Review
BibTex RIS Cite

Biofuels: Exploring the Future of Green & Clean Energy

Year 2026, Volume: 13 Issue: 1, 71 - 88, 31.01.2026

Abstract

Biofuels; a potential and renewable solution to climate change, fossil fuel depletion, and energy security. 1st, 2nd and 3rd generation biofuels are the main types of biofuels widely used worldwide, have different feedstock, production methods, and environmental impacts. 1st generation biofuels including ethanol and biodiesel, produced from food crops like sugar-cane, corn, and vegetable oil, are extensively used but have prompted concerns about land use and food availability. 2nd generation biofuels including cellulosic ethanol and bio-oils that mainly produced from fuel crops, agricultural wastes and forest byproducts by using enzymatic hydrolysis and thermochemical processes; are not only more ecofriendly but mitigate food-fuel conflict. On the other hand, 3rd generation biofuels derived from algae have advantage due to easy availability and high oil-content. Biofuels are renewable with carbon neutrality, reduce environmental pollution, minimize green-house gas emission, enhance energy security, stimulate economic growth, creating job opportunities, promoting rural development, minimizing water pollution as well as deforestation and beneficial for eco-systems. Except these benefits biofuels have some obstacles that hinder their efficiency like land degradation, underprivileged government policies, lack of people awareness, low energy return on investment, high production costs, unsafe production methods, limited feedstock and land utilization. Besides these challenges, biofuels are still a sustainable energy source that mitigate climate change and satisfy global energy demand.

References

  • [1] B. N. Iyke. (2024). "Climate change, energy security risk, and clean energy investment", Energy Economics Vol. 129 pp. 107225. https://doi.org/10.1016/j.eneco.2023.107225
  • [2] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. Mahmood Ali, S. Algburi, H. M. Alzoubi, A. Khudhair Al-Jiboory, A. Zuhair Sameen, H. M. Salman&M. Jaszczur. (2024). "The renewable energy role in the global energy Transformations", Renewable Energy Focus Vol. 48 pp. 100545. https://doi.org/10.1016/j.ref.2024.100545
  • [3] H. M.Saleh&A. I.Hassan. (2024). "The challenges of sustainable energy transition: A focus on renewable energy", Applied Chemical Engineering Vol. 7 pp. 2084. 10.59429/ace.v7i2.2084
  • [4] M. Filonchyk, M. P. Peterson, L. Zhang, V. Hurynovich&Y. He. (2024). "Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O", Science of The Total Environment Vol. 935 pp. 173359. https://doi.org/10.1016/j.scitotenv.2024.173359
  • [5] M. Jabeen, K. Tarıq&S. U. Hussain. (2024). "Bioplastic an alternative to plastic in modern world: A systemized review", Environmental Research and Technology Vol. 7 (4), pp. 614-25. 10.35208/ert.1467590
  • [6] J. Wang&W. Azam. (2024). "Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries", Geoscience Frontiers Vol. 15 (2), pp. 101757. https://doi.org/10.1016/j.gsf.2023.101757
  • [7] A. Okeke. (2021). "Towards sustainability in the global oil and gas industry: Identifying where the emphasis lies", Environmental and Sustainability Indicators Vol. 12 pp. 100145. https://doi.org/10.1016/j.indic.2021.100145
  • [8] D. Contu, O. Kaya&I. Kaya. (2021). "Attitudes towards climate change and energy sources in oil exporters", Energy Strategy Reviews Vol. 38 pp. 100732. https://doi.org/10.1016/j.esr.2021.100732
  • [9] M. Foss. (2022). "The impact of renewables on energy security", Canadian Foreign Policy Journal Vol. 28 (3), pp. 234-48. 10.1080/11926422.2022.2118138
  • [10] H. Banna, A. Alam, X. H. Chen&A. W. Alam. (2023). "Energy security and economic stability: The role of inflation and war", Energy Economics Vol. 126 pp. 106949. https://doi.org/10.1016/j.eneco.2023.106949
  • [11] R. El-Araby. (2024). "Biofuel production: exploring renewable energy solutions for a greener future", Biotechnology for Biofuels and Bioproducts Vol. 17 (1), pp. 129. 10.1186/s13068-024-02571-9
  • [12] S. J. Malode, K. K. Prabhu, R. J. Mascarenhas, N. P. Shetti&T. M. Aminabhavi. (2021). "Recent advances and viability in biofuel production", Energy Conversion and Management: X Vol. 10 pp. 100070.
  • [13] R. C. Rial. (2024). "Biofuels versus climate change: Exploring potentials and challenges in the energy transition", Renewable and Sustainable Energy Reviews Vol. 196 pp. 114369. https://doi.org/10.1016/j.rser.2024.114369
  • [14] M. S. Alam&M. S. Tanveer. (2020). Chapter 5 - Conversion of biomass into biofuel: a cutting-edge technology, in: Singh L, Yousuf A, Mahapatra D M (Eds.), Bioreactors, Elsevierpp. 55-74. https://doi.org/10.1016/B978-0-12-821264-6.00005-X
  • [15] F. A. Malla, S. A. Bandh, S. A. Wani, A. T. Hoang&N. A. Sofi. (2022). Biofuels: Potential Alternatives to Fossil Fuels, in: Bandh S A, Malla F A (Eds.), Biofuels in Circular Economy, Springer Nature Singapore, Singapore, pp. 1-15. 10.1007/978-981-19-5837-3_1
  • [16] Priya, P. S. Deora, Y. Verma, R. A. Muhal, C. Goswami&T. Singh. (2022). "Biofuels: An alternative to conventional fuel and energy source", Materials Today: Proceedings Vol. 48 pp. 1178-84. https://doi.org/10.1016/j.matpr.2021.08.227
  • [17] K. Malik, S. C. Capareda, B. R. Kamboj, S. Malik, K. Singh, S. Arya&D. K. Bishnoi. (2024). "Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources", Fuels Vol. 5 (2), pp. 157-75.
  • [18] Y. Dahman, K. Syed, S. Begum, P. Roy&B. Mohtasebi. (2019). 14 - Biofuels: Their characteristics and analysis, in: Verma D, Fortunati E, Jain S, Zhang X (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishingpp. 277-325. https://doi.org/10.1016/B978-0-08- 102426-3.00014-X
  • [19] R. Lee&J.-M. Lavoie. (2013). "From First- to Third-Generation Biofuels: Challenges of Producing a Commodity from a Biomass of Increasing Complexity", Animal Frontiers Vol. 3 pp. 6-11. 10.2527/af.2013-0010
  • [20] S. Mahapatra, D. Kumar, B. Singh&P. K. Sachan. (2021). "Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus", Energy Nexus Vol. 4 pp. 100036. https://doi.org/10.1016/j.nexus.2021.100036
  • [21] N. Hajilary, M. Rezakazemi&S. Shirazian. (2019). "Biofuel types and membrane separation", Environmental Chemistry Letters Vol. 17 (1), pp. 1- 18. 10.1007/s10311-018-0777-9
  • [22] S. N. Naik, V. V. Goud, P. K. Rout&A. K. Dalai. (2010). "Production of first and second generation biofuels: A comprehensive review", Renewable and Sustainable Energy Reviews Vol. 14 (2), pp. 578-97. https://doi.org/10.1016/j.rser.2009.10.003
  • [23] B. Sadaqat, M. A. Dar, R. Xie&J. Sun. (2025). Chapter 3 - Drawbacks of first-generation biofuels: Challenges and paradigm shifts in technology for second- and third-generation biofuels, in: Zhu D, Dar M A, Shahnawaz M (Eds.), Biofuels and Sustainability, Elsevier Science Ltdpp. 33-47. https://doi.org/10.1016/B978-0-443-21433-2.00003-7
  • [24] G. Itskos, N. Nikolopoulos, D. S. Kourkoumpas, A. Koutsianos, I. Violidakis, P. Drosatos&P. Grammelis. (2016). Chapter 6 - Energy and the Environment, in: Poulopoulos S G, Inglezakis V J (Eds.), Environment and Development, Elsevier, Amsterdam, pp. 363-452. https://doi.org/10.1016/B978-0-444-62733-9.00006-X
  • [25] M. Lackner. (2022). Third-Generation Biofuels: Bacteria and Algae for Better Yield and Sustainability, in: Lackner M, Sajjadi B, Chen W-Y (Eds.), Handbook of Climate Change Mitigation and Adaptation, Springer International Publishing, Cham, pp. 1947-86. 10.1007/978-3-030-72579-2_90
  • [26] S. Behera, R. Singh, R. Arora, N. K. Sharma, M. Shukla&S. Kumar. (2014). "Scope of algae as third generation biofuels", Front Bioeng Biotechnol Vol. 2 pp. 90. 10.3389/fbioe.2014.00090
  • [27] S. J. Tudge, A. Purvis&A. De Palma. (2021). "The impacts of biofuel crops on local biodiversity: a global synthesis", Biodiversity and Conservation Vol. 30 (11), pp. 2863-83. 10.1007/s10531-021-02232-5
  • [28] A. Demirbas. (2009). "Political, economic and environmental impacts of biofuels: A review", Applied Energy Vol. 86 pp. S108-S17. https://doi.org/10.1016/j.apenergy.2009.04.036
  • [29] E. Kocak, F. Bilgili, U. Bulut&S. Kuskaya. (2022). "Is ethanol production responsible for the increase in corn prices?", Renewable Energy Vol. 199 pp. 689-96. https://doi.org/10.1016/j.renene.2022.08.146
  • [30] M. O. d. S. Dias, R. Maciel Filho, P. E. Mantelatto, O. Cavalett, C. E. V. Rossell, A. Bonomi&M. R. L. V. Leal. (2015). "Sugarcane processing for ethanol and sugar in Brazil", Environmental Development Vol. 15 pp. 35-51. https://doi.org/10.1016/j.envdev.2015.03.004
  • [31] L. M. Rossi, J. M. R. Gallo, L. H. C. Mattoso, M. S. Buckeridge, P. Licence&D. T. Allen. (2021). "Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector", ACS Sustainable Chemistry & Engineering Vol. 9 (12), pp. 4293-95. 10.1021/acssuschemeng.1c01678
  • [32] C. V. Hilário, J. C. C. Campos, A. M. d. O. Siqueira, M. d. O. Leite, M. A. Martins, R. F. Brito, I. A. Fetuga&K. Abderrahmane. (2024). "Physical- Chemical Properties of First-Generation Biofuel Aiming Application in Diesel Locomotive", Revista de Gestão Social e Ambiental Vol. 18 (5), pp. e05080. 10.24857/rgsa.v18n5-042
  • [33] H. K. Jeswani, A. Chilvers&A. Azapagic. (2020). "Environmental sustainability of biofuels: a review", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 476 (2243), pp. 20200351. doi:10.1098/rspa.2020.0351
  • [34] M. Acheampong, F. C. Ertem, B. Kappler&P. Neubauer. (2017). "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?", Renewable and Sustainable Energy Reviews Vol. 75 pp. 927-37. https://doi.org/10.1016/j.rser.2016.11.074
  • [35] M. R. Barr, R. Volpe&R. Kandiyoti. (2021). "Liquid biofuels from food crops in transportation – A balance sheet of outcomes", Chemical Engineering Science: X Vol. 10 pp. 100090. https://doi.org/10.1016/j.cesx.2021.100090
  • [36] J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo&C. A. Cardona. (2008). "Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case", Energy Vol. 33 (3), pp. 385-99. https://doi.org/10.1016/j.energy.2007.10.001
  • [37] H. Hosseini, A. Hajialimohammadi, I. Jafari Gavzan&M. Ali Hajimousa. (2023). "Numerical and experimental investigation on the effect of using blended gasoline-ethanol fuel on the performance and the emissions of the bi-fuel Iranian national engine", Fuel Vol. 337 pp. 127252. https://doi.org/10.1016/j.fuel.2022.127252
  • [38] B. M. Jenkins. (2014). Global Agriculture: Industrial Feedstocks for Energy and Materials, in: Van Alfen N K (Ed.), Encyclopedia of Agriculture and Food Systems, Academic Press, Oxford, pp. 461-98. https://doi.org/10.1016/B978-0-444-52512-3.00156-X
  • [39] S. Brahma, B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir&S. Basumatary. (2022). "Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production", Chemical Engineering Journal Advances Vol. 10 pp. 100284. https://doi.org/10.1016/j.ceja.2022.100284
  • [40] J. Nair, J. Deepthi, K. Kalyani&A. Professor. (2013). "STUDY OF BIODIESEL BLENDS AND EMISSION CHARACTERISTICS OF BIODIESEL", nternational journal of innovative research in science Engineering and Technology Vol. 3297 pp.
  • [41] J. Ruane, A. Sonnino&A. Agostini. (2010). "Bioenergy and the potential contribution of agricultural biotechnologies in developing countries", Biomass and Bioenergy Vol. 34 (10), pp. 1427-39. https://doi.org/10.1016/j.biombioe.2010.04.011
  • [42] S. Onuki, J. Koziel, H. Van Leeuwen, W. Jenks, D. Greweii&L. Cai. (2008). Ethanol production, purification, and analysis techniques: A review, 10.13031/2013.25186
  • [43] N. Sajjad, R. Orfali, S. Perveen, S. Rehman, A. Sultan, T. Akhtar, A. Nazir, G. Muhammad, T. Mehmood, S. Ghaffar, A. Al-Taweel, M. I. Jilani&M. Iqbal. (2022). "Biodiesel Production from Alkali-Catalyzed Transesterification of Tamarindus indica Seed Oil and Optimization of Process Conditions", Molecules Vol. 27 (10), pp. 10.3390/molecules27103230
  • [44] M. Jabeen, I. Razzaq, S. Noureen, S. U. Hussain, N. Aslam, A. Zafar, K. Mehmood&M. U. A. Khan. "Catalytic Performance of Newly Synthesized Heterocyclic Hydrazone Derivatives For Production of High Yield Neem Biodiesel", Journal of the Turkish Chemical Society Section A: Chemistry Vol. 11 (4), pp. 1565-80. 10.18596/jotcsa.1493074
  • [45] M. S. T. Amândio, J. M. S. Rocha&A. M. R. B. Xavier. (2023). "Enzymatic Hydrolysis Strategies for Cellulosic Sugars Production to Obtain Bioethanol from Eucalyptus globulus Bark", Fermentation Vol. 9 (3), pp. 241.
  • [46] J. Kong-Win Chang, X. Duret, V. Berberi, H. Zahedi-Niaki&J.-M. Lavoie. (2018). "Two-Step Thermochemical Cellulose Hydrolysis With Partial Neutralization for Glucose Production", Frontiers in Chemistry Vol. 6 pp. 10.3389/fchem.2018.00117
  • [47] A. Kumar, R. Deb&J. Singh. (2018). Bioethanol Production from Renewable Biomass by Yeast, pp. 427-48. 10.1007/978-981-13-0393-7_24
  • [48] M. M. El-Sheekh, M. Y. Bedaiwy, A. A. El-Nagar, M. ElKelawy&H. Alm-Eldin Bastawissi. (2022). "Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends", Renewable Energy Vol. 191 pp. 591-607. https://doi.org/10.1016/j.renene.2022.04.076
  • [49] T. N. Verma, P. Shrivastava, U. Rajak, G. Dwivedi, S. Jain, A. Zare, A. K. Shukla&P. Verma. (2021). "A comprehensive review of the influence of physicochemical properties of biodiesel on combustion characteristics, engine performance and emissions", Journal of Traffic and Transportation Engineering (English Edition) Vol. 8 (4), pp. 510-33. https://doi.org/10.1016/j.jtte.2021.04.006
  • [50] C. M. Igwebuike, S. Awad&Y. Andrès. (2024). "Renewable Energy Potential: Second-Generation Biomass as Feedstock for Bioethanol Production", Molecules Vol. 29 (7), pp. 1619.
  • [51] D. Gupta&S. K. Gaur. (2019). 19 - Carbon and biofuel footprinting of global production of biofuels, in: Verma D, Fortunati E, Jain S, Zhang X (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishingpp. 449-81. https://doi.org/10.1016/B978-0-08-102426- 3.00019-9
  • [52] M. Jayakumar, K. Bizuneh Gebeyehu, L. Deso Abo, A. Wondimu Tadesse, B. Vivekanandan, V. Prabhu Sundramurthy, W. Bacha, V. Ashokkumar&G. Baskar. (2023). "A comprehensive outlook on topical processing methods for biofuel production and its thermal applications: Current advances, sustainability and challenges", Fuel Vol. 349 pp. 128690. https://doi.org/10.1016/j.fuel.2023.128690
  • [53] S. C. Bhatia. (2014). 26 - Issues relating to biofuels, in: Bhatia S C (Ed.), Advanced Renewable Energy Systems, Woodhead Publishing Indiapp. 688-718. https://doi.org/10.1016/B978-1-78242-269-3.50026-7
  • [54] I. Graça, J. M. Lopes, H. S. Cerqueira&M. F. Ribeiro. (2013). "Bio-oils Upgrading for Second Generation Biofuels", Industrial & Engineering Chemistry Research Vol. 52 (1), pp. 275-87. 10.1021/ie301714x
  • [55] M. Broda, D. J. Yelle&K. Serwańska. (2022). "Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions", Molecules Vol. 27 (24), pp. 10.3390/molecules27248717
  • [56] Z. Cheng. (2019). Lignocellulosic Ethanol: Technology and Economics, in: Yongseung Y (Ed.), Alcohol Fuels, IntechOpen, Rijeka, p. Ch. 3. 10.5772/intechopen.86701
  • [57] Y. Guo, G. Liu, Y. Ning, X. Li, S. Hu, J. Zhao&Y. Qu. (2022). "Production of cellulosic ethanol and value-added products from corn fiber", Bioresources and Bioprocessing Vol. 9 (1), pp. 81. 10.1186/s40643-022-00573-9
  • [58] L. Cherwoo, I. Gupta, G. Flora, R. Verma, M. Kapil, S. K. Arya, B. Ravindran, K. S. Khoo, S. K. Bhatia, S. W. Chang, C. Ngamcharussrivichai&V. Ashokkumar. (2023). "Biofuels an alternative to traditional fossil fuels: A comprehensive review", Sustainable Energy Technologies and Assessments Vol. 60 pp. 103503. https://doi.org/10.1016/j.seta.2023.103503
  • [59] D. Lachos-Perez, J. C. Martins-Vieira, J. Missau, K. Anshu, O. K. Siakpebru, S. K. Thengane, A. R. C. Morais, E. H. Tanabe&D. A. Bertuol. (2023). "Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques", Analytica Vol. 4 (2), pp. 182-205.
  • [60] P. Basu&P. Kaushal. (2024). Chapter 13 - Energy and materials from biomass, in: Basu P, Kaushal P (Eds.), Biomass Gasification, Pyrolysis, and Torrefaction (Fourth Edition), Academic Presspp. 455-89. https://doi.org/10.1016/B978-0-443-13784-6.00011-1
  • [61] A. DemİRbaŞ. (2005). "Bioethanol from Cellulosic Materials: A Renewable Motor Fuel from Biomass", Energy Sources Vol. 27 (4), pp. 327-37. 10.1080/00908310390266643
  • [62] M. Wang, Z. Li, X. Fang, L. Wang&Y. Qu. (2012). "Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production", Adv Biochem Eng Biotechnol Vol. 128 pp. 1-24. 10.1007/10_2011_131
  • [63] T. Wang&X. Lü. (2021). Chapter 8 - Overcome saccharification barrier: Advances in hydrolysis technology, in: Lü X (Ed.), Advances in 2nd Generation of Bioethanol Production, Woodhead Publishingpp. 137-59. https://doi.org/10.1016/B978-0-12-818862-0.00005-4
  • [64] S. K. Soni, A. Sharma&R. Soni. (2023). "Microbial Enzyme Systems in the Production of Second Generation Bioethanol", Sustainability Vol. 15 (4), pp. 3590.
  • [65] M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir&A. R. Mohamed. (2011). "Bioconversion of synthesis gas to second generation biofuels: A review", Renewable and Sustainable Energy Reviews Vol. 15 (9), pp. 4255-73. https://doi.org/10.1016/j.rser.2011.07.124
  • [66] T. Giertl, I. Vitázek, J. Gaduš, R. Kollárik&G. Przydatek. (2024). "Thermochemical Conversion of Biomass into 2nd Generation Biofuel", Processes Vol. 12 (12), pp. 2658.
  • [67] A. Mohanty, S. Ajmera, S. Chinnam, V. Kumar, R. K. Mishra&B. Acharya. (2024). "Pyrolysis of waste oils for biofuel production: An economic and life cycle assessment", Fuel Communications Vol. 18 pp. 100108. https://doi.org/10.1016/j.jfueco.2024.100108
  • [68] A. Molino, V. Larocca, S. Chianese&D. Musmarra. (2018). "Biofuels Production by Biomass Gasification: A Review", Energies Vol. 11 (4), pp. 811.
  • [69] E. Ocampo, V. V. Beltrán, E. A. Gómez, L. A. Ríos&D. Ocampo. (2023). "Hydrothermal liquefaction process: Review and trends", Current Research in Green and Sustainable Chemistry Vol. 7 pp. 100382. https://doi.org/10.1016/j.crgsc.2023.100382
  • [70] T. Bhaskar&A. Pandey. (2015). Chapter 1 - Advances in Thermochemical Conversion of Biomass—Introduction, in: Pandey A, Bhaskar T, Stöcker M, Sukumaran R K (Eds.), Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier, Boston, pp. 3-30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6
  • [71] Y. Chisti. (2007). "Biodiesel from microalgae", Biotechnology Advances Vol. 25 (3), pp. 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  • [72] N. Rafa, S. F. Ahmed, I. A. Badruddin, M. Mofijur&S. Kamangar. (2021). "Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae", Frontiers in Energy Research Vol. 9 pp. 10.3389/fenrg.2021.749968
  • [73] K. Sudhakar, R. Mamat, M. Samykano, W. H. Azmi, W. F. W. Ishak&T. Yusaf. (2018). "An overview of marine macroalgae as bioresource", Renewable and Sustainable Energy Reviews Vol. 91 pp. 165-79. https://doi.org/10.1016/j.rser.2018.03.100
  • [74] S. Zhang, L. Zhang, G. Xu, F. Li&X. Li. (2022). "A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies", Frontiers in Microbiology Vol. 13 pp. 10.3389/fmicb.2022.970028
  • [75] N. Dwivedi&S. Dwivedi. (2019). Bio‐Oil Production from Algal Feedstock, pp. 351-71. 10.1002/9781119459866.ch11
  • [76] R. Bibi, M. Imran, S. Hussain, A. Ditta, S. Mahmood&A. Khalid. (2016). "Algal bioethanol production technology: A trend towards sustainable development", Renewable and Sustainable Energy Reviews Vol. 71 pp. 10.1016/j.rser.2016.12.126
  • [77] B. D. Wahlen, M. R. Morgan, A. T. McCurdy, R. M. Willis, M. D. Morgan, D. J. Dye, B. Bugbee, B. D. Wood&L. C. Seefeldt. (2013). "Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions", Energy & Fuels Vol. 27 (1), pp. 220-28. 10.1021/ef3012382
  • [78] A. Demirbas&M. Fatih Demirbas. (2011). "Importance of algae oil as a source of biodiesel", Energy Conversion and Management Vol. 52 (1), pp. 163-70. https://doi.org/10.1016/j.enconman.2010.06.055
  • [79] S. Tomar, S. Agarwal, H. Singh, R. Kumar, K. A. Qureshi, M. Jaremko, A.-H. Emwas&P. K. Rai. (2023). "Microalgae: A promising source for biofuel production", Biocatalysis and Agricultural Biotechnology Vol. 53 pp. 102877. https://doi.org/10.1016/j.bcab.2023.102877
  • [80] T. Chandrasekhar, D. Varaprasad, P. Gnaneswari, B. Swapna, K. Riazunnisa, V. Anu Prasanna, M. Korivi, Y.-J. Wee&V. R. Lebaka. (2023). "Algae: The Reservoir of Bioethanol", Fermentation Vol. 9 (8), pp. 712.
  • [81] K. Kusmiyati, A. Heratri, S. Kubikazari, A. Hidayat&H. Hadiyanto. (2020). "Hydrolysis of Microalgae Spirulina platensis, Chlorella sp., and Macroalgae Ulva lactuca for Bioethanol Production", International Energy Journal Vol. 20 (4), pp. 611-29.
  • [82] M. L. N. M. Carneiro, F. Pradelle, S. L. Braga, M. S. P. Gomes, A. R. F. A. Martins, F. Turkovics&R. N. C. Pradelle. (2017). "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)", Renewable and Sustainable Energy Reviews Vol. 73 pp. 632-53. https://doi.org/10.1016/j.rser.2017.01.152
  • [83] O. Adeniyi&A. Burluka. (2018). "Algae biofuel: Current status and future applications", Renewable and Sustainable Energy Reviews Vol. 90 pp. 10.1016/j.rser.2018.03.067
  • [84] S. Zhang, L. Zhang, G. Xu, F. Li&X. Li. (2022). "A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies", Front Microbiol Vol. 13 pp. 970028. 10.3389/fmicb.2022.970028
  • [85] N. Ravindranath, R. Mauvie, J. Fargione, J. Canadell, G. Berndes, J. Woods, H. Watson&J. Sathaye. (2009). Greenhouse gas implications of land use change and land conversion to biofuel crops, Cornell University Library's Initiatives in Publishing (CIP)
  • [86] A. F. Clarens, E. P. Resurreccion, M. A. White&L. M. Colosi. (2010). "Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks", Environmental Science & Technology Vol. 44 (5), pp. 1813-19. 10.1021/es902838n
  • [87] U. Singh, S. Banerjee&T. R. Hawkins. (2023). "Implications of CO2 Sourcing on the Life-Cycle Greenhouse Gas Emissions and Costs of Algae Biofuels", ACS Sustainable Chemistry & Engineering Vol. 11 (39), pp. 14435-44. 10.1021/acssuschemeng.3c02082
  • [88] H. Onyeaka, T. Miri, K. Obileke, A. Hart, C. Anumudu&Z. T. Al-Sharify. (2021). "Minimizing carbon footprint via microalgae as a biological capture", Carbon Capture Science & Technology Vol. 1 pp. 100007. https://doi.org/10.1016/j.ccst.2021.100007
  • [89] L. G. Ramírez Mérida&R. A. Rodríguez Padrón. (2023). "Application of microalgae in wastewater: opportunity for sustainable development", Frontiers in Environmental Science Vol. 11 pp. 10.3389/fenvs.2023.1238640
  • [90] V. Díaz, J. C. Leyva-Díaz, M. C. Almécija, J. M. Poyatos, M. del Mar Muñío&J. Martín-Pascual. (2022). "Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy", Bioresource Technology Vol. 363 pp. 127968. https://doi.org/10.1016/j.biortech.2022.127968
  • [91] Z. Shokravi, H. Shokravi, M. A. Aziz&H. Shokravi. (2019). "The fourth-generation biofuel: a systematic review on nearly two decades of research from 2008 to 2019", Fossil free fuels Vol. pp. 213-51.
  • [92] Z. Moravvej, M. A. Makarem&M. R. Rahimpour. (2019). Chapter 20 - The fourth generation of biofuel, in: Basile A, Dalena F (Eds.), Second and Third Generation of Feedstocks, Elsevierpp. 557-97. https://doi.org/10.1016/B978-0-12-815162-4.00020-3
  • [93] B. Abdullah, S. A. F. a. Syed Muhammad, Z. Shokravi, S. Bin Ismail, K. Kassim, N. A. Bin Nik Mahmood&M. M. A. Aziz. (2019). "Fourth generation biofuel: A review on risks and mitigation strategies", Renewable and Sustainable Energy Reviews Vol. 107 pp. 37-50. 10.1016/j.rser.2019.02.018
  • [94] J. R. Ziolkowska. (2020). "Biofuels technologies: An overview of feedstocks, processes, and technologies", Biofuels for a more sustainable future Vol. pp. 1-19.
  • [95] R. K. Rathour, V. Ahuja, R. K. Bhatia&A. K. Bhatt. (2018). "Biobutanol: New era of biofuels", International Journal of Energy Research Vol. 42 (15), pp. 4532-45.
  • [96] S. Xie. (2024). "Bio-based Isobutanol: An Emerging Attractive Biofuel", Science and Engineering Vol. 3 (3), pp. 51-60.
  • [97] A. Röttig, L. Wenning, D. Bröker&A. Steinbüchel. (2010). "Fatty acid alkyl esters: perspectives for production of alternative biofuels", Applied microbiology and biotechnology Vol. 85 pp. 1713-33.
  • [98] D. Bolonio, M.-J. García-Martínez, M. F. Ortega, M. Lapuerta, J. Rodríguez-Fernández&L. Canoira. (2019). "Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel", Renewable Energy Vol. 132 pp. 278-83.
  • [99] A. Dubini&M. L. Ghirardi. (2015). "Engineering photosynthetic organisms for the production of biohydrogen", Photosynthesis research Vol. 123 pp. 241-53.
  • [100] W. Khetkorn, N. Khanna, A. Incharoensakdi&P. Lindblad. (2013). "Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production", Biofuels Vol. 4 (5), pp. 535-61.
  • [101] P. Kallio, A. Pásztor, K. Thiel, M. K. Akhtar&P. R. Jones. (2014). "An engineered pathway for the biosynthesis of renewable propane", Nature communications Vol. 5 (1), pp. 4731.
  • [102] L. Jiménez‐Díaz, A. Caballero, N. Pérez‐Hernández&A. Segura. (2017). "Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives", Microbial biotechnology Vol. 10 (1), pp. 103-24.
  • [103] K. C. Pagnoncelli, A. R. Pereira, G. C. Sedenho, T. Bertaglia&F. N. Crespilho. (2018). "Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system", Bioelectrochemistry Vol. 122 pp. 11-25.
  • [104] S. S. Lakhawat, N. Malik, V. Kumar, S. Kumar&P. K. Sharma. (2022). "Implications of CRISPR-Cas9 in developing next generation biofuel: a minireview", Current Protein and Peptide Science Vol. 23 (9), pp. 574-84.
  • [105] K. Shabestary, H. P. Hernández, R. Miao, E. Ljungqvist, O. Hallman, E. Sporre, F. B. Dos Santos&E. P. Hudson. (2021). "Cycling between growth and production phases increases cyanobacteria bioproduction of lactate", Metabolic Engineering Vol. 68 pp. 131-41.
  • [106] N. K. Mund, Y. Liu&S. Chen. (2022). "Advances in metabolic engineering of cyanobacteria for production of biofuels", Fuel Vol. 322 pp. 124117.
  • [107] G. Torzillo, A. Scoma, C. Faraloni&L. Giannelli. (2015). "Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii", Critical reviews in biotechnology Vol. 35 (4), pp. 485-96.
  • [108] C. Jansson. (2012). "Metabolic engineering of cyanobacteria for direct conversion of CO 2 to hydrocarbon biofuels", Progress in botany 73 Vol. pp. 81-93.
  • [109] M. Ravichandran, T. T. A. Kumar&R. Dineshkumar. (2024). "Carbon dioxide capture, sequestration, and utilization models for carbon management and transformation", Environmental Science and Pollution Research Vol. 31 (44), pp. 55895-916.
  • [110] T. J. Johnson, A. Jahandideh, M. D. Johnson, K. H. Fields, J. W. Richardson, K. Muthukumarappan, Y. Cao, Z. Gu, C. Halfmann&R. Zhou. (2016). "Producing next-generation biofuels from filamentous cyanobacteria: an economic feasibility analysis", Algal research Vol. 20 pp. 218-28.
  • [111] K. Rabaey&R. A. Rozendal. (2010). "Microbial electrosynthesis—revisiting the electrical route for microbial production", Nature reviews microbiology Vol. 8 (10), pp. 706-16.
  • [112] S. Rajagopalan, R. P. Datar&R. S. Lewis. (2002). "Formation of ethanol from carbon monoxide via a new microbial catalyst", Biomass and bioenergy Vol. 23 (6), pp. 487-93.
  • [113] M. Mohammadi, A. R. Mohamed, G. D. Najafpour, H. Younesi&M. H. Uzir. (2014). "Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii", The Scientific World Journal Vol. 2014 (1), pp. 910590.
  • [114] J. Bertsch&V. Müller. (2015). "CO metabolism in the acetogen Acetobacterium woodii", Applied and environmental microbiology Vol. 81 (17), pp. 5949-56.
  • [115] V. W. Soo, M. J. McAnulty, A. Tripathi, F. Zhu, L. Zhang, E. Hatzakis, P. B. Smith, S. Agrawal, H. Nazem-Bokaee&S. Gopalakrishnan. (2016). "Reversing methanogenesis to capture methane for liquid biofuel precursors", Microbial cell factories Vol. 15 pp. 1-14.
  • [116] M. Mitsumori, H. Matsui, K. Tajima, T. Shinkai, A. Takenaka, S. E. Denman&C. S. McSweeney. (2014). "Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen", Animal Science Journal Vol. 85 (1), pp. 25-31.
  • [117] C. Halfmann, L. Gu, W. Gibbons&R. Zhou. (2014). "Genetically engineering cyanobacteria to convert CO 2, water, and light into the long-chain hydrocarbon farnesene", Applied microbiology and biotechnology Vol. 98 pp. 9869-77.
  • [118] A. Mittal&S. R. Decker. (2013). "Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels", 3 Biotech Vol. 3 (5), pp. 341-43. 10.1007/s13205-013-0122-8
  • [119] K. Hanaki&J. Portugal-Pereira. (2018). The Effect of Biofuel Production on Greenhouse Gas Emission Reductions, in: Takeuchi K, Shiroyama H, Saito O, Matsuura M (Eds.), Biofuels and Sustainability: Holistic Perspectives for Policy-making, Springer Japan, Tokyo, pp. 53-71. 10.1007/978-4-431-54895-9_6
  • [120] C. Bessou, F. Ferchaud, B. Gabrielle&B. Mary. (2011). Biofuels, Greenhouse Gases and Climate Change, in: Lichtfouse E, Hamelin M, Navarrete M, Debaeke P (Eds.), Sustainable Agriculture Volume 2, Springer Netherlands, Dordrecht, pp. 365-468. 10.1007/978-94-007-0394-0_20
  • [121] S. Litvak&O. Litvak. (2020). "Some aspects of reducing greenhouse gas emissions by using biofuels", Journal of Ecological Engineering Vol. 21 (8), pp. 198-206.
  • [122] K. Hanaki&J. Portugal-Pereira. (2018). "The effect of biofuel production on greenhouse gas emission reductions", Biofuels and sustainability: holistic perspectives for policy-making Vol. pp. 53-71.
  • [123] E. Hanff, M.-H. Dabat&J. Blin. (2011). "Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso", Renewable and Sustainable Energy Reviews Vol. 15 (5), pp. 2199-209. https://doi.org/10.1016/j.rser.2011.01.014
  • [124] A. Demirbas. (2008). "Biofuels sources, biofuel policy, biofuel economy and global biofuel projections", Energy Conversion and Management Vol. 49 (8), pp. 2106-16. https://doi.org/10.1016/j.enconman.2008.02.020
  • [125] P. T. Sekoai&K. O. Yoro. (2016). "Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges", Climate Vol. 4 (2), pp. 33.
  • [126] B. Amigun, R. Sigamoney&H. von Blottnitz. (2008). "Commercialisation of biofuel industry in Africa: A review", Renewable and Sustainable Energy Reviews Vol. 12 (3), pp. 690-711. https://doi.org/10.1016/j.rser.2006.10.019
  • [127] Y. Subramaniam&T. A. Masron. (2021). "The impact of economic globalization on biofuel in developing countries", Energy Conversion and Management: X Vol. 10 pp. 100064. https://doi.org/10.1016/j.ecmx.2020.100064
  • [128] P. Bórawski, A. Bełdycka-Bórawska, E. J. Szymańska, K. J. Jankowski, B. Dubis&J. W. Dunn. (2019). "Development of renewable energy sources market and biofuels in The European Union", Journal of Cleaner Production Vol. 228 pp. 467-84. https://doi.org/10.1016/j.jclepro.2019.04.242
  • [129] L. P. Koh&J. Ghazoul. (2008). "Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities", Biological Conservation Vol. 141 (10), pp. 2450-60. https://doi.org/10.1016/j.biocon.2008.08.005
  • [130] H. Zentou, N. S. Rosli, C. H. Wen, K. Abdul Azeez&C. Gomes. (2019). "The viability of biofuels in developing countries: Successes, failures, and challenges", Iranian Journal of Chemistry and Chemical Engineering Vol. 38 (4), pp. 173-82.
  • [131] L. Tao&A. Aden. (2009). "The economics of current and future biofuels", In Vitro Cellular & Developmental Biology-Plant Vol. 45 pp. 199-217.
  • [132] R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M. Hidalgo, D. Luna, J. M. Marinas&A. A. Romero. (2008). "Biofuels: a technological perspective", Energy & Environmental Science Vol. 1 (5), pp. 542-64. 10.1039/B807094F
  • [133] N. Gaurav, S. Sivasankari, G. S. Kiran, A. Ninawe&J. Selvin. (2017). "Utilization of bioresources for sustainable biofuels: A Review", Renewable and Sustainable Energy Reviews Vol. 73 pp. 205-14. https://doi.org/10.1016/j.rser.2017.01.070
  • [134] I. Kralova&J. Sjöblom. (2010). "Biofuels–Renewable Energy Sources: A Review", Journal of Dispersion Science and Technology Vol. 31 (3), pp. 409-25. 10.1080/01932690903119674
  • [135] H. Xu, L. Ou, Y. Li, T. R. Hawkins&M. Wang. (2022). "Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States", Environmental Science & Technology Vol. 56 (12), pp. 7512-21. 10.1021/acs.est.2c00289
  • [136] Y. Zhang, M. A. Dubé, D. D. McLean&M. Kates. (2003). "Biodiesel production from waste cooking oil: 1. Process design and technological assessment", Bioresource Technology Vol. 89 (1), pp. 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
  • [137] A. Jernigan, M. May, T. Potts, B. Rodgers, J. Hestekin, P. I. May, J. McLaughlin, R. R. Beitle&C. Hestekin. (2013). "Effects of drying and storage on year-round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation", Environmental Progress & Sustainable Energy Vol. 32 (4), pp. 1013-22. https://doi.org/10.1002/ep.11852
  • [138] R. Bhateria&R. Dhaka. (2014). "Algae as biofuel", Biofuels Vol. 5 (6), pp. 607-31. 10.1080/17597269.2014.1003701
  • [139] S. Paul, A. Panja&P. Jha. (2025). Chapter 15 - Hindrances and drawbacks of the existing policies and roadmap for sustainable production of biofuels: An Indian scenario, in: Zhu D, Dar M A, Shahnawaz M (Eds.), Biofuels and Sustainability, Elsevier Science Ltdpp. 237-52. https://doi.org/10.1016/B978-0-443-21433-2.00007-4
  • [140] G. Pulighe, G. Bonati, M. Colangeli, M. M. Morese, L. Traverso, F. Lupia, C. Khawaja, R. Janssen&F. Fava. (2019). "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions", Renewable and Sustainable Energy Reviews Vol. 103 pp. 58- 70. https://doi.org/10.1016/j.rser.2018.12.043
  • [141] V. Kamperidou, P. Terzopoulou&I. Barboutis. (2021). "Marginal lands providing tree‐crop biomass as feedstock for solid biofuels", Biofuels, Bioproducts and Biorefining Vol. 15 (5), pp. 1395-405.
  • [142] M. A. Mehmood, M. Ibrahim, U. Rashid, M. Nawaz, S. Ali, A. Hussain&M. Gull. (2017). "Biomass production for bioenergy using marginal lands", Sustainable Production and Consumption Vol. 9 pp. 3-21. https://doi.org/10.1016/j.spc.2016.08.003
  • [143] R. Slade&A. Bauen. (2013). "Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects", Biomass and Bioenergy Vol. 53 pp. 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
  • [144] J. A. Mathews. (2008). "Carbon-negative biofuels", Energy Policy Vol. 36 (3), pp. 940-45. https://doi.org/10.1016/j.enpol.2007.11.029
  • [145] M. Sarkar&B. Sarkar. (2020). "How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system?", Journal of Cleaner Production Vol. 262 pp. 121200. https://doi.org/10.1016/j.jclepro.2020.121200
  • [146] L. M. Verdade, C. I. Piña&L. M. Rosalino. (2015). "Biofuels and biodiversity: Challenges and opportunities", Environmental Development Vol. 15 pp. 64-78. https://doi.org/10.1016/j.envdev.2015.05.003
  • [147] A. Demirbas. (2009). "Biofuels securing the planet’s future energy needs", Energy Conversion and Management Vol. 50 (9), pp. 2239-49. https://doi.org/10.1016/j.enconman.2009.05.010
  • [148] J. Kosinkova, A. Doshi, J. Maire, Z. Ristovski, R. Brown&T. J. Rainey. (2015). "Measuring the regional availability of biomass for biofuels and the potential for microalgae", Renewable and Sustainable Energy Reviews Vol. 49 pp. 1271-85. https://doi.org/10.1016/j.rser.2015.04.084
  • [149] H. Yang, Y. Zhou&J. Liu. (2009). "Land and water requirements of biofuel and implications for food supply and the environment in China", Energy Policy Vol. 37 (5), pp. 1876-85. https://doi.org/10.1016/j.enpol.2009.01.035
  • [150] P. Moodley. (2021). 1 - Sustainable biofuels: opportunities and challenges, in: Ray R C (Ed.), Sustainable Biofuels, Academic Presspp. 1-20. https://doi.org/10.1016/B978-0-12-820297-5.00003-7
  • [151] N. Ben Fradj, P. A. Jayet&P. Aghajanzadeh-Darzi. (2016). "Competition between food, feed, and (bio)fuel: A supply-side model based assessment at the European scale", Land Use Policy Vol. 52 pp. 195-205. https://doi.org/10.1016/j.landusepol.2015.12.027
  • [152] A. Datta, A. Hossain&S. Roy. (2019). "An overview on biofuels and their advantages and disadvantages", Vol.
  • [153] A. A. Lashitew. (2011). "Competition between food and biofuel production in Ethiopia: a partial equilibrium analysis", Biofuels Vol. 2 (6), pp. 611- 27. 10.4155/bfs.11.139
  • [154] R. Herrmann, C. Jumbe, M. Bruentrup&E. Osabuohien. (2018). "Competition between biofuel feedstock and food production: Empirical evidence from sugarcane outgrower settings in Malawi", Biomass and Bioenergy Vol. 114 pp. 100-11. https://doi.org/10.1016/j.biombioe.2017.09.002
  • [155] R. Ramadhan, A. Mori&O. S. Abdoellah. (2023). Biofuels Development and Indirect Deforestation, in: Triyanti A, Indrawan M, Nurhidayah L, Marfai M A (Eds.), Environmental Governance in Indonesia, Springer International Publishing, Cham, pp. 167-84.10.1007/978-3-031-15904-6_10
  • [156] D. Keles, J. Choumert-Nkolo, P. Combes Motel&E. Nazindigouba Kéré. (2018). "Does the expansion of biofuels encroach on the forest?", Journal of Forest Economics Vol. 33 pp. 75-82. https://doi.org/10.1016/j.jfe.2018.11.001
  • [157] P. M. F. Elshout, R. van Zelm, M. A. J. Huijbregts, Z. Steinmann&M. van der Velde. (2019). "Global relative species loss due to first-generation biofuel production for the transport sector", Glob Change Biol Bioenergy Vol. 11 (6), pp. 763-72. 10.1111/gcbb.12597
  • [158] Y. Gao, M. Skutsch, R. Drigo, P. Pacheco&O. Masera. (2011). "Assessing deforestation from biofuels: Methodological challenges", Applied Geography Vol. 31 (2), pp. 508-18. https://doi.org/10.1016/j.apgeog.2010.10.007
  • [159] Monteiro de Carvalho, S. Silveira, E. L. L. Rovere&A. Y. Iwama. (2015). "Deforested and degraded land available for the expansion of palm oil for biodiesel in the state of Pará in the Brazilian Amazon", Renewable and Sustainable Energy Reviews Vol. 44 pp. 867-76. https://doi.org/10.1016/j.rser.2015.01.026
  • [160] P. K. R. Nair, S. K. Saha, V. D. Nair&S. G. Haile. (2011). "Potential for greenhouse gas emissions from soil carbon stock following biofuel cultivation on degraded lands", Land Degradation & Development Vol. 22 (4), pp. 395-409. https://doi.org/10.1002/ldr.1016
  • [161] Y. Gao, M. Skutsch&O. Masera. (2012). "The challenges of estimating tropical deforestation due to biofuel expansion", Socioeconomic and Environmental Impacts of Biofuels: Evidence from Developing Nations Vol. pp. 90.
  • [162] M. Khanna, C. L. Crago&M. Black. (2011). "Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy", Interface Focus Vol. 1 (2), pp. 233-47. 10.1098/rsfs.2010.0016
  • [163] M. A. Delucchi. (2010). "Impacts of biofuels on climate change, water use, and land use", Annals of the New York Academy of Sciences Vol. 1195 (1), pp. 28-45. https://doi.org/10.1111/j.1749-6632.2010.05457.x
  • [164] M. J. Mintoo&R. Kousar. (2025). Chapter 18 - Impact of advanced biofuels on water resources, in: Zhu D, DarM A, Shahnawaz M (Eds.), Biofuels and Sustainability, Elsevier Science Ltdpp. 283-302.https://doi.org/10.1016/B978-0-443-21433-2.00023-2
  • [165] R. Dominguez-Faus, S. E. Powers, J. G. Burken&P. J. Alvarez. (2009). "The Water Footprint of Biofuels: A Drink or Drive Issue?", Environmental Science & Technology Vol. 43 (9), pp. 3005-10. 10.1021/es802162x
  • [166] H. H. Waseem, A. El Zerey-Belaskri, F. Nadeem&I. Yaqoob. (2016). "The downside of biodiesel fuel–a review", Int. J. Chem. Biochem. Sci Vol. 9 pp. 97-106.
  • [167] E. Engelhaupt, Perspective: biofueling water problems, ACS Publications, 2007.
  • [168] C. S. Chen, Y.-Y. Shu, S.-H. Wu&C.-J. Tien. (2015). "Assessing soil and groundwater contamination from biofuel spills", Environmental Science: Processes & Impacts Vol. 17 (3), pp. 533-42. 10.1039/C4EM00443D
  • [169] X. Zhang, S. Yan, R. D. Tyagi, R. Y. Surampalli&J. R. Valéro. (2016). "Energy balance of biofuel production from biological conversion of crude glycerol", Journal of Environmental Management Vol. 170 pp. 169-76. https://doi.org/10.1016/j.jenvman.2015.09.031
  • [170] J. Fargione, J. Hill, D. Tilman, S. Polasky&P. Hawthorne. (2008). "Land Clearing and the Biofuel Carbon Debt", Science Vol. 319 (5867), pp. 1235- 38.
  • [171] W. Stafford, G. Lotter, G. Von Maltitz&A. Brent. (2018). "Biofuels technology development in Southern Africa", Development Southern Africa Vol. 36 pp. 1-20. 10.1080/0376835X.2018.1481732
  • [172] S. de Jong, R. Hoefnagels, E. Wetterlund, K. Pettersson, A. Faaij&M. Junginger. (2017). "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations", Applied Energy Vol. 195 pp. 1055-70. https://doi.org/10.1016/j.apenergy.2017.03.109
  • [173] W. E. Mabee. (2007). Policy Options to Support Biofuel Production, in: Olsson L (Ed.), Biofuels, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 329-57.10.1007/10_2007_059
  • [174] A. P. Saravanan, A. Pugazhendhi&T. Mathimani. (2020). "A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps", Fuel Vol. 272 pp. 117635. https://doi.org/10.1016/j.fuel.2020.117635
  • [175] T. D. Searchinger. (2009). "Government policies & drivers of world biofuels, sustainability criteria, certification proposals & their limitations", Vol. pp.
  • [176] D. R. D. Aguiar, F. Taheripour&D. A. L. Silva. (2025). "Ethanol fuel in Brazil: policies and carbon emission avoidance", Biofuels Vol. 16 (3), pp. 248-58. 10.1080/17597269.2024.2405765
  • [177] T. J. Lark, N. P. Hendricks, A. Smith, N. Pates, S. A. Spawn-Lee, M. Bougie, E. G. Booth, C. J. Kucharik&H. K. Gibbs. (2022). "Environmental outcomes of the US Renewable Fuel Standard", Proceedings of the National Academy of Sciences Vol. 119 (9), pp. e2101084119. doi:10.1073/pnas.2101084119
  • [178] G. E. Lade, C.-Y. Cynthia Lin Lawell&A. Smith. (2018). "Designing Climate Policy: Lessons from the Renewable Fuel Standard and the Blend Wall", American Journal of Agricultural Economics Vol. 100 (2), pp. 585-99. https://doi.org/10.1093/ajae/aax092
  • [179] S. Prasad, K. K. Yadav, S. Kumar, P. Pandita, J. K. Bhutto, M. A. Alreshidi, B. Ravindran, Z. M. Yaseen, S. M. Osman&M. M. S. Cabral-Pinto. (2024). "Review on biofuel production: Sustainable development scenario, environment, and climate change perspectives − A sustainable approach", Journal of Environmental Chemical Engineering Vol. 12 (2), pp. 111996. https://doi.org/10.1016/j.jece.2024.111996
  • [180] J. Kuriakose, C. Jones, K. Anderson, C. McLachlan&J. Broderick. (2022). "What does the Paris climate change agreement mean for local policy? Downscaling the remaining global carbon budget to sub-national areas", Renewable and Sustainable Energy Transition Vol. 2 pp. 100030. https://doi.org/10.1016/j.rset.2022.100030
  • [181] S. E. M. Cesar de Oliveira, J. C. Visentin, B. F. Pavani, P. D. Branco, M. de Maria&R. Loyola. (2024). "The European Union-Mercosur Free Trade Agreement as a tool for environmentally sustainable land use governance", Environmental Science & Policy Vol. 161 pp. 103875. https://doi.org/10.1016/j.envsci.2024.103875
  • [182] M. C. M. van Tol, J. A. Moncada, Z. Lukszo&M. Weijnen. (2021). "Modelling the interaction between policies and international trade flows for liquid biofuels: an agent-based modelling approach", Energy Policy Vol. 149 pp. 112021. https://doi.org/10.1016/j.enpol.2020.112021
  • [183] M. M. Akrofi, M. Okitasari&R. Kandpal. (2022). "Recent trends on the linkages between energy, SDGs and the Paris Agreement: a review of policybased studies", Discover Sustainability Vol. 3 (1), pp. 32. 10.1007/s43621-022-00100-y
  • [184] M. A. Oehlschlaeger, H. Wang&M. N. Sexton. (2013). "Prospects for Biofuels: A Review", Journal of Thermal Science and Engineering Applications Vol. 5 (2), pp. 10.1115/1.4023602
  • [185] R. González-López. (2021). "Why energy return on energy investment is not useful for policy", Energy Research & Social Science Vol. 74 pp. 101915. https://doi.org/10.1016/j.erss.2021.101915
  • [186] C. Wang, L. Zhang, Y. Chang&M. Pang. (2021). "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification", Renewable and Sustainable Energy Reviews Vol. 137 pp. 110652. https://doi.org/10.1016/j.rser.2020.110652
  • [187] C. A. S. Hall, J. G. Lambert&S. B. Balogh. (2014). "EROI of different fuels and the implications for society", Energy Policy Vol. 64 pp. 141-52. https://doi.org/10.1016/j.enpol.2013.05.049
  • [188] W. Prananta&I. Kubiszewski. (2021). "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)", Energies Vol. 14 (10), pp. 2803.
  • [189] G. Chiriboga, A. De La Rosa, C. Molina, S. Velarde&G. Carvajal C. (2020). "Energy Return on Investment (EROI) and Life Cycle Analysis (LCA) of biofuels in Ecuador", Heliyon Vol. 6 (6), pp. e04213. https://doi.org/10.1016/j.heliyon.2020.e04213
  • [190] A. Kalinichenko&V. Havrysh. (2019). "Feasibility study of biogas project development: Technology maturity, feedstock, and utilization pathway", Archives of Environmental Protection Vol. 45 pp. 68-83. 10.24425/aep.2019.126423
  • [191] O. Arodudu, A. Voinov&I. van Duren. (2013). "Assessing bioenergy potential in rural areas – A NEG-EROEI approach", Biomass and Bioenergy Vol. 58 pp. 350-64. https://doi.org/10.1016/j.biombioe.2013.07.020
  • [192] M. A. Elsayed, R. Matthews&N. Mortimer, Carbon and Energy Balances for a Range of Biofuels Options, Carbon and Energy Balances for a Range of Biofuels Options, Resources Research Unit, Sheffield Hallam University, 2003, p. 25 + Appendices.
  • [193] E. Font de Mora, C. Torres&A. Valero. (2012). "Assessment of biodiesel energy sustainability using the exergy return on investment concept", Energy Vol. 45 (1), pp. 474-80. https://doi.org/10.1016/j.energy.2012.02.072
  • [194] D. Pimentel&T. W. Patzek. (2005). "Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower", Natural Resources Research Vol. 14 (1), pp. 65-76. 10.1007/s11053-005-4679-8
  • [195] L. Kallivroussis, A. Natsis&G. Papadakis. (2002). "RD—Rural Development: The Energy Balance of Sunflower Production for Biodiesel in Greece", Biosystems Engineering Vol. 81 (3), pp. 347-54. https://doi.org/10.1006/bioe.2001.0021
  • [196] E. L. Garza, The Energy Return!on invested of Biodiesel in Vermont, Rubenstein School of Environment!and Natural Resources, Burlington, VT, 2011, p. 25.
  • [197] J. Freise. (2011). "The EROI of Conventional Canadian Natural Gas Production", Sustainability Vol. 3 (11), pp. 2080-104.
  • [198] H. Sahin, A. A. Solomon, A. Aghahosseini&C. Breyer. (2024). "Systemwide energy return on investment in a sustainable transition towards net zero power systems", Nature Communications Vol. 15 (1), pp. 208. 10.1038/s41467-023-44232-9
  • [199] V. Court&F. Fizaine. (2017). "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions", Ecological Economics Vol. 138 pp. 145-59. https://doi.org/10.1016/j.ecolecon.2017.03.015
  • [200] M. Buchanan. (2019). "Energy costs", Nature Physics Vol. 15 (6), pp. 520-20. 10.1038/s41567-019-0549-x
  • [201] R. S. Atlason&R. Unnthorsson. (2014). "Energy return on investment of hydroelectric power generation calculated using a standardised methodology", Renewable Energy Vol. 66 pp. 364-70. https://doi.org/10.1016/j.renene.2013.12.029
  • [202] E. Aramendia, P. E. Brockway, P. G. Taylor, J. B. Norman, M. K. Heun&Z. Marshall. (2024). "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems", Nature Energy Vol. 9 (7), pp. 803-16. 10.1038/s41560-024-01518-6
  • [203] C. Cleveland&P. Endres. (2010). "Meta-Analysis of Net Energy Return for Wind Power Systems", Renewable Energy Vol. 35 pp. 218-25. 10.1016/j.renene.2009.01.012
  • [204] D. J. Murphy, M. Raugei, M. Carbajales-Dale&B. Rubio Estrada. (2022). "Energy Return on Investment of Major Energy Carriers: Review and Harmonization", Sustainability Vol. 14 (12), pp. 7098.
  • [205] J. Dumas, A. Dubois, P. Thiran, P. Jacques, F. Contino, B. Cornélusse&G. Limpens. (2022). "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium", Biophysical Economics and Sustainability Vol. 7 (4), pp. 12. 10.1007/s41247-022-00106-0
  • [206] R. V. Asase, Q. N. Okechukwu&M. N. Ivantsova. (2024). "Biofuels: present and future", Environment, Development and Sustainability Vol. pp. 10.1007/s10668-024-04992-w
  • [207] H. Mohammadi&J. Saddler. "Biofuel policies used by IEA Bioenergy Task 39 countries: the transition to using the carbon intensity (CI) of biofuels to set targets", Biofuels, Bioproducts and Biorefining Vol. n/a (n/a), pp. https://doi.org/10.1002/bbb.2732
  • [208] R. A. Lee&J.-M. Lavoie. (2013). "From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity", Animal Frontiers Vol. 3 (2), pp. 6-11. 10.2527/af.2013-0010
  • [209] B. Wang, Z. J. Ting&M. Zhao. (2024). "Sustainable aviation fuels: Key opportunities and challenges in lowering carbon emissions for aviation industry", Carbon Capture Science & Technology Vol. 13 pp. 100263. https://doi.org/10.1016/j.ccst.2024.100263
  • [210] R. Johansson, S. Meyer, J. Whistance, W. Thompson&D. Debnath. (2020). "Greenhouse gas emission reduction and cost from the United States biofuels mandate", Renewable and Sustainable Energy Reviews Vol. 119 pp. 109513. https://doi.org/10.1016/j.rser.2019.109513
  • [211] Y. Subramaniam, T. A. Masron&N. H. N. Azman. (2020). "Biofuels, environmental sustainability, and food security: A review of 51 countries", Energy Research & Social Science Vol. 68 pp. 101549. https://doi.org/10.1016/j.erss.2020.101549
  • [212] D. J. Murphy. (2008). "Future prospects for biofuels", Chimica Oggi Vol. 26 (1), pp. 14.
  • [213] F. Hartley, v. S. Dirk, T. Emilio&C. and Arndt. (2019). "Economic impacts of developing a biofuel industry in Mozambique", Development Southern Africa Vol. 36 (2), pp. 233-49. 10.1080/0376835X.2018.1548962
  • [214] K. Araújo, D. Mahajan, R. Kerr&M. d. Silva. (2017). "Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development", Agriculture Vol. 7 (4), pp. 32.
  • [215] M. Wang, J. Han, J. B. Dunn, H. Cai&A. Elgowainy. (2012). "Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use", Environmental Research Letters Vol. 7 (4), pp. 045905. 10.1088/1748-9326/7/4/045905
  • [216] J. Popp, Z. Lakner, M. Harangi-Rákos&M. Fári. (2014). "The effect of bioenergy expansion: Food, energy, and environment", Renewable and Sustainable Energy Reviews Vol. 32 pp. 559-78. https://doi.org/10.1016/j.rser.2014.01.056
  • [217] H. K. Ismaeel, T. M. Albayati, F. T. Al-Sudani, I. K. Salih, H. A. Dhahad, N. M. C. Saady, S. Zendehboudi&I. M. R. Fattah. (2024). "The role of catalysts in biodiesel production as green energy applications: A review of developments and prospects", Chemical Engineering Research and Design Vol. 204 pp. 636-53. https://doi.org/10.1016/j.cherd.2024.02.048
  • [218] A. K. Endalew, Y. Kiros&R. Zanzi. (2011). "Inorganic heterogeneous catalysts for biodiesel production from vegetable oils", Biomass and Bioenergy Vol. 35 (9), pp. 3787-809. https://doi.org/10.1016/j.biombioe.2011.06.011
  • [219] M. Jabeen, I. Razzaq, S. Noureen, S. U. Hussain, N. Aslam, A. Zafar, K. Mehmood&M. U. A. Khan. (2024). "Catalytic Performance of Newly Synthesized Heterocyclic Hydrazone Derivatives For Production of High Yield Neem Biodiesel", Journal of the Turkish Chemical Society Section A: Chemistry Vol. 11 (4), pp. 1565-80. 10.18596/jotcsa.1493074
  • [220] A. Getachew Alemu&T. Alemu. (2023). Recent Developments in Catalysts for Biodiesel Production Applications, in: Fattah I M R (Ed.), Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations, IntechOpen, Rijeka, 10.5772/intechopen.109483
  • [221] J. Nyika&M. Dinka. (2022). "Converting solid waste materials to Energy: A review", Materials Today: Proceedings Vol. 57 pp. 964-68. https://doi.org/10.1016/j.matpr.2022.03.240
  • [222] E. Newes, C. M. Clark, L. Vimmerstedt, S. Peterson, D. Burkholder, D. Korotney&D. Inman. (2022). "Ethanol production in the United States: The roles of policy, price, and demand", Energy Policy Vol. 161 pp. 112713. https://doi.org/10.1016/j.enpol.2021.112713
  • [223] S. Cross, A. J. Welfle, P. Thornley, S. Syri&M. Mikaelsson. (2021). "Bioenergy development in the UK & Nordic countries: A comparison of effectiveness of support policies for sustainable development of the bioenergy sector", Biomass and Bioenergy Vol. 144 pp. 105887. https://doi.org/10.1016/j.biombioe.2020.105887
  • [224] J. Mata-Sánchez, J. A. Pérez-Jiménez, M. J. Díaz-Villanueva, A. Serrano, N. Núñez-Sánchez&F. J. López-Giménez. (2014). "Development of olive stone quality system based on biofuel energetic parameters study", Renewable Energy Vol. 66 pp. 251-56. https://doi.org/10.1016/j.renene.2013.12.009
  • [225] A. Michael Fredenslund, E. Gudmundsson, J. Maria Falk&C. Scheutz. (2023). "The Danish national effort to minimise methane emissions from biogas plants", Waste Management Vol. 157 pp. 321-29. https://doi.org/10.1016/j.wasman.2022.12.035
  • [226] D. Lee, A. Chen&R. Nair. (2008). "Genetically Engineered Crops for Biofuel Production: Regulatory Perspectives", Biotechnology and Genetic Engineering Reviews Vol. 25 (1), pp. 331-62. 10.5661/bger-25-331
  • [227] Z. Xu, D. A. Hennessy, K. Sardana&G. Moschini. (2013). "The Realized Yield Effect of Genetically Engineered Crops: U.S. Maize and Soybean", Crop Science Vol. 53 (3), pp. 735-45. https://doi.org/10.2135/cropsci2012.06.0399
  • [228] A. Furtado, J. S. Lupoi, N. V. Hoang, A. Healey, S. Singh, B. A. Simmons&R. J. Henry. (2014). "Modifying plants for biofuel and biomaterial production", Plant Biotechnology Journal Vol. 12 (9), pp. 1246-58. https://doi.org/10.1111/pbi.12300
  • [229] G. Dida. (2024). "Biotechnology towards energy crops", CABI Agriculture and Bioscience Vol. 5 (1), pp. 45. 10.1186/s43170-024-00245-y
  • [230] V. Larnaudie, M. D. Ferrari&C. Lareo. (2022). "Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability", Renewable and Sustainable Energy Reviews Vol. 158 pp. 112115. https://doi.org/10.1016/j.rser.2022.112115
  • [231] M. A. Sanderson, P. R. Adler, A. A. Boateng, M. D. Casler&G. Sarath. (2006). "Switchgrass as a biofuels feedstock in the USA", Canadian journal of plant science Vol. 86 (Special Issue), pp. 1315-25.
  • [232] S. Nath. (2024). "Biotechnology and biofuels: paving the way towards a sustainable and equitable energy for the future", Discover Energy Vol. 4 (1), pp. 8. 10.1007/s43937-024-00032-w
  • [233] G. Koçar&N. Civaş. (2013). "An overview of biofuels from energy crops: Current status and future prospects", Renewable and Sustainable Energy Reviews Vol. 28 pp. 900-16. https://doi.org/10.1016/j.rser.2013.08.022
  • [234] O. M. Adeniyi, U. Azimov&A. Burluka. (2018). "Algae biofuel: Current status and future applications", Renewable and Sustainable Energy Reviews Vol. 90 pp. 316-35. https://doi.org/10.1016/j.rser.2018.03.067
  • [235] H. Falfushynska. (2024). "Advancements and Prospects in Algal Biofuel Production: A Comprehensive Review", Phycology Vol. 4 (4), pp. 548-75.
  • [236] K. Kumar, S. Ghosh, I. Angelidaki, S. L. Holdt, D. B. Karakashev, M. A. Morales&D. Das. (2016). "Recent developments on biofuels production from microalgae and macroalgae", Renewable and Sustainable Energy Reviews Vol. 65 pp. 235-49. https://doi.org/10.1016/j.rser.2016.06.055
  • [237] D. Kour, K. L. Rana, N. Yadav, A. N. Yadav, A. A. Rastegari, C. Singh, P. Negi, K. Singh&A. K. Saxena. (2019). Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects, in: Rastegari A A, Yadav A N, Gupta A (Eds.), Prospects of Renewable Bioprocessing in Future Energy Systems, Springer International Publishing, Cham, pp. 1-50.10.1007/978-3-030-14463-0_1
  • [238] H. Shahbeig, A. Shafizadeh, M. A. Rosen&B. F. Sels. (2022). "Exergy sustainability analysis of biomass gasification: a critical review", Biofuel Research Journal Vol. 9 (1), pp. 1592-607. 10.18331/brj2022.9.1.5
  • [239] Y. Wang&J. J. Wu. (2023). "Thermochemical conversion of biomass: Potential future prospects", Renewable and Sustainable Energy Reviews Vol. 187 pp. 113754. https://doi.org/10.1016/j.rser.2023.113754
  • [240] I. Kariim, H. Swai&T. Kivevele. (2022). "Recent advances in thermochemical conversion of biomass into drop-in fuel:a review", Scientific African Vol. 17 pp. e01352. https://doi.org/10.1016/j.sciaf.2022.e01352
  • [241] S. Siwal, K. Sheoran, A. Saini, D.-V. Vo, Q. Wang&V. Thakur. (2022). "Advanced thermochemical conversion technologies used for energy generation: Advancement and prospects", Fuel Vol. 321 pp. 124107. 10.1016/j.fuel.2022.124107
  • [242] B. Yang, Z. Dai, S.-Y. Ding&C. E. Wyman. (2011). "Enzymatic hydrolysis of cellulosic biomass", Biofuels Vol. 2 (4), pp. 421-49. 10.4155/bfs.11.116
  • [243] M. Karimi, H. Simsek&K. Kheiralipour. (2025). "Advanced biofuel production: A comprehensive techno-economic review of pathways and costs", Energy Conversion and Management: X Vol. 25 pp. 100863. https://doi.org/10.1016/j.ecmx.2024.100863
  • [244] A. Callegari, S. Bolognesi, D. Cecconet&A. G. Capodaglio. (2020). "Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review", Critical Reviews in Environmental Science and Technology Vol. 50 (4), pp. 384-436. 10.1080/10643389.2019.1629801

Biyoyakıtlar: Yeşil ve Temiz Enerjinin Geleceğini Keşfetmek

Year 2026, Volume: 13 Issue: 1, 71 - 88, 31.01.2026

Abstract

Biyoyakıtlar; iklim değişikliği, fosil yakıt tükenmesi ve enerji güvenliği için potansiyel ve yenilenebilir bir çözümdür. 1., 2. ve 3. nesil biyoyakıtlar dünya çapında yaygın olarak kullanılan ana biyoyakıt türleridir, farklı hammaddelere, üretim yöntemlerine ve çevresel etkilere sahiptir. Şeker kamışı, mısır ve bitkisel yağ gibi gıda ürünlerinden üretilen etanol ve biyodizel dahil 1. nesil biyoyakıtlar yaygın olarak kullanılmaktadır ancak arazi kullanımı ve gıda bulunabilirliği konusunda endişelere yol açmıştır. Enzimatik hidroliz ve termokimyasal işlemler kullanılarak yakıt ürünlerinden, tarımsal atıklardan ve orman yan ürünlerinden üretilen selülozik etanol ve biyo-yağlar dahil 2. nesil biyoyakıtlar; yalnızca daha çevre dostu olmakla kalmaz, aynı zamanda gıda-yakıt çatışmasını da azaltır. Öte yandan, alglerden elde edilen 3. nesil biyoyakıtlar kolay bulunabilirliği ve yüksek yağ içeriği nedeniyle avantajlıdır. Biyoyakıtlar karbon nötrlüğü ile yenilenebilir, çevre kirliliğini azaltır, sera gazı emisyonunu en aza indirir, enerji güvenliğini artırır, ekonomik büyümeyi teşvik eder, iş fırsatları yaratır, kırsal kalkınmayı teşvik eder, su kirliliğini ve ormansızlaşmayı en aza indirir ve ekosistemler için faydalıdır. Bu faydaların dışında biyoyakıtların verimliliğini engelleyen bazı engeller vardır; arazi bozulması, ayrıcalıksız hükümet politikaları, insanların farkındalık eksikliği, düşük enerji yatırım getirisi, yüksek üretim maliyetleri, güvenli olmayan üretim yöntemleri, sınırlı hammadde ve arazi kullanımı. Bu zorlukların yanı sıra biyoyakıtlar hala iklim değişikliğini azaltan ve küresel enerji talebini karşılayan sürdürülebilir bir enerji kaynağıdır.

References

  • [1] B. N. Iyke. (2024). "Climate change, energy security risk, and clean energy investment", Energy Economics Vol. 129 pp. 107225. https://doi.org/10.1016/j.eneco.2023.107225
  • [2] Q. Hassan, P. Viktor, T. J. Al-Musawi, B. Mahmood Ali, S. Algburi, H. M. Alzoubi, A. Khudhair Al-Jiboory, A. Zuhair Sameen, H. M. Salman&M. Jaszczur. (2024). "The renewable energy role in the global energy Transformations", Renewable Energy Focus Vol. 48 pp. 100545. https://doi.org/10.1016/j.ref.2024.100545
  • [3] H. M.Saleh&A. I.Hassan. (2024). "The challenges of sustainable energy transition: A focus on renewable energy", Applied Chemical Engineering Vol. 7 pp. 2084. 10.59429/ace.v7i2.2084
  • [4] M. Filonchyk, M. P. Peterson, L. Zhang, V. Hurynovich&Y. He. (2024). "Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O", Science of The Total Environment Vol. 935 pp. 173359. https://doi.org/10.1016/j.scitotenv.2024.173359
  • [5] M. Jabeen, K. Tarıq&S. U. Hussain. (2024). "Bioplastic an alternative to plastic in modern world: A systemized review", Environmental Research and Technology Vol. 7 (4), pp. 614-25. 10.35208/ert.1467590
  • [6] J. Wang&W. Azam. (2024). "Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries", Geoscience Frontiers Vol. 15 (2), pp. 101757. https://doi.org/10.1016/j.gsf.2023.101757
  • [7] A. Okeke. (2021). "Towards sustainability in the global oil and gas industry: Identifying where the emphasis lies", Environmental and Sustainability Indicators Vol. 12 pp. 100145. https://doi.org/10.1016/j.indic.2021.100145
  • [8] D. Contu, O. Kaya&I. Kaya. (2021). "Attitudes towards climate change and energy sources in oil exporters", Energy Strategy Reviews Vol. 38 pp. 100732. https://doi.org/10.1016/j.esr.2021.100732
  • [9] M. Foss. (2022). "The impact of renewables on energy security", Canadian Foreign Policy Journal Vol. 28 (3), pp. 234-48. 10.1080/11926422.2022.2118138
  • [10] H. Banna, A. Alam, X. H. Chen&A. W. Alam. (2023). "Energy security and economic stability: The role of inflation and war", Energy Economics Vol. 126 pp. 106949. https://doi.org/10.1016/j.eneco.2023.106949
  • [11] R. El-Araby. (2024). "Biofuel production: exploring renewable energy solutions for a greener future", Biotechnology for Biofuels and Bioproducts Vol. 17 (1), pp. 129. 10.1186/s13068-024-02571-9
  • [12] S. J. Malode, K. K. Prabhu, R. J. Mascarenhas, N. P. Shetti&T. M. Aminabhavi. (2021). "Recent advances and viability in biofuel production", Energy Conversion and Management: X Vol. 10 pp. 100070.
  • [13] R. C. Rial. (2024). "Biofuels versus climate change: Exploring potentials and challenges in the energy transition", Renewable and Sustainable Energy Reviews Vol. 196 pp. 114369. https://doi.org/10.1016/j.rser.2024.114369
  • [14] M. S. Alam&M. S. Tanveer. (2020). Chapter 5 - Conversion of biomass into biofuel: a cutting-edge technology, in: Singh L, Yousuf A, Mahapatra D M (Eds.), Bioreactors, Elsevierpp. 55-74. https://doi.org/10.1016/B978-0-12-821264-6.00005-X
  • [15] F. A. Malla, S. A. Bandh, S. A. Wani, A. T. Hoang&N. A. Sofi. (2022). Biofuels: Potential Alternatives to Fossil Fuels, in: Bandh S A, Malla F A (Eds.), Biofuels in Circular Economy, Springer Nature Singapore, Singapore, pp. 1-15. 10.1007/978-981-19-5837-3_1
  • [16] Priya, P. S. Deora, Y. Verma, R. A. Muhal, C. Goswami&T. Singh. (2022). "Biofuels: An alternative to conventional fuel and energy source", Materials Today: Proceedings Vol. 48 pp. 1178-84. https://doi.org/10.1016/j.matpr.2021.08.227
  • [17] K. Malik, S. C. Capareda, B. R. Kamboj, S. Malik, K. Singh, S. Arya&D. K. Bishnoi. (2024). "Biofuels Production: A Review on Sustainable Alternatives to Traditional Fuels and Energy Sources", Fuels Vol. 5 (2), pp. 157-75.
  • [18] Y. Dahman, K. Syed, S. Begum, P. Roy&B. Mohtasebi. (2019). 14 - Biofuels: Their characteristics and analysis, in: Verma D, Fortunati E, Jain S, Zhang X (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishingpp. 277-325. https://doi.org/10.1016/B978-0-08- 102426-3.00014-X
  • [19] R. Lee&J.-M. Lavoie. (2013). "From First- to Third-Generation Biofuels: Challenges of Producing a Commodity from a Biomass of Increasing Complexity", Animal Frontiers Vol. 3 pp. 6-11. 10.2527/af.2013-0010
  • [20] S. Mahapatra, D. Kumar, B. Singh&P. K. Sachan. (2021). "Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus", Energy Nexus Vol. 4 pp. 100036. https://doi.org/10.1016/j.nexus.2021.100036
  • [21] N. Hajilary, M. Rezakazemi&S. Shirazian. (2019). "Biofuel types and membrane separation", Environmental Chemistry Letters Vol. 17 (1), pp. 1- 18. 10.1007/s10311-018-0777-9
  • [22] S. N. Naik, V. V. Goud, P. K. Rout&A. K. Dalai. (2010). "Production of first and second generation biofuels: A comprehensive review", Renewable and Sustainable Energy Reviews Vol. 14 (2), pp. 578-97. https://doi.org/10.1016/j.rser.2009.10.003
  • [23] B. Sadaqat, M. A. Dar, R. Xie&J. Sun. (2025). Chapter 3 - Drawbacks of first-generation biofuels: Challenges and paradigm shifts in technology for second- and third-generation biofuels, in: Zhu D, Dar M A, Shahnawaz M (Eds.), Biofuels and Sustainability, Elsevier Science Ltdpp. 33-47. https://doi.org/10.1016/B978-0-443-21433-2.00003-7
  • [24] G. Itskos, N. Nikolopoulos, D. S. Kourkoumpas, A. Koutsianos, I. Violidakis, P. Drosatos&P. Grammelis. (2016). Chapter 6 - Energy and the Environment, in: Poulopoulos S G, Inglezakis V J (Eds.), Environment and Development, Elsevier, Amsterdam, pp. 363-452. https://doi.org/10.1016/B978-0-444-62733-9.00006-X
  • [25] M. Lackner. (2022). Third-Generation Biofuels: Bacteria and Algae for Better Yield and Sustainability, in: Lackner M, Sajjadi B, Chen W-Y (Eds.), Handbook of Climate Change Mitigation and Adaptation, Springer International Publishing, Cham, pp. 1947-86. 10.1007/978-3-030-72579-2_90
  • [26] S. Behera, R. Singh, R. Arora, N. K. Sharma, M. Shukla&S. Kumar. (2014). "Scope of algae as third generation biofuels", Front Bioeng Biotechnol Vol. 2 pp. 90. 10.3389/fbioe.2014.00090
  • [27] S. J. Tudge, A. Purvis&A. De Palma. (2021). "The impacts of biofuel crops on local biodiversity: a global synthesis", Biodiversity and Conservation Vol. 30 (11), pp. 2863-83. 10.1007/s10531-021-02232-5
  • [28] A. Demirbas. (2009). "Political, economic and environmental impacts of biofuels: A review", Applied Energy Vol. 86 pp. S108-S17. https://doi.org/10.1016/j.apenergy.2009.04.036
  • [29] E. Kocak, F. Bilgili, U. Bulut&S. Kuskaya. (2022). "Is ethanol production responsible for the increase in corn prices?", Renewable Energy Vol. 199 pp. 689-96. https://doi.org/10.1016/j.renene.2022.08.146
  • [30] M. O. d. S. Dias, R. Maciel Filho, P. E. Mantelatto, O. Cavalett, C. E. V. Rossell, A. Bonomi&M. R. L. V. Leal. (2015). "Sugarcane processing for ethanol and sugar in Brazil", Environmental Development Vol. 15 pp. 35-51. https://doi.org/10.1016/j.envdev.2015.03.004
  • [31] L. M. Rossi, J. M. R. Gallo, L. H. C. Mattoso, M. S. Buckeridge, P. Licence&D. T. Allen. (2021). "Ethanol from Sugarcane and the Brazilian Biomass-Based Energy and Chemicals Sector", ACS Sustainable Chemistry & Engineering Vol. 9 (12), pp. 4293-95. 10.1021/acssuschemeng.1c01678
  • [32] C. V. Hilário, J. C. C. Campos, A. M. d. O. Siqueira, M. d. O. Leite, M. A. Martins, R. F. Brito, I. A. Fetuga&K. Abderrahmane. (2024). "Physical- Chemical Properties of First-Generation Biofuel Aiming Application in Diesel Locomotive", Revista de Gestão Social e Ambiental Vol. 18 (5), pp. e05080. 10.24857/rgsa.v18n5-042
  • [33] H. K. Jeswani, A. Chilvers&A. Azapagic. (2020). "Environmental sustainability of biofuels: a review", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Vol. 476 (2243), pp. 20200351. doi:10.1098/rspa.2020.0351
  • [34] M. Acheampong, F. C. Ertem, B. Kappler&P. Neubauer. (2017). "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?", Renewable and Sustainable Energy Reviews Vol. 75 pp. 927-37. https://doi.org/10.1016/j.rser.2016.11.074
  • [35] M. R. Barr, R. Volpe&R. Kandiyoti. (2021). "Liquid biofuels from food crops in transportation – A balance sheet of outcomes", Chemical Engineering Science: X Vol. 10 pp. 100090. https://doi.org/10.1016/j.cesx.2021.100090
  • [36] J. A. Quintero, M. I. Montoya, O. J. Sánchez, O. H. Giraldo&C. A. Cardona. (2008). "Fuel ethanol production from sugarcane and corn: Comparative analysis for a Colombian case", Energy Vol. 33 (3), pp. 385-99. https://doi.org/10.1016/j.energy.2007.10.001
  • [37] H. Hosseini, A. Hajialimohammadi, I. Jafari Gavzan&M. Ali Hajimousa. (2023). "Numerical and experimental investigation on the effect of using blended gasoline-ethanol fuel on the performance and the emissions of the bi-fuel Iranian national engine", Fuel Vol. 337 pp. 127252. https://doi.org/10.1016/j.fuel.2022.127252
  • [38] B. M. Jenkins. (2014). Global Agriculture: Industrial Feedstocks for Energy and Materials, in: Van Alfen N K (Ed.), Encyclopedia of Agriculture and Food Systems, Academic Press, Oxford, pp. 461-98. https://doi.org/10.1016/B978-0-444-52512-3.00156-X
  • [39] S. Brahma, B. Nath, B. Basumatary, B. Das, P. Saikia, K. Patir&S. Basumatary. (2022). "Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production", Chemical Engineering Journal Advances Vol. 10 pp. 100284. https://doi.org/10.1016/j.ceja.2022.100284
  • [40] J. Nair, J. Deepthi, K. Kalyani&A. Professor. (2013). "STUDY OF BIODIESEL BLENDS AND EMISSION CHARACTERISTICS OF BIODIESEL", nternational journal of innovative research in science Engineering and Technology Vol. 3297 pp.
  • [41] J. Ruane, A. Sonnino&A. Agostini. (2010). "Bioenergy and the potential contribution of agricultural biotechnologies in developing countries", Biomass and Bioenergy Vol. 34 (10), pp. 1427-39. https://doi.org/10.1016/j.biombioe.2010.04.011
  • [42] S. Onuki, J. Koziel, H. Van Leeuwen, W. Jenks, D. Greweii&L. Cai. (2008). Ethanol production, purification, and analysis techniques: A review, 10.13031/2013.25186
  • [43] N. Sajjad, R. Orfali, S. Perveen, S. Rehman, A. Sultan, T. Akhtar, A. Nazir, G. Muhammad, T. Mehmood, S. Ghaffar, A. Al-Taweel, M. I. Jilani&M. Iqbal. (2022). "Biodiesel Production from Alkali-Catalyzed Transesterification of Tamarindus indica Seed Oil and Optimization of Process Conditions", Molecules Vol. 27 (10), pp. 10.3390/molecules27103230
  • [44] M. Jabeen, I. Razzaq, S. Noureen, S. U. Hussain, N. Aslam, A. Zafar, K. Mehmood&M. U. A. Khan. "Catalytic Performance of Newly Synthesized Heterocyclic Hydrazone Derivatives For Production of High Yield Neem Biodiesel", Journal of the Turkish Chemical Society Section A: Chemistry Vol. 11 (4), pp. 1565-80. 10.18596/jotcsa.1493074
  • [45] M. S. T. Amândio, J. M. S. Rocha&A. M. R. B. Xavier. (2023). "Enzymatic Hydrolysis Strategies for Cellulosic Sugars Production to Obtain Bioethanol from Eucalyptus globulus Bark", Fermentation Vol. 9 (3), pp. 241.
  • [46] J. Kong-Win Chang, X. Duret, V. Berberi, H. Zahedi-Niaki&J.-M. Lavoie. (2018). "Two-Step Thermochemical Cellulose Hydrolysis With Partial Neutralization for Glucose Production", Frontiers in Chemistry Vol. 6 pp. 10.3389/fchem.2018.00117
  • [47] A. Kumar, R. Deb&J. Singh. (2018). Bioethanol Production from Renewable Biomass by Yeast, pp. 427-48. 10.1007/978-981-13-0393-7_24
  • [48] M. M. El-Sheekh, M. Y. Bedaiwy, A. A. El-Nagar, M. ElKelawy&H. Alm-Eldin Bastawissi. (2022). "Ethanol biofuel production and characteristics optimization from wheat straw hydrolysate: Performance and emission study of DI-diesel engine fueled with diesel/biodiesel/ethanol blends", Renewable Energy Vol. 191 pp. 591-607. https://doi.org/10.1016/j.renene.2022.04.076
  • [49] T. N. Verma, P. Shrivastava, U. Rajak, G. Dwivedi, S. Jain, A. Zare, A. K. Shukla&P. Verma. (2021). "A comprehensive review of the influence of physicochemical properties of biodiesel on combustion characteristics, engine performance and emissions", Journal of Traffic and Transportation Engineering (English Edition) Vol. 8 (4), pp. 510-33. https://doi.org/10.1016/j.jtte.2021.04.006
  • [50] C. M. Igwebuike, S. Awad&Y. Andrès. (2024). "Renewable Energy Potential: Second-Generation Biomass as Feedstock for Bioethanol Production", Molecules Vol. 29 (7), pp. 1619.
  • [51] D. Gupta&S. K. Gaur. (2019). 19 - Carbon and biofuel footprinting of global production of biofuels, in: Verma D, Fortunati E, Jain S, Zhang X (Eds.), Biomass, Biopolymer-Based Materials, and Bioenergy, Woodhead Publishingpp. 449-81. https://doi.org/10.1016/B978-0-08-102426- 3.00019-9
  • [52] M. Jayakumar, K. Bizuneh Gebeyehu, L. Deso Abo, A. Wondimu Tadesse, B. Vivekanandan, V. Prabhu Sundramurthy, W. Bacha, V. Ashokkumar&G. Baskar. (2023). "A comprehensive outlook on topical processing methods for biofuel production and its thermal applications: Current advances, sustainability and challenges", Fuel Vol. 349 pp. 128690. https://doi.org/10.1016/j.fuel.2023.128690
  • [53] S. C. Bhatia. (2014). 26 - Issues relating to biofuels, in: Bhatia S C (Ed.), Advanced Renewable Energy Systems, Woodhead Publishing Indiapp. 688-718. https://doi.org/10.1016/B978-1-78242-269-3.50026-7
  • [54] I. Graça, J. M. Lopes, H. S. Cerqueira&M. F. Ribeiro. (2013). "Bio-oils Upgrading for Second Generation Biofuels", Industrial & Engineering Chemistry Research Vol. 52 (1), pp. 275-87. 10.1021/ie301714x
  • [55] M. Broda, D. J. Yelle&K. Serwańska. (2022). "Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions", Molecules Vol. 27 (24), pp. 10.3390/molecules27248717
  • [56] Z. Cheng. (2019). Lignocellulosic Ethanol: Technology and Economics, in: Yongseung Y (Ed.), Alcohol Fuels, IntechOpen, Rijeka, p. Ch. 3. 10.5772/intechopen.86701
  • [57] Y. Guo, G. Liu, Y. Ning, X. Li, S. Hu, J. Zhao&Y. Qu. (2022). "Production of cellulosic ethanol and value-added products from corn fiber", Bioresources and Bioprocessing Vol. 9 (1), pp. 81. 10.1186/s40643-022-00573-9
  • [58] L. Cherwoo, I. Gupta, G. Flora, R. Verma, M. Kapil, S. K. Arya, B. Ravindran, K. S. Khoo, S. K. Bhatia, S. W. Chang, C. Ngamcharussrivichai&V. Ashokkumar. (2023). "Biofuels an alternative to traditional fossil fuels: A comprehensive review", Sustainable Energy Technologies and Assessments Vol. 60 pp. 103503. https://doi.org/10.1016/j.seta.2023.103503
  • [59] D. Lachos-Perez, J. C. Martins-Vieira, J. Missau, K. Anshu, O. K. Siakpebru, S. K. Thengane, A. R. C. Morais, E. H. Tanabe&D. A. Bertuol. (2023). "Review on Biomass Pyrolysis with a Focus on Bio-Oil Upgrading Techniques", Analytica Vol. 4 (2), pp. 182-205.
  • [60] P. Basu&P. Kaushal. (2024). Chapter 13 - Energy and materials from biomass, in: Basu P, Kaushal P (Eds.), Biomass Gasification, Pyrolysis, and Torrefaction (Fourth Edition), Academic Presspp. 455-89. https://doi.org/10.1016/B978-0-443-13784-6.00011-1
  • [61] A. DemİRbaŞ. (2005). "Bioethanol from Cellulosic Materials: A Renewable Motor Fuel from Biomass", Energy Sources Vol. 27 (4), pp. 327-37. 10.1080/00908310390266643
  • [62] M. Wang, Z. Li, X. Fang, L. Wang&Y. Qu. (2012). "Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production", Adv Biochem Eng Biotechnol Vol. 128 pp. 1-24. 10.1007/10_2011_131
  • [63] T. Wang&X. Lü. (2021). Chapter 8 - Overcome saccharification barrier: Advances in hydrolysis technology, in: Lü X (Ed.), Advances in 2nd Generation of Bioethanol Production, Woodhead Publishingpp. 137-59. https://doi.org/10.1016/B978-0-12-818862-0.00005-4
  • [64] S. K. Soni, A. Sharma&R. Soni. (2023). "Microbial Enzyme Systems in the Production of Second Generation Bioethanol", Sustainability Vol. 15 (4), pp. 3590.
  • [65] M. Mohammadi, G. D. Najafpour, H. Younesi, P. Lahijani, M. H. Uzir&A. R. Mohamed. (2011). "Bioconversion of synthesis gas to second generation biofuels: A review", Renewable and Sustainable Energy Reviews Vol. 15 (9), pp. 4255-73. https://doi.org/10.1016/j.rser.2011.07.124
  • [66] T. Giertl, I. Vitázek, J. Gaduš, R. Kollárik&G. Przydatek. (2024). "Thermochemical Conversion of Biomass into 2nd Generation Biofuel", Processes Vol. 12 (12), pp. 2658.
  • [67] A. Mohanty, S. Ajmera, S. Chinnam, V. Kumar, R. K. Mishra&B. Acharya. (2024). "Pyrolysis of waste oils for biofuel production: An economic and life cycle assessment", Fuel Communications Vol. 18 pp. 100108. https://doi.org/10.1016/j.jfueco.2024.100108
  • [68] A. Molino, V. Larocca, S. Chianese&D. Musmarra. (2018). "Biofuels Production by Biomass Gasification: A Review", Energies Vol. 11 (4), pp. 811.
  • [69] E. Ocampo, V. V. Beltrán, E. A. Gómez, L. A. Ríos&D. Ocampo. (2023). "Hydrothermal liquefaction process: Review and trends", Current Research in Green and Sustainable Chemistry Vol. 7 pp. 100382. https://doi.org/10.1016/j.crgsc.2023.100382
  • [70] T. Bhaskar&A. Pandey. (2015). Chapter 1 - Advances in Thermochemical Conversion of Biomass—Introduction, in: Pandey A, Bhaskar T, Stöcker M, Sukumaran R K (Eds.), Recent Advances in Thermo-Chemical Conversion of Biomass, Elsevier, Boston, pp. 3-30. https://doi.org/10.1016/B978-0-444-63289-0.00001-6
  • [71] Y. Chisti. (2007). "Biodiesel from microalgae", Biotechnology Advances Vol. 25 (3), pp. 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  • [72] N. Rafa, S. F. Ahmed, I. A. Badruddin, M. Mofijur&S. Kamangar. (2021). "Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae", Frontiers in Energy Research Vol. 9 pp. 10.3389/fenrg.2021.749968
  • [73] K. Sudhakar, R. Mamat, M. Samykano, W. H. Azmi, W. F. W. Ishak&T. Yusaf. (2018). "An overview of marine macroalgae as bioresource", Renewable and Sustainable Energy Reviews Vol. 91 pp. 165-79. https://doi.org/10.1016/j.rser.2018.03.100
  • [74] S. Zhang, L. Zhang, G. Xu, F. Li&X. Li. (2022). "A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies", Frontiers in Microbiology Vol. 13 pp. 10.3389/fmicb.2022.970028
  • [75] N. Dwivedi&S. Dwivedi. (2019). Bio‐Oil Production from Algal Feedstock, pp. 351-71. 10.1002/9781119459866.ch11
  • [76] R. Bibi, M. Imran, S. Hussain, A. Ditta, S. Mahmood&A. Khalid. (2016). "Algal bioethanol production technology: A trend towards sustainable development", Renewable and Sustainable Energy Reviews Vol. 71 pp. 10.1016/j.rser.2016.12.126
  • [77] B. D. Wahlen, M. R. Morgan, A. T. McCurdy, R. M. Willis, M. D. Morgan, D. J. Dye, B. Bugbee, B. D. Wood&L. C. Seefeldt. (2013). "Biodiesel from Microalgae, Yeast, and Bacteria: Engine Performance and Exhaust Emissions", Energy & Fuels Vol. 27 (1), pp. 220-28. 10.1021/ef3012382
  • [78] A. Demirbas&M. Fatih Demirbas. (2011). "Importance of algae oil as a source of biodiesel", Energy Conversion and Management Vol. 52 (1), pp. 163-70. https://doi.org/10.1016/j.enconman.2010.06.055
  • [79] S. Tomar, S. Agarwal, H. Singh, R. Kumar, K. A. Qureshi, M. Jaremko, A.-H. Emwas&P. K. Rai. (2023). "Microalgae: A promising source for biofuel production", Biocatalysis and Agricultural Biotechnology Vol. 53 pp. 102877. https://doi.org/10.1016/j.bcab.2023.102877
  • [80] T. Chandrasekhar, D. Varaprasad, P. Gnaneswari, B. Swapna, K. Riazunnisa, V. Anu Prasanna, M. Korivi, Y.-J. Wee&V. R. Lebaka. (2023). "Algae: The Reservoir of Bioethanol", Fermentation Vol. 9 (8), pp. 712.
  • [81] K. Kusmiyati, A. Heratri, S. Kubikazari, A. Hidayat&H. Hadiyanto. (2020). "Hydrolysis of Microalgae Spirulina platensis, Chlorella sp., and Macroalgae Ulva lactuca for Bioethanol Production", International Energy Journal Vol. 20 (4), pp. 611-29.
  • [82] M. L. N. M. Carneiro, F. Pradelle, S. L. Braga, M. S. P. Gomes, A. R. F. A. Martins, F. Turkovics&R. N. C. Pradelle. (2017). "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)", Renewable and Sustainable Energy Reviews Vol. 73 pp. 632-53. https://doi.org/10.1016/j.rser.2017.01.152
  • [83] O. Adeniyi&A. Burluka. (2018). "Algae biofuel: Current status and future applications", Renewable and Sustainable Energy Reviews Vol. 90 pp. 10.1016/j.rser.2018.03.067
  • [84] S. Zhang, L. Zhang, G. Xu, F. Li&X. Li. (2022). "A review on biodiesel production from microalgae: Influencing parameters and recent advanced technologies", Front Microbiol Vol. 13 pp. 970028. 10.3389/fmicb.2022.970028
  • [85] N. Ravindranath, R. Mauvie, J. Fargione, J. Canadell, G. Berndes, J. Woods, H. Watson&J. Sathaye. (2009). Greenhouse gas implications of land use change and land conversion to biofuel crops, Cornell University Library's Initiatives in Publishing (CIP)
  • [86] A. F. Clarens, E. P. Resurreccion, M. A. White&L. M. Colosi. (2010). "Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks", Environmental Science & Technology Vol. 44 (5), pp. 1813-19. 10.1021/es902838n
  • [87] U. Singh, S. Banerjee&T. R. Hawkins. (2023). "Implications of CO2 Sourcing on the Life-Cycle Greenhouse Gas Emissions and Costs of Algae Biofuels", ACS Sustainable Chemistry & Engineering Vol. 11 (39), pp. 14435-44. 10.1021/acssuschemeng.3c02082
  • [88] H. Onyeaka, T. Miri, K. Obileke, A. Hart, C. Anumudu&Z. T. Al-Sharify. (2021). "Minimizing carbon footprint via microalgae as a biological capture", Carbon Capture Science & Technology Vol. 1 pp. 100007. https://doi.org/10.1016/j.ccst.2021.100007
  • [89] L. G. Ramírez Mérida&R. A. Rodríguez Padrón. (2023). "Application of microalgae in wastewater: opportunity for sustainable development", Frontiers in Environmental Science Vol. 11 pp. 10.3389/fenvs.2023.1238640
  • [90] V. Díaz, J. C. Leyva-Díaz, M. C. Almécija, J. M. Poyatos, M. del Mar Muñío&J. Martín-Pascual. (2022). "Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy", Bioresource Technology Vol. 363 pp. 127968. https://doi.org/10.1016/j.biortech.2022.127968
  • [91] Z. Shokravi, H. Shokravi, M. A. Aziz&H. Shokravi. (2019). "The fourth-generation biofuel: a systematic review on nearly two decades of research from 2008 to 2019", Fossil free fuels Vol. pp. 213-51.
  • [92] Z. Moravvej, M. A. Makarem&M. R. Rahimpour. (2019). Chapter 20 - The fourth generation of biofuel, in: Basile A, Dalena F (Eds.), Second and Third Generation of Feedstocks, Elsevierpp. 557-97. https://doi.org/10.1016/B978-0-12-815162-4.00020-3
  • [93] B. Abdullah, S. A. F. a. Syed Muhammad, Z. Shokravi, S. Bin Ismail, K. Kassim, N. A. Bin Nik Mahmood&M. M. A. Aziz. (2019). "Fourth generation biofuel: A review on risks and mitigation strategies", Renewable and Sustainable Energy Reviews Vol. 107 pp. 37-50. 10.1016/j.rser.2019.02.018
  • [94] J. R. Ziolkowska. (2020). "Biofuels technologies: An overview of feedstocks, processes, and technologies", Biofuels for a more sustainable future Vol. pp. 1-19.
  • [95] R. K. Rathour, V. Ahuja, R. K. Bhatia&A. K. Bhatt. (2018). "Biobutanol: New era of biofuels", International Journal of Energy Research Vol. 42 (15), pp. 4532-45.
  • [96] S. Xie. (2024). "Bio-based Isobutanol: An Emerging Attractive Biofuel", Science and Engineering Vol. 3 (3), pp. 51-60.
  • [97] A. Röttig, L. Wenning, D. Bröker&A. Steinbüchel. (2010). "Fatty acid alkyl esters: perspectives for production of alternative biofuels", Applied microbiology and biotechnology Vol. 85 pp. 1713-33.
  • [98] D. Bolonio, M.-J. García-Martínez, M. F. Ortega, M. Lapuerta, J. Rodríguez-Fernández&L. Canoira. (2019). "Fatty acid ethyl esters (FAEEs) obtained from grapeseed oil: A fully renewable biofuel", Renewable Energy Vol. 132 pp. 278-83.
  • [99] A. Dubini&M. L. Ghirardi. (2015). "Engineering photosynthetic organisms for the production of biohydrogen", Photosynthesis research Vol. 123 pp. 241-53.
  • [100] W. Khetkorn, N. Khanna, A. Incharoensakdi&P. Lindblad. (2013). "Metabolic and genetic engineering of cyanobacteria for enhanced hydrogen production", Biofuels Vol. 4 (5), pp. 535-61.
  • [101] P. Kallio, A. Pásztor, K. Thiel, M. K. Akhtar&P. R. Jones. (2014). "An engineered pathway for the biosynthesis of renewable propane", Nature communications Vol. 5 (1), pp. 4731.
  • [102] L. Jiménez‐Díaz, A. Caballero, N. Pérez‐Hernández&A. Segura. (2017). "Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives", Microbial biotechnology Vol. 10 (1), pp. 103-24.
  • [103] K. C. Pagnoncelli, A. R. Pereira, G. C. Sedenho, T. Bertaglia&F. N. Crespilho. (2018). "Ethanol generation, oxidation and energy production in a cooperative bioelectrochemical system", Bioelectrochemistry Vol. 122 pp. 11-25.
  • [104] S. S. Lakhawat, N. Malik, V. Kumar, S. Kumar&P. K. Sharma. (2022). "Implications of CRISPR-Cas9 in developing next generation biofuel: a minireview", Current Protein and Peptide Science Vol. 23 (9), pp. 574-84.
  • [105] K. Shabestary, H. P. Hernández, R. Miao, E. Ljungqvist, O. Hallman, E. Sporre, F. B. Dos Santos&E. P. Hudson. (2021). "Cycling between growth and production phases increases cyanobacteria bioproduction of lactate", Metabolic Engineering Vol. 68 pp. 131-41.
  • [106] N. K. Mund, Y. Liu&S. Chen. (2022). "Advances in metabolic engineering of cyanobacteria for production of biofuels", Fuel Vol. 322 pp. 124117.
  • [107] G. Torzillo, A. Scoma, C. Faraloni&L. Giannelli. (2015). "Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii", Critical reviews in biotechnology Vol. 35 (4), pp. 485-96.
  • [108] C. Jansson. (2012). "Metabolic engineering of cyanobacteria for direct conversion of CO 2 to hydrocarbon biofuels", Progress in botany 73 Vol. pp. 81-93.
  • [109] M. Ravichandran, T. T. A. Kumar&R. Dineshkumar. (2024). "Carbon dioxide capture, sequestration, and utilization models for carbon management and transformation", Environmental Science and Pollution Research Vol. 31 (44), pp. 55895-916.
  • [110] T. J. Johnson, A. Jahandideh, M. D. Johnson, K. H. Fields, J. W. Richardson, K. Muthukumarappan, Y. Cao, Z. Gu, C. Halfmann&R. Zhou. (2016). "Producing next-generation biofuels from filamentous cyanobacteria: an economic feasibility analysis", Algal research Vol. 20 pp. 218-28.
  • [111] K. Rabaey&R. A. Rozendal. (2010). "Microbial electrosynthesis—revisiting the electrical route for microbial production", Nature reviews microbiology Vol. 8 (10), pp. 706-16.
  • [112] S. Rajagopalan, R. P. Datar&R. S. Lewis. (2002). "Formation of ethanol from carbon monoxide via a new microbial catalyst", Biomass and bioenergy Vol. 23 (6), pp. 487-93.
  • [113] M. Mohammadi, A. R. Mohamed, G. D. Najafpour, H. Younesi&M. H. Uzir. (2014). "Kinetic studies on fermentative production of biofuel from synthesis gas using Clostridium ljungdahlii", The Scientific World Journal Vol. 2014 (1), pp. 910590.
  • [114] J. Bertsch&V. Müller. (2015). "CO metabolism in the acetogen Acetobacterium woodii", Applied and environmental microbiology Vol. 81 (17), pp. 5949-56.
  • [115] V. W. Soo, M. J. McAnulty, A. Tripathi, F. Zhu, L. Zhang, E. Hatzakis, P. B. Smith, S. Agrawal, H. Nazem-Bokaee&S. Gopalakrishnan. (2016). "Reversing methanogenesis to capture methane for liquid biofuel precursors", Microbial cell factories Vol. 15 pp. 1-14.
  • [116] M. Mitsumori, H. Matsui, K. Tajima, T. Shinkai, A. Takenaka, S. E. Denman&C. S. McSweeney. (2014). "Effect of bromochloromethane and fumarate on phylogenetic diversity of the formyltetrahydrofolate synthetase gene in bovine rumen", Animal Science Journal Vol. 85 (1), pp. 25-31.
  • [117] C. Halfmann, L. Gu, W. Gibbons&R. Zhou. (2014). "Genetically engineering cyanobacteria to convert CO 2, water, and light into the long-chain hydrocarbon farnesene", Applied microbiology and biotechnology Vol. 98 pp. 9869-77.
  • [118] A. Mittal&S. R. Decker. (2013). "Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels", 3 Biotech Vol. 3 (5), pp. 341-43. 10.1007/s13205-013-0122-8
  • [119] K. Hanaki&J. Portugal-Pereira. (2018). The Effect of Biofuel Production on Greenhouse Gas Emission Reductions, in: Takeuchi K, Shiroyama H, Saito O, Matsuura M (Eds.), Biofuels and Sustainability: Holistic Perspectives for Policy-making, Springer Japan, Tokyo, pp. 53-71. 10.1007/978-4-431-54895-9_6
  • [120] C. Bessou, F. Ferchaud, B. Gabrielle&B. Mary. (2011). Biofuels, Greenhouse Gases and Climate Change, in: Lichtfouse E, Hamelin M, Navarrete M, Debaeke P (Eds.), Sustainable Agriculture Volume 2, Springer Netherlands, Dordrecht, pp. 365-468. 10.1007/978-94-007-0394-0_20
  • [121] S. Litvak&O. Litvak. (2020). "Some aspects of reducing greenhouse gas emissions by using biofuels", Journal of Ecological Engineering Vol. 21 (8), pp. 198-206.
  • [122] K. Hanaki&J. Portugal-Pereira. (2018). "The effect of biofuel production on greenhouse gas emission reductions", Biofuels and sustainability: holistic perspectives for policy-making Vol. pp. 53-71.
  • [123] E. Hanff, M.-H. Dabat&J. Blin. (2011). "Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso", Renewable and Sustainable Energy Reviews Vol. 15 (5), pp. 2199-209. https://doi.org/10.1016/j.rser.2011.01.014
  • [124] A. Demirbas. (2008). "Biofuels sources, biofuel policy, biofuel economy and global biofuel projections", Energy Conversion and Management Vol. 49 (8), pp. 2106-16. https://doi.org/10.1016/j.enconman.2008.02.020
  • [125] P. T. Sekoai&K. O. Yoro. (2016). "Biofuel Development Initiatives in Sub-Saharan Africa: Opportunities and Challenges", Climate Vol. 4 (2), pp. 33.
  • [126] B. Amigun, R. Sigamoney&H. von Blottnitz. (2008). "Commercialisation of biofuel industry in Africa: A review", Renewable and Sustainable Energy Reviews Vol. 12 (3), pp. 690-711. https://doi.org/10.1016/j.rser.2006.10.019
  • [127] Y. Subramaniam&T. A. Masron. (2021). "The impact of economic globalization on biofuel in developing countries", Energy Conversion and Management: X Vol. 10 pp. 100064. https://doi.org/10.1016/j.ecmx.2020.100064
  • [128] P. Bórawski, A. Bełdycka-Bórawska, E. J. Szymańska, K. J. Jankowski, B. Dubis&J. W. Dunn. (2019). "Development of renewable energy sources market and biofuels in The European Union", Journal of Cleaner Production Vol. 228 pp. 467-84. https://doi.org/10.1016/j.jclepro.2019.04.242
  • [129] L. P. Koh&J. Ghazoul. (2008). "Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities", Biological Conservation Vol. 141 (10), pp. 2450-60. https://doi.org/10.1016/j.biocon.2008.08.005
  • [130] H. Zentou, N. S. Rosli, C. H. Wen, K. Abdul Azeez&C. Gomes. (2019). "The viability of biofuels in developing countries: Successes, failures, and challenges", Iranian Journal of Chemistry and Chemical Engineering Vol. 38 (4), pp. 173-82.
  • [131] L. Tao&A. Aden. (2009). "The economics of current and future biofuels", In Vitro Cellular & Developmental Biology-Plant Vol. 45 pp. 199-217.
  • [132] R. Luque, L. Herrero-Davila, J. M. Campelo, J. H. Clark, J. M. Hidalgo, D. Luna, J. M. Marinas&A. A. Romero. (2008). "Biofuels: a technological perspective", Energy & Environmental Science Vol. 1 (5), pp. 542-64. 10.1039/B807094F
  • [133] N. Gaurav, S. Sivasankari, G. S. Kiran, A. Ninawe&J. Selvin. (2017). "Utilization of bioresources for sustainable biofuels: A Review", Renewable and Sustainable Energy Reviews Vol. 73 pp. 205-14. https://doi.org/10.1016/j.rser.2017.01.070
  • [134] I. Kralova&J. Sjöblom. (2010). "Biofuels–Renewable Energy Sources: A Review", Journal of Dispersion Science and Technology Vol. 31 (3), pp. 409-25. 10.1080/01932690903119674
  • [135] H. Xu, L. Ou, Y. Li, T. R. Hawkins&M. Wang. (2022). "Life Cycle Greenhouse Gas Emissions of Biodiesel and Renewable Diesel Production in the United States", Environmental Science & Technology Vol. 56 (12), pp. 7512-21. 10.1021/acs.est.2c00289
  • [136] Y. Zhang, M. A. Dubé, D. D. McLean&M. Kates. (2003). "Biodiesel production from waste cooking oil: 1. Process design and technological assessment", Bioresource Technology Vol. 89 (1), pp. 1-16. https://doi.org/10.1016/S0960-8524(03)00040-3
  • [137] A. Jernigan, M. May, T. Potts, B. Rodgers, J. Hestekin, P. I. May, J. McLaughlin, R. R. Beitle&C. Hestekin. (2013). "Effects of drying and storage on year-round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation", Environmental Progress & Sustainable Energy Vol. 32 (4), pp. 1013-22. https://doi.org/10.1002/ep.11852
  • [138] R. Bhateria&R. Dhaka. (2014). "Algae as biofuel", Biofuels Vol. 5 (6), pp. 607-31. 10.1080/17597269.2014.1003701
  • [139] S. Paul, A. Panja&P. Jha. (2025). Chapter 15 - Hindrances and drawbacks of the existing policies and roadmap for sustainable production of biofuels: An Indian scenario, in: Zhu D, Dar M A, Shahnawaz M (Eds.), Biofuels and Sustainability, Elsevier Science Ltdpp. 237-52. https://doi.org/10.1016/B978-0-443-21433-2.00007-4
  • [140] G. Pulighe, G. Bonati, M. Colangeli, M. M. Morese, L. Traverso, F. Lupia, C. Khawaja, R. Janssen&F. Fava. (2019). "Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the Mediterranean regions", Renewable and Sustainable Energy Reviews Vol. 103 pp. 58- 70. https://doi.org/10.1016/j.rser.2018.12.043
  • [141] V. Kamperidou, P. Terzopoulou&I. Barboutis. (2021). "Marginal lands providing tree‐crop biomass as feedstock for solid biofuels", Biofuels, Bioproducts and Biorefining Vol. 15 (5), pp. 1395-405.
  • [142] M. A. Mehmood, M. Ibrahim, U. Rashid, M. Nawaz, S. Ali, A. Hussain&M. Gull. (2017). "Biomass production for bioenergy using marginal lands", Sustainable Production and Consumption Vol. 9 pp. 3-21. https://doi.org/10.1016/j.spc.2016.08.003
  • [143] R. Slade&A. Bauen. (2013). "Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects", Biomass and Bioenergy Vol. 53 pp. 29-38. https://doi.org/10.1016/j.biombioe.2012.12.019
  • [144] J. A. Mathews. (2008). "Carbon-negative biofuels", Energy Policy Vol. 36 (3), pp. 940-45. https://doi.org/10.1016/j.enpol.2007.11.029
  • [145] M. Sarkar&B. Sarkar. (2020). "How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system?", Journal of Cleaner Production Vol. 262 pp. 121200. https://doi.org/10.1016/j.jclepro.2020.121200
  • [146] L. M. Verdade, C. I. Piña&L. M. Rosalino. (2015). "Biofuels and biodiversity: Challenges and opportunities", Environmental Development Vol. 15 pp. 64-78. https://doi.org/10.1016/j.envdev.2015.05.003
  • [147] A. Demirbas. (2009). "Biofuels securing the planet’s future energy needs", Energy Conversion and Management Vol. 50 (9), pp. 2239-49. https://doi.org/10.1016/j.enconman.2009.05.010
  • [148] J. Kosinkova, A. Doshi, J. Maire, Z. Ristovski, R. Brown&T. J. Rainey. (2015). "Measuring the regional availability of biomass for biofuels and the potential for microalgae", Renewable and Sustainable Energy Reviews Vol. 49 pp. 1271-85. https://doi.org/10.1016/j.rser.2015.04.084
  • [149] H. Yang, Y. Zhou&J. Liu. (2009). "Land and water requirements of biofuel and implications for food supply and the environment in China", Energy Policy Vol. 37 (5), pp. 1876-85. https://doi.org/10.1016/j.enpol.2009.01.035
  • [150] P. Moodley. (2021). 1 - Sustainable biofuels: opportunities and challenges, in: Ray R C (Ed.), Sustainable Biofuels, Academic Presspp. 1-20. https://doi.org/10.1016/B978-0-12-820297-5.00003-7
  • [151] N. Ben Fradj, P. A. Jayet&P. Aghajanzadeh-Darzi. (2016). "Competition between food, feed, and (bio)fuel: A supply-side model based assessment at the European scale", Land Use Policy Vol. 52 pp. 195-205. https://doi.org/10.1016/j.landusepol.2015.12.027
  • [152] A. Datta, A. Hossain&S. Roy. (2019). "An overview on biofuels and their advantages and disadvantages", Vol.
  • [153] A. A. Lashitew. (2011). "Competition between food and biofuel production in Ethiopia: a partial equilibrium analysis", Biofuels Vol. 2 (6), pp. 611- 27. 10.4155/bfs.11.139
  • [154] R. Herrmann, C. Jumbe, M. Bruentrup&E. Osabuohien. (2018). "Competition between biofuel feedstock and food production: Empirical evidence from sugarcane outgrower settings in Malawi", Biomass and Bioenergy Vol. 114 pp. 100-11. https://doi.org/10.1016/j.biombioe.2017.09.002
  • [155] R. Ramadhan, A. Mori&O. S. Abdoellah. (2023). Biofuels Development and Indirect Deforestation, in: Triyanti A, Indrawan M, Nurhidayah L, Marfai M A (Eds.), Environmental Governance in Indonesia, Springer International Publishing, Cham, pp. 167-84.10.1007/978-3-031-15904-6_10
  • [156] D. Keles, J. Choumert-Nkolo, P. Combes Motel&E. Nazindigouba Kéré. (2018). "Does the expansion of biofuels encroach on the forest?", Journal of Forest Economics Vol. 33 pp. 75-82. https://doi.org/10.1016/j.jfe.2018.11.001
  • [157] P. M. F. Elshout, R. van Zelm, M. A. J. Huijbregts, Z. Steinmann&M. van der Velde. (2019). "Global relative species loss due to first-generation biofuel production for the transport sector", Glob Change Biol Bioenergy Vol. 11 (6), pp. 763-72. 10.1111/gcbb.12597
  • [158] Y. Gao, M. Skutsch, R. Drigo, P. Pacheco&O. Masera. (2011). "Assessing deforestation from biofuels: Methodological challenges", Applied Geography Vol. 31 (2), pp. 508-18. https://doi.org/10.1016/j.apgeog.2010.10.007
  • [159] Monteiro de Carvalho, S. Silveira, E. L. L. Rovere&A. Y. Iwama. (2015). "Deforested and degraded land available for the expansion of palm oil for biodiesel in the state of Pará in the Brazilian Amazon", Renewable and Sustainable Energy Reviews Vol. 44 pp. 867-76. https://doi.org/10.1016/j.rser.2015.01.026
  • [160] P. K. R. Nair, S. K. Saha, V. D. Nair&S. G. Haile. (2011). "Potential for greenhouse gas emissions from soil carbon stock following biofuel cultivation on degraded lands", Land Degradation & Development Vol. 22 (4), pp. 395-409. https://doi.org/10.1002/ldr.1016
  • [161] Y. Gao, M. Skutsch&O. Masera. (2012). "The challenges of estimating tropical deforestation due to biofuel expansion", Socioeconomic and Environmental Impacts of Biofuels: Evidence from Developing Nations Vol. pp. 90.
  • [162] M. Khanna, C. L. Crago&M. Black. (2011). "Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy", Interface Focus Vol. 1 (2), pp. 233-47. 10.1098/rsfs.2010.0016
  • [163] M. A. Delucchi. (2010). "Impacts of biofuels on climate change, water use, and land use", Annals of the New York Academy of Sciences Vol. 1195 (1), pp. 28-45. https://doi.org/10.1111/j.1749-6632.2010.05457.x
  • [164] M. J. Mintoo&R. Kousar. (2025). Chapter 18 - Impact of advanced biofuels on water resources, in: Zhu D, DarM A, Shahnawaz M (Eds.), Biofuels and Sustainability, Elsevier Science Ltdpp. 283-302.https://doi.org/10.1016/B978-0-443-21433-2.00023-2
  • [165] R. Dominguez-Faus, S. E. Powers, J. G. Burken&P. J. Alvarez. (2009). "The Water Footprint of Biofuels: A Drink or Drive Issue?", Environmental Science & Technology Vol. 43 (9), pp. 3005-10. 10.1021/es802162x
  • [166] H. H. Waseem, A. El Zerey-Belaskri, F. Nadeem&I. Yaqoob. (2016). "The downside of biodiesel fuel–a review", Int. J. Chem. Biochem. Sci Vol. 9 pp. 97-106.
  • [167] E. Engelhaupt, Perspective: biofueling water problems, ACS Publications, 2007.
  • [168] C. S. Chen, Y.-Y. Shu, S.-H. Wu&C.-J. Tien. (2015). "Assessing soil and groundwater contamination from biofuel spills", Environmental Science: Processes & Impacts Vol. 17 (3), pp. 533-42. 10.1039/C4EM00443D
  • [169] X. Zhang, S. Yan, R. D. Tyagi, R. Y. Surampalli&J. R. Valéro. (2016). "Energy balance of biofuel production from biological conversion of crude glycerol", Journal of Environmental Management Vol. 170 pp. 169-76. https://doi.org/10.1016/j.jenvman.2015.09.031
  • [170] J. Fargione, J. Hill, D. Tilman, S. Polasky&P. Hawthorne. (2008). "Land Clearing and the Biofuel Carbon Debt", Science Vol. 319 (5867), pp. 1235- 38.
  • [171] W. Stafford, G. Lotter, G. Von Maltitz&A. Brent. (2018). "Biofuels technology development in Southern Africa", Development Southern Africa Vol. 36 pp. 1-20. 10.1080/0376835X.2018.1481732
  • [172] S. de Jong, R. Hoefnagels, E. Wetterlund, K. Pettersson, A. Faaij&M. Junginger. (2017). "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations", Applied Energy Vol. 195 pp. 1055-70. https://doi.org/10.1016/j.apenergy.2017.03.109
  • [173] W. E. Mabee. (2007). Policy Options to Support Biofuel Production, in: Olsson L (Ed.), Biofuels, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 329-57.10.1007/10_2007_059
  • [174] A. P. Saravanan, A. Pugazhendhi&T. Mathimani. (2020). "A comprehensive assessment of biofuel policies in the BRICS nations: Implementation, blending target and gaps", Fuel Vol. 272 pp. 117635. https://doi.org/10.1016/j.fuel.2020.117635
  • [175] T. D. Searchinger. (2009). "Government policies & drivers of world biofuels, sustainability criteria, certification proposals & their limitations", Vol. pp.
  • [176] D. R. D. Aguiar, F. Taheripour&D. A. L. Silva. (2025). "Ethanol fuel in Brazil: policies and carbon emission avoidance", Biofuels Vol. 16 (3), pp. 248-58. 10.1080/17597269.2024.2405765
  • [177] T. J. Lark, N. P. Hendricks, A. Smith, N. Pates, S. A. Spawn-Lee, M. Bougie, E. G. Booth, C. J. Kucharik&H. K. Gibbs. (2022). "Environmental outcomes of the US Renewable Fuel Standard", Proceedings of the National Academy of Sciences Vol. 119 (9), pp. e2101084119. doi:10.1073/pnas.2101084119
  • [178] G. E. Lade, C.-Y. Cynthia Lin Lawell&A. Smith. (2018). "Designing Climate Policy: Lessons from the Renewable Fuel Standard and the Blend Wall", American Journal of Agricultural Economics Vol. 100 (2), pp. 585-99. https://doi.org/10.1093/ajae/aax092
  • [179] S. Prasad, K. K. Yadav, S. Kumar, P. Pandita, J. K. Bhutto, M. A. Alreshidi, B. Ravindran, Z. M. Yaseen, S. M. Osman&M. M. S. Cabral-Pinto. (2024). "Review on biofuel production: Sustainable development scenario, environment, and climate change perspectives − A sustainable approach", Journal of Environmental Chemical Engineering Vol. 12 (2), pp. 111996. https://doi.org/10.1016/j.jece.2024.111996
  • [180] J. Kuriakose, C. Jones, K. Anderson, C. McLachlan&J. Broderick. (2022). "What does the Paris climate change agreement mean for local policy? Downscaling the remaining global carbon budget to sub-national areas", Renewable and Sustainable Energy Transition Vol. 2 pp. 100030. https://doi.org/10.1016/j.rset.2022.100030
  • [181] S. E. M. Cesar de Oliveira, J. C. Visentin, B. F. Pavani, P. D. Branco, M. de Maria&R. Loyola. (2024). "The European Union-Mercosur Free Trade Agreement as a tool for environmentally sustainable land use governance", Environmental Science & Policy Vol. 161 pp. 103875. https://doi.org/10.1016/j.envsci.2024.103875
  • [182] M. C. M. van Tol, J. A. Moncada, Z. Lukszo&M. Weijnen. (2021). "Modelling the interaction between policies and international trade flows for liquid biofuels: an agent-based modelling approach", Energy Policy Vol. 149 pp. 112021. https://doi.org/10.1016/j.enpol.2020.112021
  • [183] M. M. Akrofi, M. Okitasari&R. Kandpal. (2022). "Recent trends on the linkages between energy, SDGs and the Paris Agreement: a review of policybased studies", Discover Sustainability Vol. 3 (1), pp. 32. 10.1007/s43621-022-00100-y
  • [184] M. A. Oehlschlaeger, H. Wang&M. N. Sexton. (2013). "Prospects for Biofuels: A Review", Journal of Thermal Science and Engineering Applications Vol. 5 (2), pp. 10.1115/1.4023602
  • [185] R. González-López. (2021). "Why energy return on energy investment is not useful for policy", Energy Research & Social Science Vol. 74 pp. 101915. https://doi.org/10.1016/j.erss.2021.101915
  • [186] C. Wang, L. Zhang, Y. Chang&M. Pang. (2021). "Energy return on investment (EROI) of biomass conversion systems in China: Meta-analysis focused on system boundary unification", Renewable and Sustainable Energy Reviews Vol. 137 pp. 110652. https://doi.org/10.1016/j.rser.2020.110652
  • [187] C. A. S. Hall, J. G. Lambert&S. B. Balogh. (2014). "EROI of different fuels and the implications for society", Energy Policy Vol. 64 pp. 141-52. https://doi.org/10.1016/j.enpol.2013.05.049
  • [188] W. Prananta&I. Kubiszewski. (2021). "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)", Energies Vol. 14 (10), pp. 2803.
  • [189] G. Chiriboga, A. De La Rosa, C. Molina, S. Velarde&G. Carvajal C. (2020). "Energy Return on Investment (EROI) and Life Cycle Analysis (LCA) of biofuels in Ecuador", Heliyon Vol. 6 (6), pp. e04213. https://doi.org/10.1016/j.heliyon.2020.e04213
  • [190] A. Kalinichenko&V. Havrysh. (2019). "Feasibility study of biogas project development: Technology maturity, feedstock, and utilization pathway", Archives of Environmental Protection Vol. 45 pp. 68-83. 10.24425/aep.2019.126423
  • [191] O. Arodudu, A. Voinov&I. van Duren. (2013). "Assessing bioenergy potential in rural areas – A NEG-EROEI approach", Biomass and Bioenergy Vol. 58 pp. 350-64. https://doi.org/10.1016/j.biombioe.2013.07.020
  • [192] M. A. Elsayed, R. Matthews&N. Mortimer, Carbon and Energy Balances for a Range of Biofuels Options, Carbon and Energy Balances for a Range of Biofuels Options, Resources Research Unit, Sheffield Hallam University, 2003, p. 25 + Appendices.
  • [193] E. Font de Mora, C. Torres&A. Valero. (2012). "Assessment of biodiesel energy sustainability using the exergy return on investment concept", Energy Vol. 45 (1), pp. 474-80. https://doi.org/10.1016/j.energy.2012.02.072
  • [194] D. Pimentel&T. W. Patzek. (2005). "Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower", Natural Resources Research Vol. 14 (1), pp. 65-76. 10.1007/s11053-005-4679-8
  • [195] L. Kallivroussis, A. Natsis&G. Papadakis. (2002). "RD—Rural Development: The Energy Balance of Sunflower Production for Biodiesel in Greece", Biosystems Engineering Vol. 81 (3), pp. 347-54. https://doi.org/10.1006/bioe.2001.0021
  • [196] E. L. Garza, The Energy Return!on invested of Biodiesel in Vermont, Rubenstein School of Environment!and Natural Resources, Burlington, VT, 2011, p. 25.
  • [197] J. Freise. (2011). "The EROI of Conventional Canadian Natural Gas Production", Sustainability Vol. 3 (11), pp. 2080-104.
  • [198] H. Sahin, A. A. Solomon, A. Aghahosseini&C. Breyer. (2024). "Systemwide energy return on investment in a sustainable transition towards net zero power systems", Nature Communications Vol. 15 (1), pp. 208. 10.1038/s41467-023-44232-9
  • [199] V. Court&F. Fizaine. (2017). "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions", Ecological Economics Vol. 138 pp. 145-59. https://doi.org/10.1016/j.ecolecon.2017.03.015
  • [200] M. Buchanan. (2019). "Energy costs", Nature Physics Vol. 15 (6), pp. 520-20. 10.1038/s41567-019-0549-x
  • [201] R. S. Atlason&R. Unnthorsson. (2014). "Energy return on investment of hydroelectric power generation calculated using a standardised methodology", Renewable Energy Vol. 66 pp. 364-70. https://doi.org/10.1016/j.renene.2013.12.029
  • [202] E. Aramendia, P. E. Brockway, P. G. Taylor, J. B. Norman, M. K. Heun&Z. Marshall. (2024). "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems", Nature Energy Vol. 9 (7), pp. 803-16. 10.1038/s41560-024-01518-6
  • [203] C. Cleveland&P. Endres. (2010). "Meta-Analysis of Net Energy Return for Wind Power Systems", Renewable Energy Vol. 35 pp. 218-25. 10.1016/j.renene.2009.01.012
  • [204] D. J. Murphy, M. Raugei, M. Carbajales-Dale&B. Rubio Estrada. (2022). "Energy Return on Investment of Major Energy Carriers: Review and Harmonization", Sustainability Vol. 14 (12), pp. 7098.
  • [205] J. Dumas, A. Dubois, P. Thiran, P. Jacques, F. Contino, B. Cornélusse&G. Limpens. (2022). "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium", Biophysical Economics and Sustainability Vol. 7 (4), pp. 12. 10.1007/s41247-022-00106-0
  • [206] R. V. Asase, Q. N. Okechukwu&M. N. Ivantsova. (2024). "Biofuels: present and future", Environment, Development and Sustainability Vol. pp. 10.1007/s10668-024-04992-w
  • [207] H. Mohammadi&J. Saddler. "Biofuel policies used by IEA Bioenergy Task 39 countries: the transition to using the carbon intensity (CI) of biofuels to set targets", Biofuels, Bioproducts and Biorefining Vol. n/a (n/a), pp. https://doi.org/10.1002/bbb.2732
  • [208] R. A. Lee&J.-M. Lavoie. (2013). "From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity", Animal Frontiers Vol. 3 (2), pp. 6-11. 10.2527/af.2013-0010
  • [209] B. Wang, Z. J. Ting&M. Zhao. (2024). "Sustainable aviation fuels: Key opportunities and challenges in lowering carbon emissions for aviation industry", Carbon Capture Science & Technology Vol. 13 pp. 100263. https://doi.org/10.1016/j.ccst.2024.100263
  • [210] R. Johansson, S. Meyer, J. Whistance, W. Thompson&D. Debnath. (2020). "Greenhouse gas emission reduction and cost from the United States biofuels mandate", Renewable and Sustainable Energy Reviews Vol. 119 pp. 109513. https://doi.org/10.1016/j.rser.2019.109513
  • [211] Y. Subramaniam, T. A. Masron&N. H. N. Azman. (2020). "Biofuels, environmental sustainability, and food security: A review of 51 countries", Energy Research & Social Science Vol. 68 pp. 101549. https://doi.org/10.1016/j.erss.2020.101549
  • [212] D. J. Murphy. (2008). "Future prospects for biofuels", Chimica Oggi Vol. 26 (1), pp. 14.
  • [213] F. Hartley, v. S. Dirk, T. Emilio&C. and Arndt. (2019). "Economic impacts of developing a biofuel industry in Mozambique", Development Southern Africa Vol. 36 (2), pp. 233-49. 10.1080/0376835X.2018.1548962
  • [214] K. Araújo, D. Mahajan, R. Kerr&M. d. Silva. (2017). "Global Biofuels at the Crossroads: An Overview of Technical, Policy, and Investment Complexities in the Sustainability of Biofuel Development", Agriculture Vol. 7 (4), pp. 32.
  • [215] M. Wang, J. Han, J. B. Dunn, H. Cai&A. Elgowainy. (2012). "Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use", Environmental Research Letters Vol. 7 (4), pp. 045905. 10.1088/1748-9326/7/4/045905
  • [216] J. Popp, Z. Lakner, M. Harangi-Rákos&M. Fári. (2014). "The effect of bioenergy expansion: Food, energy, and environment", Renewable and Sustainable Energy Reviews Vol. 32 pp. 559-78. https://doi.org/10.1016/j.rser.2014.01.056
  • [217] H. K. Ismaeel, T. M. Albayati, F. T. Al-Sudani, I. K. Salih, H. A. Dhahad, N. M. C. Saady, S. Zendehboudi&I. M. R. Fattah. (2024). "The role of catalysts in biodiesel production as green energy applications: A review of developments and prospects", Chemical Engineering Research and Design Vol. 204 pp. 636-53. https://doi.org/10.1016/j.cherd.2024.02.048
  • [218] A. K. Endalew, Y. Kiros&R. Zanzi. (2011). "Inorganic heterogeneous catalysts for biodiesel production from vegetable oils", Biomass and Bioenergy Vol. 35 (9), pp. 3787-809. https://doi.org/10.1016/j.biombioe.2011.06.011
  • [219] M. Jabeen, I. Razzaq, S. Noureen, S. U. Hussain, N. Aslam, A. Zafar, K. Mehmood&M. U. A. Khan. (2024). "Catalytic Performance of Newly Synthesized Heterocyclic Hydrazone Derivatives For Production of High Yield Neem Biodiesel", Journal of the Turkish Chemical Society Section A: Chemistry Vol. 11 (4), pp. 1565-80. 10.18596/jotcsa.1493074
  • [220] A. Getachew Alemu&T. Alemu. (2023). Recent Developments in Catalysts for Biodiesel Production Applications, in: Fattah I M R (Ed.), Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations, IntechOpen, Rijeka, 10.5772/intechopen.109483
  • [221] J. Nyika&M. Dinka. (2022). "Converting solid waste materials to Energy: A review", Materials Today: Proceedings Vol. 57 pp. 964-68. https://doi.org/10.1016/j.matpr.2022.03.240
  • [222] E. Newes, C. M. Clark, L. Vimmerstedt, S. Peterson, D. Burkholder, D. Korotney&D. Inman. (2022). "Ethanol production in the United States: The roles of policy, price, and demand", Energy Policy Vol. 161 pp. 112713. https://doi.org/10.1016/j.enpol.2021.112713
  • [223] S. Cross, A. J. Welfle, P. Thornley, S. Syri&M. Mikaelsson. (2021). "Bioenergy development in the UK & Nordic countries: A comparison of effectiveness of support policies for sustainable development of the bioenergy sector", Biomass and Bioenergy Vol. 144 pp. 105887. https://doi.org/10.1016/j.biombioe.2020.105887
  • [224] J. Mata-Sánchez, J. A. Pérez-Jiménez, M. J. Díaz-Villanueva, A. Serrano, N. Núñez-Sánchez&F. J. López-Giménez. (2014). "Development of olive stone quality system based on biofuel energetic parameters study", Renewable Energy Vol. 66 pp. 251-56. https://doi.org/10.1016/j.renene.2013.12.009
  • [225] A. Michael Fredenslund, E. Gudmundsson, J. Maria Falk&C. Scheutz. (2023). "The Danish national effort to minimise methane emissions from biogas plants", Waste Management Vol. 157 pp. 321-29. https://doi.org/10.1016/j.wasman.2022.12.035
  • [226] D. Lee, A. Chen&R. Nair. (2008). "Genetically Engineered Crops for Biofuel Production: Regulatory Perspectives", Biotechnology and Genetic Engineering Reviews Vol. 25 (1), pp. 331-62. 10.5661/bger-25-331
  • [227] Z. Xu, D. A. Hennessy, K. Sardana&G. Moschini. (2013). "The Realized Yield Effect of Genetically Engineered Crops: U.S. Maize and Soybean", Crop Science Vol. 53 (3), pp. 735-45. https://doi.org/10.2135/cropsci2012.06.0399
  • [228] A. Furtado, J. S. Lupoi, N. V. Hoang, A. Healey, S. Singh, B. A. Simmons&R. J. Henry. (2014). "Modifying plants for biofuel and biomaterial production", Plant Biotechnology Journal Vol. 12 (9), pp. 1246-58. https://doi.org/10.1111/pbi.12300
  • [229] G. Dida. (2024). "Biotechnology towards energy crops", CABI Agriculture and Bioscience Vol. 5 (1), pp. 45. 10.1186/s43170-024-00245-y
  • [230] V. Larnaudie, M. D. Ferrari&C. Lareo. (2022). "Switchgrass as an alternative biomass for ethanol production in a biorefinery: Perspectives on technology, economics and environmental sustainability", Renewable and Sustainable Energy Reviews Vol. 158 pp. 112115. https://doi.org/10.1016/j.rser.2022.112115
  • [231] M. A. Sanderson, P. R. Adler, A. A. Boateng, M. D. Casler&G. Sarath. (2006). "Switchgrass as a biofuels feedstock in the USA", Canadian journal of plant science Vol. 86 (Special Issue), pp. 1315-25.
  • [232] S. Nath. (2024). "Biotechnology and biofuels: paving the way towards a sustainable and equitable energy for the future", Discover Energy Vol. 4 (1), pp. 8. 10.1007/s43937-024-00032-w
  • [233] G. Koçar&N. Civaş. (2013). "An overview of biofuels from energy crops: Current status and future prospects", Renewable and Sustainable Energy Reviews Vol. 28 pp. 900-16. https://doi.org/10.1016/j.rser.2013.08.022
  • [234] O. M. Adeniyi, U. Azimov&A. Burluka. (2018). "Algae biofuel: Current status and future applications", Renewable and Sustainable Energy Reviews Vol. 90 pp. 316-35. https://doi.org/10.1016/j.rser.2018.03.067
  • [235] H. Falfushynska. (2024). "Advancements and Prospects in Algal Biofuel Production: A Comprehensive Review", Phycology Vol. 4 (4), pp. 548-75.
  • [236] K. Kumar, S. Ghosh, I. Angelidaki, S. L. Holdt, D. B. Karakashev, M. A. Morales&D. Das. (2016). "Recent developments on biofuels production from microalgae and macroalgae", Renewable and Sustainable Energy Reviews Vol. 65 pp. 235-49. https://doi.org/10.1016/j.rser.2016.06.055
  • [237] D. Kour, K. L. Rana, N. Yadav, A. N. Yadav, A. A. Rastegari, C. Singh, P. Negi, K. Singh&A. K. Saxena. (2019). Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects, in: Rastegari A A, Yadav A N, Gupta A (Eds.), Prospects of Renewable Bioprocessing in Future Energy Systems, Springer International Publishing, Cham, pp. 1-50.10.1007/978-3-030-14463-0_1
  • [238] H. Shahbeig, A. Shafizadeh, M. A. Rosen&B. F. Sels. (2022). "Exergy sustainability analysis of biomass gasification: a critical review", Biofuel Research Journal Vol. 9 (1), pp. 1592-607. 10.18331/brj2022.9.1.5
  • [239] Y. Wang&J. J. Wu. (2023). "Thermochemical conversion of biomass: Potential future prospects", Renewable and Sustainable Energy Reviews Vol. 187 pp. 113754. https://doi.org/10.1016/j.rser.2023.113754
  • [240] I. Kariim, H. Swai&T. Kivevele. (2022). "Recent advances in thermochemical conversion of biomass into drop-in fuel:a review", Scientific African Vol. 17 pp. e01352. https://doi.org/10.1016/j.sciaf.2022.e01352
  • [241] S. Siwal, K. Sheoran, A. Saini, D.-V. Vo, Q. Wang&V. Thakur. (2022). "Advanced thermochemical conversion technologies used for energy generation: Advancement and prospects", Fuel Vol. 321 pp. 124107. 10.1016/j.fuel.2022.124107
  • [242] B. Yang, Z. Dai, S.-Y. Ding&C. E. Wyman. (2011). "Enzymatic hydrolysis of cellulosic biomass", Biofuels Vol. 2 (4), pp. 421-49. 10.4155/bfs.11.116
  • [243] M. Karimi, H. Simsek&K. Kheiralipour. (2025). "Advanced biofuel production: A comprehensive techno-economic review of pathways and costs", Energy Conversion and Management: X Vol. 25 pp. 100863. https://doi.org/10.1016/j.ecmx.2024.100863
  • [244] A. Callegari, S. Bolognesi, D. Cecconet&A. G. Capodaglio. (2020). "Production technologies, current role, and future prospects of biofuels feedstocks: A state-of-the-art review", Critical Reviews in Environmental Science and Technology Vol. 50 (4), pp. 384-436. 10.1080/10643389.2019.1629801
There are 244 citations in total.

Details

Primary Language English
Subjects Humanitarian Engineering, Engineering Education, Engineering Practice and Education (Other)
Journal Section Review
Authors

Mussarat Jabeen 0000-0002-0818-0662

Shahida Parveen 0000-0001-5477-4966

Noreen Aslam 0000-0002-6591-6007

Ansa Zafar 0000-0003-2376-9309

Samina Aslam 0000-0003-1341-7174

Noureddine Elboughdiri 0000-0003-2923-3062

Submission Date April 26, 2025
Acceptance Date July 15, 2025
Publication Date January 31, 2026
Published in Issue Year 2026 Volume: 13 Issue: 1

Cite

IEEE [1]M. Jabeen, S. Parveen, N. Aslam, A. Zafar, S. Aslam, and N. Elboughdiri, “Biofuels: Exploring the Future of Green & Clean Energy”, El-Cezeri Journal of Science and Engineering, vol. 13, no. 1, pp. 71–88, Jan. 2026, doi: 10.31202/ecjse.1680236.
Creative Commons License El-Cezeri is licensed to the public under a Creative Commons Attribution 4.0 license.
88x31.png