communications,” 3rd International Conference in Physical Science and Advanced Materials (PAM 2021), Istanbul, Turkey, 2021, pp. 012051.
  • [9]. L. Lizzi, R. Azaro, G. Oliveri, and A. Massa, “Printed UWB antenna operating over multiple mobile wireless standards,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1429-1432, 2011.
  • [10]. K. Yadav, A. Jain, N. M. Osman Sid Ahmed, S. A. Saad Hamad, G. Dhiman, and S. D. Alotaibi, “Internet of thing-based Koch fractal curve fractal antennas for wireless applications,” IETE Journal of Research, pp. 1-10, 2022.
  • [11]. O. Benkhadda, M. Saih, K. Chaji, S. Ahmad, and A. Reha, “A compact dual-band CPW-fed slot monopole antenna for WIFI, WLAN and WiMAX applications,” Arabian Journal for Science and Engineering, 2022.
  • [12]. H. Alam and M. Y. Jamal, “A novel modified T slot to realize wideband circularly polarized patch antenna for low-cost planar 2.4 ghz wireless LAN, Bluetooth, GPS applications,” IETE Journal of Research, pp. 1-6, 2021.
  • [13]. R. Azim, M. T. Islam, and N. Misran, “Microstrip line-fed printed planar monopole antenna for UWB applications,” Arabian Journal for Science and Engineering, vol. 38, no. 9, pp. 2415-2422, 2013.
  • [14]. D. Rishishwar and L. Shrivastava “Rectangular microstrip patch antenna with FSS and slotted patch to enhance bandwidth at 2.4 GHz for WLAN applications,” International Journal of Technology Enhancements and Emerging Engineering Research (IJTEEE), vol. 2, no. 4, pp. 59-62, 2014.
  • [15]. Z. A. Nassr, S. N. Zabri, N. A. Shairi, Z. Zakaria, A. Othman, and A. M. Zobilah, “Performance improvement of a slotted square patch antenna using FSS superstrate for wireless application,” International Conference on Telecommunication, Electronic and Computer Engineering, Melaka, Malaysia, 2019, p. 012030.
  • [16]. T. D. Amalraj and R. Savarimuthu, “Design and analysis of microstrip patch antenna using periodic EBG structure for C-band applications,” Wireless Personal Communications, vol. 109, no. 3, pp. 2077-2094, 2019.
  • [17]. R. Biswas, A. Nandi, M. K. Parsha, and B. Basu, “High isolation, wide aperture antenna array using auxiliary feeds and EBG surface for 5G communication,” Arabian Journal for Science and Engineering, vol. 47, no. 11, pp. 14935-14945, 2022.
  • [18]. I. Catalkaya, “A Broadband High Gain Antenna with Parasitic Elements for Wireless Applications”, Journal of Aeronautics and Space Technologies (JAST), vol. 13, no. 1, pp. 121-128, 2020.
  • [19]. S. Rekha and S. R. Jino Ramson, “Parasitically isolated 4-element MIMO antenna for 5G/WLAN applications,” Arabian Journal for Science and Engineering, vol. 47, no. 11, pp. 14711-14720, 2022.
  • [20]. K. W. S. Al Kharusi, N. Ramli, S. Khan, M. T. Ali, M. A. Halim “Gain enhancement of rectangular microstrip patch antenna using air gap at 2.4 GHz.” International Journal of Nanoelectronics and Materials, vol. 13, no.19, pp. 211-224, 2020.
  • [21]. D. Uzer and S. S. Gultekin, “An investigation of shorting pin effects on circular disc microstrip antennas,” International Journal of Applied Mathematics, Electronics and Computers, vol. 3, no. 3, p. 218, 2015.
  • [22]. X. Yang, L. Ge, J. Wang, and C.-Y.-D. Sim, “A differentially driven dual-polarized high-gain stacked patch antenna,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 7, pp. 1181–1185, 2018.
  • [23]. Y. A. Sheikh, K. N. Paracha, S. Ahmad, A. R. Bhatti, A. D. Butt, and S. K. Rahim, “Analysis of compact dual-band Metamaterial-based patch antenna design for Wearable Application,” Arabian Journal for Science and Engineering, vol. 47, no. 3, pp. 3509-3518, 2021.
  • [24]. A. Bakhtiari, R. A. Sadeghzadeh, and M. N. Moghadasi, “Gain enhanced miniaturized microstrip patch antenna using metamaterial Superstrates,” IETE Journal of Research, vol. 65, no. 5, pp. 635-640, 2018.
  • [25]. L. Lizzi, F. Viani, E. Zeni, and A. Massa, “A DVBH/GSM/UMTS planar antenna for multimode wireless devices,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 568-571, 2009.
  • [26]. J. Row and Y. Liou, “Broadband short-circuited triangular patch antenna,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 7, pp. 2137-2141, 2006.
  • [27]. C. H. See, R. A. Abd-Alhameed, D. Zhou, T. H. Lee, and P. S. Excell, “A crescent-shaped multiband planar monopole antenna for mobile wireless applications,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 152-155, 2010.
  • [28]. B. Wang, F. Zhang, T. Li, Q. Li and J. Ren, "A novel wideband circular patch antenna for wireless communication," 2014 International Symposium on Antennas and Propagation Conference Proceedings, Kaohsiung, Taiwan, 2014, pp. 545-546.
  • [29]. M. Aneesh, A. Singh, K. Kamakshi, and J. A. Ansari, “Performance investigations of S-shaped RMSA using multilayer perceptron neural network for S-band applications,” Radioelectronics and Communications Systems, vol. 62, no. 8, pp. 400-408, 2019.
  • [30]. P. K. Abbassi, N. M. Badra, A. M. M. A. Allam and A. El-Rafei, "WiFi Antenna Design and Modeling using Artificial Neural Networks," 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt, 2019, pp. 270-274.
  • [31]. M. Sagik, O. Altintas, E. Unal, E. Ozdemir, M. Demirci, S. Colak, and M. Karaaslan, “Optimizing the gain and directivity of a microstrip antenna with metamaterial structures by using artificial neural network approach,” Wireless Personal Communications, vol. 118, no. 1, pp. 109-124, 2021.
  • [32]. A. Kayabasi, A. Toktas, A. Akdagli, M. B. Bicer, D. Ustun “Applications of ANN and ANFIS to predict the resonant frequency of L-shaped compact microstrip antennas,” The Applied Computational Electromagnetics Society Journal (ACES), vol. 29, no. 6, pp. 460-469, 2021.
  • [33] Z. Yang, Y. Zhang, L. Zhu, L. Huang, F. Hu, Y. Du and X. Li, “MSCNN-LSTM model for predicting return loss of the UHF antenna in HF-UHF RFID tag antenna” Computers, Materials & Continua, vol. 75, no. 2, pp. 2889-2904, 2023.
  • [34] R. Karanam and D. Kahkar, “Artificial neural network optimized ultra-wide band fractal antenna for vehicular communication applications.” Transactions on Emerging Telecommunications Technologies, vol. 33, no. 12, 2022.
  • [35] D. Sami Khafaga, A. Ali Alhussan, E.-S. M. El-kenawy, A. Ibrahim, S. H. Abd Elkhalik, S. Y. El-Mashad and A. A. Abdelhamid, “Improved prediction of metamaterial antenna bandwidth using adaptive optimization of LSTM,” Computers, Materials & Continua, vol. 73, no. 1, pp. 865-881, 2022.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Sena Esen Bayer Keskin 0000-0001-8309-3393

Cem Güler 0000-0002-6631-7559

Batuhan Uslu 0000-0002-2064-7843

Publication Date September 30, 2023
Submission Date February 3, 2023
Acceptance Date August 19, 2023
Published in Issue Year 2023

Cite

IEEE S. E. Bayer Keskin, C. Güler, and B. Uslu, “Optimization of Monopole Consecutive Square-Shaped Patch Antenna with ANN for Wireless Communicaton Systems”, ECJSE, vol. 10, no. 3, pp. 492–505, 2023, doi: 10.31202/ecjse.1247180.