Year 2024,
, 288 - 297, 17.09.2024
Nesuhi Akdemir
,
Aslı Yıldırım
Project Number
FMB-BAP 20-0449
References
- [1] N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press, 1998.
- [2] C. C. Leznoff and A. Lever, Phthalocyanines: Properties and Applications, vol. 1-4. VCH, Weinheim, 1998.
- [3] D. Wörhle, ‘‘Phthalocyanines in macromolecular phases-methods of synthesis and properties of the materials,’’ Macromol. Rapid Comm., vol. 22, pp. 68–97, Feb 2001.
- [4] J. A. Duro, G. Torre, J. Barbera, J. L. Serrano, and T. Torres, ‘‘Synthesis and liquid-crystal behavior of metal-free and metal-containing phthalocyanines substituted with long-chain amide groups,’’ Chem. Mater., vol. 8, no. 5, pp. 1061–6, 1996.
- [5] F. Yakuphanoglu, M. M. Durmuş, O. K. Okutan, and V. Ahsen, ‘‘The refractive index dispersion and theoptical constants of metal-free and nickel(ii) phthalocyanines liquid crystals,’’ Physica B:, vol. 373, pp. 262–6, Mar 2006.
- [6] M. N. H. Xia, ‘‘Copper phthalocyanine bonding with gel and their optical properties,’’ Opt. Mater., vol. 15, pp. 93–8, Nov 2000.
- [7] S. Makhseed, M. Al-Sawah, J. Samuel, and H. Manaa, ‘‘Synthesis, characterization and nonlinear optical properties of non aggregating hexadeca-substituted phthalocyanines,’’ Tetrahedron Lett., vol. 50, pp. 165–8, Jan 2009.
- [8] E. Ben-Hur, J. Otjen, and B. Horowitz, ‘‘Silicon phthalocyanine pc 4 and red light causes apoptosis in hiv-infected cells,’’ Photochem Photobiol., vol. 65, pp. 456– 460, Mar 1997.
- [9] H. Margolis-Nunno, E. Ben-Hur, P. Gottlieb, R. Robinson, and B. J. Oetjen, ‘‘Horowitz. inactivation by phthalocyanine photosensitization of multiple forms of human immuno deficiency virus in red cell concentrates,’’ Transfusion, vol. 36, pp. 743–750, Aug 1996.
- [10] Y. S. Krasnov, G. Y. Kolbasov, I. N. Tretyakoya, L. A. Tomachynska, Y. Y. Chernii, and S. V. Volkov, ‘‘Dynamics of redox processes and electrochromism of films of zirconium (iv) phthalocyanines without-of-plane β-dicarbonylligands,’’ Solid State Ionics, vol. 180, pp. 928–933, Jun 2009. Article 14-16.
- [11] P. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications. VCH, Weinheim, 2008.
- [12] T. Ikeuchi, H. Nomoto, N. Masaki, M. J. Griffith, S. Mori, and M. Kimura, ‘‘Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells,’’ Chem. Commun., vol. 50, pp. 1941–3, 2014. 296 ECJSE Volume 11, 2024 Synthesis and Characterization of Zinc Phthalocyanines...
- [13] M. Kimura, H. Nomoto, H. Suzuki, T. Ikeuchi, H. Matsuzaki, T. N. Murakami, A. Furube, N. Masaki, M. J. Griffith, and S. Mori, ‘‘Molecular design rule of phthalocyanine dyes for highly efficient near-ir performance in dye-sensitized solar cells,’’ Chem Eur J., vol. 19, pp. 7496–7502, Jun 2013.
- [14] T. V. Basova, C. Taşaltın, A. G. Gürek, M. A. Ebeoğlu, Z. Z. Öztürk, and V. Ahsen, ‘‘Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors,’’ Sensors and Actuators B: Chemical., vol. 96, pp. 70–5, Nov 2003.
- [15] L. Valli, ‘‘Phthalocyanine-based langmuir–blodgett films as chemical sensors,’’ Advances in Colloid and Interface Science, vol. 116, pp. 13–44, Nov 2005.
- [16] Y. Zhang, X. Cai, Y. Bian, and J. Jiang, ‘‘Organic semiconductors of phthalocyanine compounds for field effect transistors (fets),’’ Structure and Bonding, vol. 135, pp. 275–321, Dec 2009.
- [17] M. Bouvet, ‘‘Phthalocyanine-basedfield-effect transistors as gas sensors,’’ Analytical and Bioanalytical Chemistry, vol. 384, pp. 366–373, Jan 2006.
- [18] M. Durmuş and V. Ahsen, ‘‘Water-soluble cationic gallium(iii) and indium(iii) phthalocyanines for photodynamictherapy,’’ Journal of Inorganic Biochemistry, vol. 104, pp. 297–309, Mar 2010.
- [19] D. Çakır, V. Çakır, Z. Bıyıklıoğlu, M. Durmuş, and H. Kantekin, ‘‘New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer,’’ J Orgonomet. Chem., vol. 745-746, pp. 423–431, 2013.
- [20] E. Ranyuk, N. Cauchon, B. K. Klarskov, and J. E. v. L. Guerin, ‘‘Phthalocyanine–peptide conjugates: Receptor-targeting bifunctional agents for imaging and photodynamic therapy,’’ J. Med. Chem., vol. 56, no. 4, pp. 1520–1534, 2013.
- [21] F. Dumoulin, M. Durmus, V. Ahsen, and T. Nyokong, ‘‘Synthetic pathways to water-soluble phthalocyanines and close analogs,’’ Coordination Chemistry Reviews, vol. 254, p. 2793, 2010.
- [22] E. Ağar, S. Şaşmaz, N. Akdemir, and I. Keskin, ‘‘Synthesis and characterization of new phthalocyanines containing four 15-membered tetrathiaoxa macrocycles,’’ Synth. React. Inorg. Met.-Org. Chem., vol. 29, no. 3, pp. 473–485, 1999.
- [23] S. Şaşmaz, E. Ağar, N. Akdemir, and I. Keskin, ‘‘Synthesis and characterization of new phthalocyanines containing thio-oxa-ether moieties,’’ Dyes and Pigments, vol. 37, pp. 223–230, May 1998.
- [24] E. Ağar, S. Şaşmaz, N. Akdemir, and I. Keskin, ‘‘Synthesis and characterization of novel phthalocyanines containing four 15-membered oxathiadiaza mixed-donor macrocycles,’’ 1997.
- [25] N. Akdemir, I. Gümrükcüoğlu, and E. Ağar, ‘‘Synthesis and characterization of novel phthalocyanines containing n-(n-octyl)mercaptoacetamid substituents,’’ Synth. React. Inorg. Met.-Org. Chem., vol. 35, no. 10, pp. 819–824, 2005.
- [26] M. Özil, E. Ağar, S. Şaşmaz, B. Kahveci, N. Akdemir, and I. Gümrükçüoğlu, ‘‘Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-azabridge,’’ Dyes and Pigments, vol. 75, no. 3, pp. 732–740, 2007.
- [27] C. Kantar, N. Akdemir, E. Agar, N. Ocak, and S. Sasmaz, ‘‘Microwave-assisted synthesis and characterization of differently substituted phthalocyanines containing 3,5-dimethoxyphenol and octanethiol moieties,’’ Dyes and Pigments, vol. 76, no. 1, pp. 7–12, 2007.
- [28] S. Gorduk and O. Avciata, ‘‘A3b type asymmetric metallo phthalocyanines bearing carboxylic acid and tert-butyl groups photophysical, photochemical and aggregation properties,’’ Journal of Photochemistry & Photobiology, A: Chemistry, vol. 449, p. 115387, 2024.
- [29] R. Atajanov, B. Huraibat, Z. Odabaş, and A. R. Özkaya, ‘‘Electrochemical, spectroelectrochemical, and electrocatalytic properties of novel soluble phthalocyanines containing peripheral thymoxy and chloride units,’’ Inorganica Chimica Acta, vol. 547, p. 121360, 2023.
- [30] S. Moeno and T. Nyokong, ‘‘An investigation of the behaviour of quaternized peripherally tetra mercaptopyridine substituted metallophthalocyanines in the presence of quantum dots,’’ Journal of Photochemistry and Photobiology. A: Chem., vol. 215, pp. 196–204, 2010.
- [31] Z. Biyiklıoglu, E. Cekirge, H. Bas, N. Ozbek, U. Ocak, and M. Ocak, ‘‘New fluorescent manganese(iii) phthalocyanines bearing non-peripherally octa-(3- pyridin-3-ylpropoxy) and (4-pyridin-3-ylpropoxy) for the sensitive determination of pd2+ in real water samples,’’ Inorganic Chemistry Communications, vol. 159, p. 11182, 2024.
- [32] B. S. Bilen, M. Ozcesmeci, M. Akin, B. Cakir, K. Alsakini, A. Nalbantsoy, N. Saki, and E. Hamuryudan, ‘‘3’, 3’, 4’, 4’, 5’, 5’, 6’, 6’, 6’-nonafluoro-hexyloxy groups substituted phthalocyanines: Synthesis, characterization and their biological properties,’’ Dyes and Pigments, vol. 221, p. 111814, 2024.
- [33] B. S. Bilen, M. Ozcesmeci, N. Kocyigit, T. Elgun, A. G. Yurttas, and E. H. Glycosylated, ‘‘zinc(ii) phthalocyanine photosensitizer: Synthesis,photophysical properties and in vitro photodynamic activity on breastcancer cell line,’’ Journal of Molecular Structure, vol. 1295, p. 136688, 2024.
- [34] A. Upton, C. B. Cooper, K. Marcel, J. E. Guillemont, W. V. D. Broeck, and B. D. Palmer, ‘‘Antibacterial compounds and uses thereof,’’ US Patent, vol. US2017/21031, 2017.
- [35] D. Wöhrle, M. Eskes, K. Shigehara, and A. Yamada, ‘‘A simple synthesis of 4,5-disubstituted 1,2-dicyanobenzenes and 2,3,9,10,16,17,23,24-octasubstituted phthalocyanines,’’ Synthesis, vol. 2, pp. 194–196, 1993.
- [36] R. D. George and A. W. Snow, ‘‘Synthesis of 3-nitrophthalonitrile and tetra-α-substituted phthalocyanines,’’ Journal of Heterocyclic Chemistry, vol. 32, pp. 495– 498, 1995.
- [37] J. G. Young and W. Onyebuagu, ‘‘Synthesis and characterization of di-disubstituted phthalocyanines,’’ The Journal of Organic Chemistry, vol. 55, pp. 2155–2159, 1990.
Synthesis and Characterization of Zinc Phthalocyanines Containing 2-Hydroxy-6-methoxyisonicotinic Acid Moieties
Year 2024,
, 288 - 297, 17.09.2024
Nesuhi Akdemir
,
Aslı Yıldırım
Abstract
Novel zinc phthalocyanines were synthesized by the reaction of phthalonitriles containing methyl 2-hydroxy-6-methoxyisonicotinate. These compounds were obtained via aromatic nucleophilic substitution reactions. All compounds have been determined by elemental analysis, FT-IR, NMR, MS and electronic absorption. The solubility of phthalocyanines is very low in DMSO and DMF but high in alkaline aqueous solution. The UV-Vis spectra of the Zn(II) phthalocyanines were recorded in different concentration in DMF, DMSO and also in different solvents as DMF, DMSO, water. Peripheral substitute zincphthalocyanines (5 and 7) showed aggregation in water. Nonperipheral substitute zincphthalocyanine (7) showed monomeric behavior in DMSO, DMF and water. Beer’s law was obeyed for zinc phthalocyanines.
Project Number
FMB-BAP 20-0449
Thanks
This work was supported by the research fund of the Amasya University (FMB-BAP 20-0449)
References
- [1] N. B. McKeown, Phthalocyanine Materials: Synthesis, Structure and Function. Cambridge University Press, 1998.
- [2] C. C. Leznoff and A. Lever, Phthalocyanines: Properties and Applications, vol. 1-4. VCH, Weinheim, 1998.
- [3] D. Wörhle, ‘‘Phthalocyanines in macromolecular phases-methods of synthesis and properties of the materials,’’ Macromol. Rapid Comm., vol. 22, pp. 68–97, Feb 2001.
- [4] J. A. Duro, G. Torre, J. Barbera, J. L. Serrano, and T. Torres, ‘‘Synthesis and liquid-crystal behavior of metal-free and metal-containing phthalocyanines substituted with long-chain amide groups,’’ Chem. Mater., vol. 8, no. 5, pp. 1061–6, 1996.
- [5] F. Yakuphanoglu, M. M. Durmuş, O. K. Okutan, and V. Ahsen, ‘‘The refractive index dispersion and theoptical constants of metal-free and nickel(ii) phthalocyanines liquid crystals,’’ Physica B:, vol. 373, pp. 262–6, Mar 2006.
- [6] M. N. H. Xia, ‘‘Copper phthalocyanine bonding with gel and their optical properties,’’ Opt. Mater., vol. 15, pp. 93–8, Nov 2000.
- [7] S. Makhseed, M. Al-Sawah, J. Samuel, and H. Manaa, ‘‘Synthesis, characterization and nonlinear optical properties of non aggregating hexadeca-substituted phthalocyanines,’’ Tetrahedron Lett., vol. 50, pp. 165–8, Jan 2009.
- [8] E. Ben-Hur, J. Otjen, and B. Horowitz, ‘‘Silicon phthalocyanine pc 4 and red light causes apoptosis in hiv-infected cells,’’ Photochem Photobiol., vol. 65, pp. 456– 460, Mar 1997.
- [9] H. Margolis-Nunno, E. Ben-Hur, P. Gottlieb, R. Robinson, and B. J. Oetjen, ‘‘Horowitz. inactivation by phthalocyanine photosensitization of multiple forms of human immuno deficiency virus in red cell concentrates,’’ Transfusion, vol. 36, pp. 743–750, Aug 1996.
- [10] Y. S. Krasnov, G. Y. Kolbasov, I. N. Tretyakoya, L. A. Tomachynska, Y. Y. Chernii, and S. V. Volkov, ‘‘Dynamics of redox processes and electrochromism of films of zirconium (iv) phthalocyanines without-of-plane β-dicarbonylligands,’’ Solid State Ionics, vol. 180, pp. 928–933, Jun 2009. Article 14-16.
- [11] P. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications. VCH, Weinheim, 2008.
- [12] T. Ikeuchi, H. Nomoto, N. Masaki, M. J. Griffith, S. Mori, and M. Kimura, ‘‘Molecular engineering of zinc phthalocyanine sensitizers for efficient dye-sensitized solar cells,’’ Chem. Commun., vol. 50, pp. 1941–3, 2014. 296 ECJSE Volume 11, 2024 Synthesis and Characterization of Zinc Phthalocyanines...
- [13] M. Kimura, H. Nomoto, H. Suzuki, T. Ikeuchi, H. Matsuzaki, T. N. Murakami, A. Furube, N. Masaki, M. J. Griffith, and S. Mori, ‘‘Molecular design rule of phthalocyanine dyes for highly efficient near-ir performance in dye-sensitized solar cells,’’ Chem Eur J., vol. 19, pp. 7496–7502, Jun 2013.
- [14] T. V. Basova, C. Taşaltın, A. G. Gürek, M. A. Ebeoğlu, Z. Z. Öztürk, and V. Ahsen, ‘‘Mesomorphic phthalocyanine as chemically sensitive coatings for chemical sensors,’’ Sensors and Actuators B: Chemical., vol. 96, pp. 70–5, Nov 2003.
- [15] L. Valli, ‘‘Phthalocyanine-based langmuir–blodgett films as chemical sensors,’’ Advances in Colloid and Interface Science, vol. 116, pp. 13–44, Nov 2005.
- [16] Y. Zhang, X. Cai, Y. Bian, and J. Jiang, ‘‘Organic semiconductors of phthalocyanine compounds for field effect transistors (fets),’’ Structure and Bonding, vol. 135, pp. 275–321, Dec 2009.
- [17] M. Bouvet, ‘‘Phthalocyanine-basedfield-effect transistors as gas sensors,’’ Analytical and Bioanalytical Chemistry, vol. 384, pp. 366–373, Jan 2006.
- [18] M. Durmuş and V. Ahsen, ‘‘Water-soluble cationic gallium(iii) and indium(iii) phthalocyanines for photodynamictherapy,’’ Journal of Inorganic Biochemistry, vol. 104, pp. 297–309, Mar 2010.
- [19] D. Çakır, V. Çakır, Z. Bıyıklıoğlu, M. Durmuş, and H. Kantekin, ‘‘New water soluble cationic zinc phthalocyanines as potential for photodynamic therapy of cancer,’’ J Orgonomet. Chem., vol. 745-746, pp. 423–431, 2013.
- [20] E. Ranyuk, N. Cauchon, B. K. Klarskov, and J. E. v. L. Guerin, ‘‘Phthalocyanine–peptide conjugates: Receptor-targeting bifunctional agents for imaging and photodynamic therapy,’’ J. Med. Chem., vol. 56, no. 4, pp. 1520–1534, 2013.
- [21] F. Dumoulin, M. Durmus, V. Ahsen, and T. Nyokong, ‘‘Synthetic pathways to water-soluble phthalocyanines and close analogs,’’ Coordination Chemistry Reviews, vol. 254, p. 2793, 2010.
- [22] E. Ağar, S. Şaşmaz, N. Akdemir, and I. Keskin, ‘‘Synthesis and characterization of new phthalocyanines containing four 15-membered tetrathiaoxa macrocycles,’’ Synth. React. Inorg. Met.-Org. Chem., vol. 29, no. 3, pp. 473–485, 1999.
- [23] S. Şaşmaz, E. Ağar, N. Akdemir, and I. Keskin, ‘‘Synthesis and characterization of new phthalocyanines containing thio-oxa-ether moieties,’’ Dyes and Pigments, vol. 37, pp. 223–230, May 1998.
- [24] E. Ağar, S. Şaşmaz, N. Akdemir, and I. Keskin, ‘‘Synthesis and characterization of novel phthalocyanines containing four 15-membered oxathiadiaza mixed-donor macrocycles,’’ 1997.
- [25] N. Akdemir, I. Gümrükcüoğlu, and E. Ağar, ‘‘Synthesis and characterization of novel phthalocyanines containing n-(n-octyl)mercaptoacetamid substituents,’’ Synth. React. Inorg. Met.-Org. Chem., vol. 35, no. 10, pp. 819–824, 2005.
- [26] M. Özil, E. Ağar, S. Şaşmaz, B. Kahveci, N. Akdemir, and I. Gümrükçüoğlu, ‘‘Microwave-assisted synthesis and characterization of the monomeric phthalocyanines containing naphthalene-amide group moieties and the polymeric phthalocyanines containing oxa-azabridge,’’ Dyes and Pigments, vol. 75, no. 3, pp. 732–740, 2007.
- [27] C. Kantar, N. Akdemir, E. Agar, N. Ocak, and S. Sasmaz, ‘‘Microwave-assisted synthesis and characterization of differently substituted phthalocyanines containing 3,5-dimethoxyphenol and octanethiol moieties,’’ Dyes and Pigments, vol. 76, no. 1, pp. 7–12, 2007.
- [28] S. Gorduk and O. Avciata, ‘‘A3b type asymmetric metallo phthalocyanines bearing carboxylic acid and tert-butyl groups photophysical, photochemical and aggregation properties,’’ Journal of Photochemistry & Photobiology, A: Chemistry, vol. 449, p. 115387, 2024.
- [29] R. Atajanov, B. Huraibat, Z. Odabaş, and A. R. Özkaya, ‘‘Electrochemical, spectroelectrochemical, and electrocatalytic properties of novel soluble phthalocyanines containing peripheral thymoxy and chloride units,’’ Inorganica Chimica Acta, vol. 547, p. 121360, 2023.
- [30] S. Moeno and T. Nyokong, ‘‘An investigation of the behaviour of quaternized peripherally tetra mercaptopyridine substituted metallophthalocyanines in the presence of quantum dots,’’ Journal of Photochemistry and Photobiology. A: Chem., vol. 215, pp. 196–204, 2010.
- [31] Z. Biyiklıoglu, E. Cekirge, H. Bas, N. Ozbek, U. Ocak, and M. Ocak, ‘‘New fluorescent manganese(iii) phthalocyanines bearing non-peripherally octa-(3- pyridin-3-ylpropoxy) and (4-pyridin-3-ylpropoxy) for the sensitive determination of pd2+ in real water samples,’’ Inorganic Chemistry Communications, vol. 159, p. 11182, 2024.
- [32] B. S. Bilen, M. Ozcesmeci, M. Akin, B. Cakir, K. Alsakini, A. Nalbantsoy, N. Saki, and E. Hamuryudan, ‘‘3’, 3’, 4’, 4’, 5’, 5’, 6’, 6’, 6’-nonafluoro-hexyloxy groups substituted phthalocyanines: Synthesis, characterization and their biological properties,’’ Dyes and Pigments, vol. 221, p. 111814, 2024.
- [33] B. S. Bilen, M. Ozcesmeci, N. Kocyigit, T. Elgun, A. G. Yurttas, and E. H. Glycosylated, ‘‘zinc(ii) phthalocyanine photosensitizer: Synthesis,photophysical properties and in vitro photodynamic activity on breastcancer cell line,’’ Journal of Molecular Structure, vol. 1295, p. 136688, 2024.
- [34] A. Upton, C. B. Cooper, K. Marcel, J. E. Guillemont, W. V. D. Broeck, and B. D. Palmer, ‘‘Antibacterial compounds and uses thereof,’’ US Patent, vol. US2017/21031, 2017.
- [35] D. Wöhrle, M. Eskes, K. Shigehara, and A. Yamada, ‘‘A simple synthesis of 4,5-disubstituted 1,2-dicyanobenzenes and 2,3,9,10,16,17,23,24-octasubstituted phthalocyanines,’’ Synthesis, vol. 2, pp. 194–196, 1993.
- [36] R. D. George and A. W. Snow, ‘‘Synthesis of 3-nitrophthalonitrile and tetra-α-substituted phthalocyanines,’’ Journal of Heterocyclic Chemistry, vol. 32, pp. 495– 498, 1995.
- [37] J. G. Young and W. Onyebuagu, ‘‘Synthesis and characterization of di-disubstituted phthalocyanines,’’ The Journal of Organic Chemistry, vol. 55, pp. 2155–2159, 1990.