Research Article
BibTex RIS Cite
Year 2023, , 586 - 599, 30.09.2023
https://doi.org/10.31202/ecjse.1282892

Abstract

References

  • [1]. G. Kerim, and B. Suad, “A quantized water cycle optimization algorithm for antenna array synthesis by using digital phase shifters,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 25, no. 1, pp. 21-29, 2015.
  • [2]. H. I. Taisir, and M. H. Zoubir, “Array Pattern Synthesis Using Digital Phase Control by Quantized Particle Swarm Optimization,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 2142-2145, 2010.
  • [3]. P. David, O. Tamas, C. D. G. Deubauh, and K. N. Hamid, “Performance Comparison of Quantized Control Synthesis Methods of Antenna Arrays,” Electronics, vol. 1, no. 7, pp. 994-102, 2022.
  • [4]. S.-T. Sheu, J.-S. Wu, C.-H. Huang, Y.-C. Cheng, and L. Chen, “DDAS: Distance and Direction Awareness System for Intelligent Vehicles,” Journal of Information Science and Engineering, vol. 23, pp. 709-722, 2007.
  • [5]. S. Liang, T. Feng, and G. Sun, “Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimisation algorithm,” IET Microw. Antennas Propag., vol. 11, pp. 209-218, 2017.
  • [6]. H. Singh, B. S. Sohi, and A. Gupta, “Designing and performance evaluation of metamaterial inspired antenna for 4G and 5G applications,” Int. J. Electron., vol. 108, pp. 1035-1057, 2021.
  • [7]. H. Singh, N. Mittal, U. Singh, and R. Salgotra, “Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive Cuckoo search algorithm,” Arab. J. Sci. Eng., vol. 47, pp. 3105-3118, 2022.
  • [8]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
  • [9]. R. Q. Wang, and Y. C. Jiao, “Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints,” IEEE Antennas Wirel. Propag. Lett., vol. 18, pp. 821-825, 2019.
  • [10]. L. Hui, C. Yikai, and J. Ulrich, “Synthesis, Control, and Excitation of Characteristic Modes for Platform-Integrated Antenna Designs: A design philosophy,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 41-48, 2022.
  • [11]. R. Castillo, R. Ma, and N. Behdad, “Platform-based electrically-small HF antenna with switchable directional radiation patterns,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4370-4379, 2021.
  • [12]. Y. Liu, J. Zhang, A. Ren, H. Wang, and C. Sim, “TCM-based heptaband antenna with small clearance for metal-rimmed mobile phone applications,” IEEE Antennas and Wireless Propag. Lett., vol. 18, no. 4, pp. 717-721, 2019.
  • [13]. I. J. Islamov, E. G. Ismibayli, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Modeling of the Electromagnetic Feld of a Rectangular Waveguide with Side Holes,” Progress in Electromagnetics Research, vol. 81, pp. 127-132, 2019.
  • [14]. I. J. Islamov, N. M. Shukurov, R. S. Abdullayev, K. K. Hashimov, and A. I. Khalilov, “Diffraction of Electromagnetic Waves of Rectangular Waveguides with a Longitudinal,” Application in Information and Telecommunication Systems, pp. 35-46Ş 2020.
  • [15]. A. I. Khalilov, I. J. Islamov, E. Z. Hunbataliyev, N. M. Shukurov, and R. S. Abdullayev, “Modeling Microwave Signals Transmitted Through a Rectangular Waveguide,” Application in Information and Telecommunication Systems, pp. 56-67, 2020.
  • [16]. I. J. Islamov, and E. G. Ismibayli, “Experimental Study of Characteristics of Microwave Devices Transition from Rectangular Waveguide to the Megaphone,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 477-479, 2018.
  • [17]. E. G. Ismibayli, and I. J. Islamov, “New Approach to Definition of Potential of the Electric Field Created by Set Distribution in Space of Electric Charges,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 410-414, 2018.
  • [18]. I. J. Islamov, E. G. Ismibayli, M. H. Hasanov, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Calculation of the Electromagnetic Field of a Rectangular Waveguide with Chiral Medium,” Progress in Electromagnetics Research, vol. 84, pp. 97-114, 2019.
  • [19]. I. J. Islamov, E. Z. Hunbataliyev, and A. E. Zulfugarli, “Numerical Simulation of Characteristics of Propagation of Symmetric Waves in Microwave Circular Shielded Waveguide with a Radially Inhomogeneous Dielectric Filling,” International Journal of Microwave and Wireless Technologies, vol. 9, pp. 761-767, 2021.
  • [20]. I. J. Islamov, M. H. Hasanov, and M. H. Abbasov, “Simulation of Electrodynamic Processes in a Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information,” Theory and Application of Soft Computing, Computing with Words, Perception and Artificial Intelligence, pp. 246-253, 2021.
  • [21]. A. G. Charles, and Y. Guo, “A General Approach for Synthesizing Multibeam Antenna Arrays Employing Generalized Joined Coupler Matrix,” IEEE Transactions on Antennas and Propagation, vol. 256, pp. 1-10, 2022.
  • [22]. A. K. Amin, “A Proposed Method for Synthesizing the Radiation Pattern of Linear Antenna Arrays,” Journal of Communications, vol. 17, no. 7, pp. 1-6, 2022.
  • [23]. A. Zeeshan, U. A. J. Zain, B. Shu-Di, and C. Meng, “Comments on Frequency Diverse Array Beampattern Synthesis with Taylor Windowed Frequency Offsets,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 8, pp. 1713-1714, 2022.
  • [24]. Z. Wang, Y. Song, T. Mu, and Z. Ahmad, “A short-range range-angle dependent beampattern synthesis by frequency diverse array,” IEEE Access, vol. 6, pp. 22664-22669, 2018.
  • [25]. X. Shao, T. Hu, Z. Xiao, and J. Zhang, “Frequency l+ synthesis with modified sinusoidal frequency offset,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 9, pp. 1784-1788, 2021.
  • [26]. R. Quanxin, Q. Bingyi, C. Xiaoming, H. Xiaoyu, L. Qinlong, and Z. Jiaying, “Linear Antenna Array with Large Element Spacing for Wide-Angle Beam Scanning with Suppressed Grating Lobes,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 6, pp. 1258-1262, 2022.
  • [27]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
  • [28]. Y.-F. Cheng, X. Ding, W. Shao, M.-X. Yu, and B.-Z. Wang, “A novel wide-angle scanning phased array based on dual-mode pattern reconfigurable elements”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 396-399, 2017.
  • [29]. J. Zhang, X. Cui, H. Xu, S. Zhao, and M. Lu, “Efficient Signal Separation Method Based on Antenna Arrays for GNSS Meaconing,” Tsinghua Science and Technology, vol. 24, no. 2, pp. 216-225, 2019.

Development of a Technique for Increasing the Directivity of an Antenna Array in the Microwave Range

Year 2023, , 586 - 599, 30.09.2023
https://doi.org/10.31202/ecjse.1282892

Abstract

The paper proposes and tests an effective method for improving the directivity of diffraction-type leaky-wave antennas based on the implementation of a longitudinal change in the profile of the distribution-radiating system due to the variation of the aiming distance according to a given amplitude distribution. It has been established that changing the aiming distance along the aperture according to a theoretically calculated regularity makes it possible to improve the initial directional properties of the antenna: to reduce the maximum level of side lobes, and also to increase the antenna gain.

References

  • [1]. G. Kerim, and B. Suad, “A quantized water cycle optimization algorithm for antenna array synthesis by using digital phase shifters,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 25, no. 1, pp. 21-29, 2015.
  • [2]. H. I. Taisir, and M. H. Zoubir, “Array Pattern Synthesis Using Digital Phase Control by Quantized Particle Swarm Optimization,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 6, pp. 2142-2145, 2010.
  • [3]. P. David, O. Tamas, C. D. G. Deubauh, and K. N. Hamid, “Performance Comparison of Quantized Control Synthesis Methods of Antenna Arrays,” Electronics, vol. 1, no. 7, pp. 994-102, 2022.
  • [4]. S.-T. Sheu, J.-S. Wu, C.-H. Huang, Y.-C. Cheng, and L. Chen, “DDAS: Distance and Direction Awareness System for Intelligent Vehicles,” Journal of Information Science and Engineering, vol. 23, pp. 709-722, 2007.
  • [5]. S. Liang, T. Feng, and G. Sun, “Sidelobe-level suppression for linear and circular antenna arrays via the cuckoo search-chicken swarm optimisation algorithm,” IET Microw. Antennas Propag., vol. 11, pp. 209-218, 2017.
  • [6]. H. Singh, B. S. Sohi, and A. Gupta, “Designing and performance evaluation of metamaterial inspired antenna for 4G and 5G applications,” Int. J. Electron., vol. 108, pp. 1035-1057, 2021.
  • [7]. H. Singh, N. Mittal, U. Singh, and R. Salgotra, “Synthesis of non-uniform circular antenna array for low side lobe level and high directivity using self-adaptive Cuckoo search algorithm,” Arab. J. Sci. Eng., vol. 47, pp. 3105-3118, 2022.
  • [8]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
  • [9]. R. Q. Wang, and Y. C. Jiao, “Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints,” IEEE Antennas Wirel. Propag. Lett., vol. 18, pp. 821-825, 2019.
  • [10]. L. Hui, C. Yikai, and J. Ulrich, “Synthesis, Control, and Excitation of Characteristic Modes for Platform-Integrated Antenna Designs: A design philosophy,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 41-48, 2022.
  • [11]. R. Castillo, R. Ma, and N. Behdad, “Platform-based electrically-small HF antenna with switchable directional radiation patterns,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4370-4379, 2021.
  • [12]. Y. Liu, J. Zhang, A. Ren, H. Wang, and C. Sim, “TCM-based heptaband antenna with small clearance for metal-rimmed mobile phone applications,” IEEE Antennas and Wireless Propag. Lett., vol. 18, no. 4, pp. 717-721, 2019.
  • [13]. I. J. Islamov, E. G. Ismibayli, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Modeling of the Electromagnetic Feld of a Rectangular Waveguide with Side Holes,” Progress in Electromagnetics Research, vol. 81, pp. 127-132, 2019.
  • [14]. I. J. Islamov, N. M. Shukurov, R. S. Abdullayev, K. K. Hashimov, and A. I. Khalilov, “Diffraction of Electromagnetic Waves of Rectangular Waveguides with a Longitudinal,” Application in Information and Telecommunication Systems, pp. 35-46Ş 2020.
  • [15]. A. I. Khalilov, I. J. Islamov, E. Z. Hunbataliyev, N. M. Shukurov, and R. S. Abdullayev, “Modeling Microwave Signals Transmitted Through a Rectangular Waveguide,” Application in Information and Telecommunication Systems, pp. 56-67, 2020.
  • [16]. I. J. Islamov, and E. G. Ismibayli, “Experimental Study of Characteristics of Microwave Devices Transition from Rectangular Waveguide to the Megaphone,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 477-479, 2018.
  • [17]. E. G. Ismibayli, and I. J. Islamov, “New Approach to Definition of Potential of the Electric Field Created by Set Distribution in Space of Electric Charges,” IFAC-PapersOnLine, vol. 51, no. 30, pp. 410-414, 2018.
  • [18]. I. J. Islamov, E. G. Ismibayli, M. H. Hasanov, Y. G. Gaziyev, S. R. Ahmadova, and R. S. Abdullayev, “Calculation of the Electromagnetic Field of a Rectangular Waveguide with Chiral Medium,” Progress in Electromagnetics Research, vol. 84, pp. 97-114, 2019.
  • [19]. I. J. Islamov, E. Z. Hunbataliyev, and A. E. Zulfugarli, “Numerical Simulation of Characteristics of Propagation of Symmetric Waves in Microwave Circular Shielded Waveguide with a Radially Inhomogeneous Dielectric Filling,” International Journal of Microwave and Wireless Technologies, vol. 9, pp. 761-767, 2021.
  • [20]. I. J. Islamov, M. H. Hasanov, and M. H. Abbasov, “Simulation of Electrodynamic Processes in a Cylindrical-Rectangular Microwave Waveguide Systems Transmitting Information,” Theory and Application of Soft Computing, Computing with Words, Perception and Artificial Intelligence, pp. 246-253, 2021.
  • [21]. A. G. Charles, and Y. Guo, “A General Approach for Synthesizing Multibeam Antenna Arrays Employing Generalized Joined Coupler Matrix,” IEEE Transactions on Antennas and Propagation, vol. 256, pp. 1-10, 2022.
  • [22]. A. K. Amin, “A Proposed Method for Synthesizing the Radiation Pattern of Linear Antenna Arrays,” Journal of Communications, vol. 17, no. 7, pp. 1-6, 2022.
  • [23]. A. Zeeshan, U. A. J. Zain, B. Shu-Di, and C. Meng, “Comments on Frequency Diverse Array Beampattern Synthesis with Taylor Windowed Frequency Offsets,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 8, pp. 1713-1714, 2022.
  • [24]. Z. Wang, Y. Song, T. Mu, and Z. Ahmad, “A short-range range-angle dependent beampattern synthesis by frequency diverse array,” IEEE Access, vol. 6, pp. 22664-22669, 2018.
  • [25]. X. Shao, T. Hu, Z. Xiao, and J. Zhang, “Frequency l+ synthesis with modified sinusoidal frequency offset,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 9, pp. 1784-1788, 2021.
  • [26]. R. Quanxin, Q. Bingyi, C. Xiaoming, H. Xiaoyu, L. Qinlong, and Z. Jiaying, “Linear Antenna Array with Large Element Spacing for Wide-Angle Beam Scanning with Suppressed Grating Lobes,” IEEE Antennas and Wireless Propagation Letters, vol. 21, no. 6, pp. 1258-1262, 2022.
  • [27]. G. Yang, Y. Zhang, and S. Zhang, “Wide-band and wide-angle scanning phased array antenna for mobile communication system,” IEEE Open J. Antennas Propag., vol. 2, pp. 203-212, 2021.
  • [28]. Y.-F. Cheng, X. Ding, W. Shao, M.-X. Yu, and B.-Z. Wang, “A novel wide-angle scanning phased array based on dual-mode pattern reconfigurable elements”, IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 396-399, 2017.
  • [29]. J. Zhang, X. Cui, H. Xu, S. Zhao, and M. Lu, “Efficient Signal Separation Method Based on Antenna Arrays for GNSS Meaconing,” Tsinghua Science and Technology, vol. 24, no. 2, pp. 216-225, 2019.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Islam Islamov 0000-0001-8645-0640

Agarahim Rahimov 0000-0001-8645-0640

Murad Jahangirov 0000-0001-8645-0640

Namiq Shukurov 0000-0001-8645-0640

Rashid Abdullayev 0000-0001-8645-0640

Publication Date September 30, 2023
Submission Date April 13, 2023
Acceptance Date August 19, 2023
Published in Issue Year 2023

Cite

IEEE I. Islamov, A. Rahimov, M. Jahangirov, N. Shukurov, and R. Abdullayev, “Development of a Technique for Increasing the Directivity of an Antenna Array in the Microwave Range”, ECJSE, vol. 10, no. 3, pp. 586–599, 2023, doi: 10.31202/ecjse.1282892.