Review
BibTex RIS Cite

Bioactive Glasses

Year 2017, , 436 - 471, 30.09.2017
https://doi.org/10.31202/ecjse.323652

Abstract

Bioactive
glasses were discovered in 1969 and provided for the first time an alternative
to nearly inert implant materials. They formed a rapid, strong, and stable bond
with host tissues. This article examines the frontiers of research crossed to
achieve clinical use of bioactive glasses and glass–ceramics. In the 1980s, it
was discovered that bioactive glasses could be used in particulate form to
stimulate osteogenesis, which thereby led to the concept of regeneration of
tissues. Later, it was found that the dissolution ions from the glasses behaved
like growth factors, providing signals to the cells. Hereby, the frontiers of
knowledge crossed during four eras of development of bioactive glasses led from
concept of bioactivity to widespread clinical and commercial use, with emphasis
on the first composition, 45S5 Bioglases® were mentioned. The four eras are (a)
discovery, (b) clinical application, (c) tissue regeneration, and (d)
innovation. Questions still to be answered for the fourth era are included to
stimulate innovation in the field and exploration of new frontiers that can be
the basis for a general theory of bioactive stimulation of regeneration of
tissues and application to numerous clinical needs.
 

References

  • [1] Hench, L. L., Splinter, R. J., Allen, W. C., Greenlee, T. K., “Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials”, J. Biomed. Mater. Res. Symp., 2, 117–141, 1971.
  • [2] http://wwwf.imperial.ac.uk/blog/videoarchive/2016/06/01/larry-hench-june-1996, Access 22.06.2017. [3] Stanley, H. R., Hench, L. L., Bennett, C. G. Jr., Chellemi, S. J., King, C. J. 3rd, Going, R. E., Ingersoll, N. J., Ethridge, E. C., Kreutziger, K. L., Loeb, L., Clark, A. E. Implantologist; 2(2): 26–36, 1981.
  • [4] Hench, L. L., Paschall, H. A., J. Biomed. Mater. Res., 7(3): 25–42, 1973.
  • [5] Clark, A. E., Pantano, C. G., Hench, L. L., “Auger Spectroscopic Analysis of Bioglass Corrosion Films”, J. Am. Ceram. Soc., 59, 37–39, 1976.
  • [6] Ogino, M., Hench, L. L., “Formation of Calcium–Phosphate Films on Silicate–Glasses”, J. Non−Cryst. Solids 3, 673–678.10.1016/0022–3093(80)90514–1, 1980.
  • [7] Wilson, J., Noletti, D., “Bonding of Soft Tissues to Bioglass®”, in Handbook of Bioactive Ceramics, eds. Yamamuro, T., Hench, L. L., Wilson, J., editors, (Boca Raton, FL: CRC Press), 283–302, 1990.
  • [8] Wilson, J., Clark, A. E., Hall, M., Hench, L. L., J. Oral Implantol., 19(4): 295–302, 1993.
  • [9] Stanley, H. R., Hall, M. B., Clark, A. E., King, C. J. 3rd, Hench, L. L., Berte, J. J., Int J. Oral Maxillofac Implants. Jan–Feb; 12(1): 95–105, 1997.
  • [10] Wilson, J., Low, S. B., J. Appl. Biomater., Summer; 3(2): 123–9, 1992.
  • [11] http://nikceram.ir/bioactive-glass/ Access 22.06.2017.
  • [12] Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L., Polak, J. M., “Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin–like Growth Factor II mRNA Expression and Protein Synthesis”, Biochem. Biophys. Res. Comm., 276:461–465, 2000.
  • [13] Hench, L. L., A. E. Clark, A. E. and Schaake, H. F., J. Non–Cryst. Sol., 8–10 837, 1972.
  • [14] Hench, L. L., Splinter, R. J., Greenlee, T. K. and Allen, W. C., J. Biomed. Mater. Res., 2. 117, 1971.
  • [15] Hench, L. L., Hand, H. A., Paschall, J., Biomed. Mats. Res. Symp., 5. 49, 1974.
  • [16] Greenlee, Jr. T. K., Beckham, C. A., Crebo, A. R. and Malmborg, J. C., “Glass Ceramic Bone Implants”, Journal of Biomedical Materials Research, Vol. 6, No. 3, pp. 235–244, 1972.
  • [17] Piotrowski, G., Hench, L. L., Allen, W. C. and Miller, G. J., “Mechanical Studies of the Bone–Bioglass Interfacial Bond”, Journal of Biomedical Materials Research, Vol. 9, No. 4, pp. 47–61, 1975.
  • [18] Hench, L. L., Paschall, H. A., Allen, W. C. and Piotrowski, G., “Interfacial Behavior of Ceramics Implants”, National Bureau of Standards Special Publication, Vol. 415, pp. 19–35, 1975.
  • [19] Griss, P., Greenspan, D. C., Heimke, G., Krempien, B., Buchinger, R., Hench, L. L. and Jentschura, G., “Evaluation of a Bioglass Coated Al2O3 Total Hip Prosthesis in Sheep”, Journal of Biomedical Materials Research, Vol. 10, No. 4, pp. 511–518, 1976.
  • [20] Hench, L. L., June, W. and Greenspan, D. C., “Bioglass: A Short History and Bibliography”, Journal of the Australian Ceramic Society, Vol. 40, No. 1, pp. 1–42, 2004.
  • [21] Wilson, J., Pigott, G. H., Schoen, F. J. and Hench, L. L., “Toxicology and Biocompatibility of Bioglass”, Journal of Biomedical Materials Research, Vol. 15, No. 6, pp. 805, 1981.
  • [22] Merwin, G. E., Atkins, J. S., Wilson, J. and Hench, L. L., “Comparison of Ossicular Replacement Materials in a Mouse Ear Model”, Otolaryngology, Head and Neck Surgery, Vol. 90, No. 4, pp. 461–469, 1982.
  • [23] Merwin, G. E., “Bioglass® Middle Ear Prosthesis: Preliminary Report”, The Annals of Otology, Rhinology and Laryngology, Vol. 5, No. 1, Part 1, pp. 78–82, 1986. [24] LeGeros, R. Z., “Properties of Osteoconductive Biomaterials: Calcium Phosphates”, Clin. Orthop. Relat. Res., 395: 81–98, 2002.
  • [25] Wilson, J., Low, S., Fetner, A. and Hench, L. L., “Bioactive Materials for Periodontal Treatment: A Comparative Study”, In: A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee, Eds., Biomaterials and Clinical Applications, Elsevier Science Publishers, Amsterdam, pp. 223–228, 1987.
  • [26] Wilson, J. and Low, S. B., “Bioactive Ceramics for Periodontal Treatment: Comparative Studies in the Patus Monkey”, Journal of Applied Biomaterials, Vol. 3, No. 2, pp. 123–169, 1992.
  • [27] Stanley, H. R., Hench, L. L., Going, R., Bennett, C., Chellemi, S. J., King, C., Ingersoll, N., Ethridge, E. and Kreutziger, K., “The Implantation of Natural Tooth Form Bioglasses in Baboons”, Oral Surgery, Oral Medicine, Oral Pathology, Vol. 45, No. 5, pp. 339–356, 1976.
  • [28] Stanley, H. R., Hench ,L. L., Bennett, Jr. C. G., Chellemi, S. J., King III, C. J., Going, R. E., Ingersoll, N. J., Ethridge, E. C., Kreutziger, K. L., Loeb, L. and Clark, A. E., “The Implantation of Natural Tooth Form Bioglass® in Baboons–Long Term Results”, The International Journal of Oral Implantology, Vol. 2, No. 2, pp. 26–36, 1981.
  • [29] Hall, M. B., Stanley, H. R., King, C., Colaizzi, F., Spilman, D. and Hench, L. L., “Early Clinical Trials of 45S5 Bioglass® for Endosseous Ridge Maintenance with a New Endosseous Implant Material”, The Journal of Prosthetic Dentistry, Vol. 58, No. 5, pp. 607–613, 1987.
  • [30] Stanley, H. R., Hall, M. B., Colaizzi, F. and Clark, A. E., “Residual Alveolar Ridge Maintenance with a New Endosseous Implant Material”, Journal of Prosthetic Dentistry, Vol. 58, No. 5, pp. 607–613, 1987.
  • [31] Hench, L. L., West, J. K., “The Sol–Gel Process”, Chemical Reviews, 90(1): 33–72, 1990.
  • [32] Li, R., Clark, A. E. and Hench, L. L., “An Investigation of Bioactive Glass Powders by Sol-Gel Processing”, Journal of Applied Biomaterials, Vol. 2, No. 4, pp. 231–239, 1991.
  • [33] Karlan, M. S., Hench, L. L., Madden, M. and Ogino, M., “A Bone–Bonding Bioactive Material Implant in the Head and Neck: Bioglass”, Surgical Forum, Vol. 39, pp. 575–577, 1979.
  • [34] Wilson, J. and Merwin, G., E., “Biomaterials for Facial Bone Augmentation: Comparative Studies”, Journal of Biomedical Materials Research, Vol. 22, Suppl. A2, pp. 159–177, 1988.
  • [35] Oonishi, H., Hench, L. L., Wilson, J., Sugihara, F., Tsuji, E., Matsuwura, M., Kin, S., Yamamoto, T. and Mizokawa, S., “Quantitative Comparison of Bone Growth Behaviour in Granules in Bioglass®, A–W Glass–Ceramic, and Hydroxyapatite”, Journal of Biomedical Materials Research, Vol. 51, No. 1, pp. 37–46, 2000.
  • [36] Kim, C. Y., Clark, A. E. and Hench, L. L., “Early Stages of Calcium–Phosphate Layer Formation in Bioglass”, Journal of Non–Crystalline Solids, Vol. 113, No. 2–3, pp. 195–202, 1989.
  • [37] Hench, L. L., Polak, J. M., Xynos, I. D. and Buttery, L. D. K., “Bioactive Materials to Control Cell Cycle”, Material Research Innovations, Vol. 3, No. 6, pp. 313–323, 2000.
  • [38] Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L. and Polak, J. M., “Ionic Dissolution Products of Bioactive Glass Increase Proliferation of Human Osteoblasts and Induce Insulin–Like Growth Factor II mRNA Expression and Protein Synthesis”, Biochemical and Biophysical Research Communications, Vol. 276, No. 2, pp. 461– 465, 2000.
  • [39] Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L. and Polak, J. M., “Gene Expression Profiling of Human Osteoblasts Following Treatment with the Ionic Dissolution Products of Bioglass® 45S5 Dissolution”, Journal of Biomedical Materials Research, Vol. 55, No. 2, pp. 151–157, 2001.
  • [40] Hench, L. L., Ed., “An Introduction to Bioceramics”, Chapters 6-12 & 31, 2nd Edition, Imperial College Press, London, 2013.
  • [41] Shi, D., “Biomaterials and Tissue Engineering”, Springer, ISBN 3–540–22203–0, p. 27, 2004.
  • [42] Nicholson, J. W., “The Chemistry of Medical and Dental Materials”, Royal Society of Chemistry, ISBN 0–85404–572–4, p. 92, 2002.
  • [43] Processing and Fabrication of Advanced Materials, XVII: Part 8: Polymer–Based Composites and Nano Composites Volume 2, Edited by N. Bhatnagar, Srivatsan, T. S., ISBN 81–907770–2–5, 2008.
  • [44] Tilocca, A., “Models of Structure, Dynamics and Reactivity of Bioglasses: A Review”, J. Mater. Chem., 20, 6848–6858, 2010.
  • [45] Donglu, Shi., “Biomaterials and Tissue Engineering”, Heidelberg, Germany: Springer; p. 27, 2004.
  • [46] Bronzino, J. D., “Biomedical Engineering Handbook Vol. 1”, Heidelberg, Germany: Springer; 2000.
  • [47] Hench, L. L., “The Story of Bioglass®”, Journal of Materials Science: Materials in Medicine, 17(11): 967–78, 2006.
  • [48] Hulbert, S. F., Young, F. A., Mathews, R. S., Klawitter, J. J., Talbert, C. D., Stelling, F. H., “Potential of Ceramic Materials as Permanently Implantable Skeletal Prostheses”, J. Biomed. Mater. Res., 4: 433–456, 1970.
  • [49] Hollinger, J. O., Brekke, J., Gruskin, E., Lee, D., “Role of Bone Substitutes”, Clin. Orthop. Relat. Res., 324: 55–65, 1996.
  • [50] https://www.intechopen.com/books/advanced-techniques-in-bone-regeneration/doped-bioactive-glass-materials-in-bone-regeneration. Access 18.04.2017
  • [51] Lacefleld, W., Hench, L. L., “The Bonding of Bioglass® to a Cobalt–Chromium Surgical Implant Alloy”, Biomaterials, 7(2): 104–8, 1986.
  • [52] Hench, L. L., Andersson, O., “Bioactive Glass Coatings”, Advanced Series in Ceramics, 1: 239–60, 1993.
  • [53] Bloyer, D. R., Gomez–Vega, J. M., Saiz, E., McNaney, J. M., Cannon, R. M., Tomsia, A. P., “Fabrication and Characterization of a Bioactive Glass Coating on Titanium Implant Alloys”, Acta Materialia, 47(15): 4221–4, 1999.
  • [54] Moritz, N., Vedel, E., Ylänen, H., Jokinen, M., Hupa, M., Yli–Urpo, A., “Characterisation of Bioactive Glass Coatings on Titanium Substrates Produced Using a CO2 Laser”, Journal of Materials Science: Materials in Medicine, 15(7): 787–94, 2004.
  • [55] Borrajo, J. P., Serra, J., González, P., León, B., Munoz, F. M., Lopez, M., “In vivo Evaluation of Titanium Implants Coated with Bioactive Glass by Pulsed Laser Deposition”, Journal of Materials Science: Materials in Medicine, 18(12): 2371–6, 2007.
  • [56] Lopez–Esteban, S., Gutierrez–Gonzalez, C. F., Gremillard, L., Saiz, E., Tomsia, A.P., “Interfaces in Graded Coatings on Titanium–Based Implants”, Journal of Biomedical Materials Research Part A., 88(4): 1010–21, 2009.
  • [57] James, P., “Glass Ceramics: New Compositions and Uses”, Journal of Non–Crystalline Solids, 181(1): 1–15, 1995.
  • [58] Lockyer, M. W. G., Holland, D., Dupree, R., “NMR Investigation of the Structure of Some Bioactive and Related Glasses”, Journal of Non–Crystalline Solids, 188(3): 207–19, 1995.
  • [59] Aboud, T., Stoch, L., “Crystallization Behaviour in the Glass System SiO2–P2O5–Al2O3–MgO– Na2O”, Journal of Non–Crystalline Solids, 219: 149–54, 1997.
  • [60] Szabo, I., Nagy, B., Völksch, G., Höland, W., “Structure, Chemical Durability and Microhardness of Glass–Ceramics Containing Apatite and Leucite Crystals”, Journal of Non–Crystalline Solids, 272(2): 191–9, 2000.
  • [61] Begum, A. N., Rajendran, V., Ylänen, H., “Effect of Thermal Treatment on Physical Properties of Bioactive Glass”, Materials Chemistry and Physics, 96(2): 409–17, 2006.
  • [62] Liu, J., Miao, X., “Sol–Gel Derived Bioglass as a Coating Material for Porous Alumina Scaffolds”, Ceramics International, 30(7): 1781–5, 2004.
  • [63] Li, N., Jie, Q., Zhu, S., Wang, R., “Preparation and Characterization of Macroporous Sol–Gel Bioglases”, Ceramics International, 31(5): 641–6, 2005.
  • [64] Xia, W., Chang, J., “Well–Ordered Mesoporous Bioactive Glasses (MBG): A Promising Bioactive Drug Delivery System”, Journal of Controlled Release, 110(3): 522–30, 2006.
  • [65] Balamurugan, A., Sockalingum, G., Michel, J., Fauré, J., Banchet, V., Wortham, L., et al., “Synthesis and Characterisation of Sol Gel Derived Bioactive Glass for Biomedical Applications”, Materials Letters, 60(29): 3752–7, 2006.
  • [66] Balamurugan, A., Balossier, G., Michel, J., Kannan, S., Benhayoune, H., Rebelo, A., et al., “Sol–gel Derived SiO2–CaO–MgO–P2O5 Bioglass System—Preparation and in Vitro Characterization”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83(2): 546–53, 2007.
  • [67] Li, R., Clark, A., Hench, L. L., “An Investigation of Bioactive Glass Powders by Sol–Gel Processing”, Journal of Applied Biomaterials, 2(4): 231–9, 1991. [68] Rideal, E., Davies, J., “Interfacial Phenomena”, New York: Academic Press; 1963.
  • [69] Kaur, G., Pandey, O. P., Singh, K., Homa, D., Scott, B., Pickrell, G., “A Review of Bioactive Glasses: Their Structure, Properties, Fabrication and Apatite Formation”, Journal of Biomedical Materials Research Part A., 102(1): 254–74, 2014.
  • [70] Vallet–Regí, M., “Ceramics for Medical Applications”, Journal of the Chemical Society, Dalton Transactions, (2): 97–108, 2001. [71] Iler, R. K., “The Colloid Chemistry of Silica and Silicates”, Soil Science, 80–86, 1955. [72] Brinker, C. J., Scherer, G. W., Roth, E., “Sol→ Gel→ Glass, II. Physical and Structural Evolution during Constant Heating Rate Experiments”, Journal of Non–Crystalline Solids, 72(2): 345–68, 1985. [73] Hench, L. L., Ulrich, D. R., “Science of Ceramic Chemical Processing”, Wiley–Interscience; 1986. [74] Colby, M. W., Osaka, A., Mackenzie, J. D., “Temperature Dependence of the Gelation of Silicon Alkoxides”, Journal of Non–Crystalline Solids, 99(1): 129–39, 1988. [75] Falcone, J. S., “Soluble Silicates”, American Chemical Society; 1982.
  • [76] Iler, R. K., “The Chemistry of Silica”, New York: Wiley; 1979.
  • [77] Liu, S., “Aging of Gels”, University of Florida, Internal Report, 1989.
  • [78] Hench, L. L., Wilson J., “An Introduction to Bioceramics”, World Scientific; Singapore, 1993.
  • [79] Sepulveda, P., Jones, J. R., Hench, L. L., “Characterization of Melt–Derived 45S5 and Sol–Gel–Derived 58S Bioactive Glasses”, Journal of Biomedical Materials Research, 58(6): 734–40, 2001.
  • [80] Brinker, C. J., Scherer, G. W., “Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing”, Academic Press; London, 2013.
  • [81] “Bioceramics Development and Applications Vol. 1”, Article ID D110155, doi:10.4303/bda/D110155, 2011.
  • [82] Strnad, Z., “Role of the Glass Phase in Bioactive Glass–Ceramics”, Biomaterials, 13(5): 317–21, 1992.
  • [83] Shelby, J. E., “Introduction to Glass Science and Technology”, UK: Royal Society of Chemistry; 2005.
  • [84] Cormack, A. N., Tilocca, A., “Structure and Biological Activity of Glasses and Ceramics”, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370(1963): 1271–80, 2012.
  • [85] Elgayar, I., Aliev, A. E., Boccaccini, A. R., Hill, R. G., “Structural Analysis of Bioactive Glasses”, Journal of Non–Crystalline Solids, 351(2): 173–83, 2005. [86] Ylänen, H., “Bone Ingrowth into Porous Bodies Made by Sintering Bioactive Glass Microspheres”, Åbo Akademi Process Chemistry Group, Combustion and Materials Chemistry; 2000.
  • [87] Hench, L. L., Andersson, O. H., LaTorre, G. P., “The Kinetics of Bioactive Ceramics, Part III. Surface Reactions for Bioactive Glasses Compared with an Inactive Glass”, Bioceramics, 4: 156–62, 1991.
  • [88] Andersson, O., Liu, G., Karlsson, K., Niemi, L., Miettinen, J., Juhanoja, J., “In vivo Behaviour of Glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 System”, Journal of Materials Science: Materials in Medicine, 1(4): 219–27, 1990.
  • [89] Osaka, A., Hayakawa, S., Tsuru, K., Ohtsuki, C., “Bioactivity of Alkali and Alkaline Earth Borosilicate Glasses, Borate Glasses”, Crystals and Melts, 490–7, 1997.
  • [90] Saranti, A., Koutselas, I., Karakassides, M. A., “Bioactive Glasses in the System CaO–B2O3–P2O5: Preparation, Structural Study and in Vitro Evaluation”, Journal of Non–Crystalline Solids, 352(5): 390–8, 2006.
  • [91] Yao, A., Wang, D., Huang, W., Fu, Q., Rahaman, M. N., Day, D. E., “In Vitro Bioactive Characteristics of Borate–Based Glasses with Controllable Degradation Behaviour”, Journal of the American Ceramic Society, 90(1): 303–6, 2007.
  • [92] Barrios de Arenas, I., Schattner, C., Vásquez, M., “Bioactivity and Mechanical Properties of Na2O–CaO–SiO2–P2O5 Modified Glasses”, Ceram. Int., 32(5): 515–20, 2005.
  • [93] Rude, R. K., Gruber, H. E., “Magnesium Deficiency and Osteoporosis: Animal and Human Observations”, The Journal of Nutritional Biochemistry, 15(12): 710–6, 2004.
  • [94] Okuma, T., “Magnesium and Bone Strength”, Nutrition, 17(7–8): 679–80, 2001.
  • [95] Cowan, J. A., “Structural and Catalytic Chemistry of Magnesium–Dependent Enzymes”, Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 15(3): 225–35, 2002.
  • [96] Gomez, S., Rizzo, R., Pozzi–Mucelli, M., Bonucci, E., Vittur, F., “Zinc Mapping in Bone Tissues by Histochemistry and Synchrotron Radiation–Induced X–Ray Emission: Correlation with the Distribution of Alkaline Phosphatase”, Bone, 25(1): 33–8, 1999.
  • [97] Peretz, A., Papadopoulos, T., Willems, D., Hotimsky, A., Michiels, N., Siderova, V., et al., “Zinc Supplementation Increases Bone Alkaline Phosphatase in Healthy Men”, Journal of Trace Elements in Medicine and Biology, 15(2–3): 175–8, 2001.
  • [98] Nishi, Y., “Zinc and Growth”, Journal of the American College of Nutrition, 15(4): 340– 4, 1996.
  • [99] Tapiero, H., Townsend, D. M., Tew, K. D., “Trace Elements in Human Physiology and Pathology”, Copper, Biomedicine and Pharmacotherapy, 57(9): 386–98, 2003.
  • [100] Li, X., Wang, X., He, D., Shi, J., “Synthesis and Characterization of Mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Cu) Bioactive Glasses/Composites”, Journal of Materials Chemistry, 18(34): 4103–9, 2008.
  • [101] Sitarz, M., Bulat, K., Szumera, M., “Influence of Modifiers and Glass-Forming Ions on the Crystallization of Glasses of the NaCaPO4–SiO2 System”, Journal of Thermal Analysis and Calorimetry, 109(2): 577–84, 2012.
  • [102] Brink, M., “Bioactive Glasses with a Large Working Range”, Abo Akademi University; 1997.
  • [103] Hench, L. L., “Bioceramics”, J. Am. Ceram. Soc., 81: 1705–1728, 1998.
  • [104] Hench, L. L., “Bioactive Ceramics: Theory and Clinical Applications”, Bioceramics, 7: 3–14, 1994.
  • [105] Day, D. E., White, J. E., Brown, R. F., McMenamin, K. D., “Transformation of Borate Glasses into Biologically Useful Materials”, Glass Technol. Part A., 44: 75–81, 2003.
  • [106] Day, D. E., Erbe, E. M., Richard, M., Wojcik, J. A., “Bioactive Materials”, No. 6709, 744. US Patent, March 23, 2004.
  • [107] Han, X., Day, D. E., “Reaction of Sodium Calcium Borate Glasses to Form Hydroxyapatite”, J. Mater. Sci. Mater. Med., 18: 1837–1847, 2007.
  • [108] Zhao, D., Huang, W., Rahaman, M. N., Day, D. E., Wang, D. P., “Mechanism for Converting Al2O3–Containing Borate Glass to Hydroxyapatite in Aqueous Phosphate Solution”, Acta Biomater., 5: 1265–1273, 2009.
  • [109] Pan, H., Zhao, X., Zhang, X., Zhang, K., Li, L., Li, Z., et al., “Strontium Borate Glass: Potential Biomaterial for Bone Regeneration”, J. Roy. Soc. Interface, 7: 1025–1031, 2010.
  • [110] Huang, W., Day, D. E., Kittiratanapiboon, K., Rahaman, M. N., “Kinetics and Mechanisms of the Conversion of Silicate (45S5), Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solution”, J. Mater. Sci. Mater. Med., 17: 583–596, 2006.
  • [111] Huang, W., Rahaman, M. N., Day, D. E., Li, Y., “Mechanisms of Converting Silicate, Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solution”, Phys. Chem. Glasses Europ. J. Glass. Sci. Technol. B., 47: 647–658, 2006.
  • [112] Fu, Q., Rahaman, M. N, Fu, H., Liu X., “Bioactive Glass Scaffolds with Controllable Degradation Rates for Bone Tissue Engineering Applications, I. Preparation and in Vitro Degradation”, J. Biomed. Mater. Res., 95A: 164–171, 2010.
  • [113] Marion, N., Liang, W., Reilly, G., Day, D. E., Rahaman, M. N., Mao, J. J., “Bioactive Borate Glass Supports the Osteogenic Potential of Human Mesenchymal Stem Cells”, Mech. Adv. Mater. Struct., 12: 239–246, 2005.
  • [114] Fu, H., Fu, Q., Zhou, N., Huang, W., Rahaman, M. N., Wang, D., et al., “In Vitro Evaluation of Borate–Based Bioactive Glass Scaffolds Prepared by a Polymer Foam Replication Method”, Mater. Sci. Eng. C., 29: 2275–2281, 2009.
  • [115] Fu, Q., Rahaman, M. N., Bal, B. S., Bonewald, L. F., Kuroki, K., Brown, R. F., “Bioactive Glass Scaffolds with Controllable Degradation Rates for Bone Tissue Engineering Applications, II. In Vitro and in Vivo Biological Evaluation”, J. Biomed. Mater. Res., 95A: 172–179, 2010.
  • [116] Liu, X., Xie, Z., Zhang, C., Pan, H., Rahaman, M. N., Zhang, X., et al., “Bioactive Borate Glass Scaffolds: in Vitro and in Vivo Evaluation for Use as a Drug Delivery System in the Treatment of Bone Infection”, J. Mater. Sci. Mater. Med., 21: 575–582, 2010.
  • [117] Jia ,W. T., Zhang, X., Luo, S. H., Huang, W. H., Rahaman, M. N., Day, D. E., et al., “Novel Borate Glass/Chitosan Composite as a Delivery Vehicle for Teicoplanin in the Treatment of Chronic Osteomyelitis”, Acta Biomater., 6: 812–819, 2010.
  • [118] Zhang, X., Jia, W., Gu, Y., Liu, X., Wang, D., Zhang C., et al., “Teicoplanin–Loaded Borate Bioactive Glass Implants for Treating Chronic Bone Infection in a Rabbit Tibia Osteomyelitis Model”, Biomaterials, 31: 5865–5874, 2010.
  • [119] Skipper, L. J., Sowrey, F. E., Pickup, D. M., Drake, K. O., Smith, M. E., Saravanapavan, P., et al., “The Structure of a Bioactive Calcia–Silica Sol–Gel Glass”, Journal of Materials Chemistry, 15(24): 2369–74, 2005.
  • [120] Jung, S. B., Day, D. E., Brown, R. F., Bonewald, L. F. “Potential Toxicity of Bioactive Borate Glasses in–Vitro and in–Vivo”, In Advances in Bioceramics and Porous Ceramics V; Narayan, R., Colombo, R.P., Halbig, M., Mathur, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
  • [121] Hench, L. L., “Bioceramics: from Concept to Clinic”, Journal of the American Ceramic Society, 74(7): 1487–510, 1991.
  • [122] Jones, J. R., “Review of Bioactive Glass: from Hench to Hybrids”, Acta Biomaterialia, 9(1): 4457–86, 2013.
  • [123] Li, P., Zhang, F., “The Electrochemistry of a Glass Surface and its Application to Bioactive Glass in Solution”, Journal of Non–Crystalline Solids, 119(1): 112–8, 1990.
  • [124] Doostmohammadi, A., Monshi, A, Fathi, M. H., Braissant, O., “A Comparative Physicochemical Study of Bioactive Glass and Bone–Derived Hydroxyapatite”, Ceramics International, 37(5): 1601–7, 2011.
  • [125] Karlsson, K. H., Fröberg, K., Ringbom, T., “A Structural Approach to Bone Adhering of Bioactive Glasses”, Journal of Non–Crystalline Solids, 112(1): 69–72, 1989.
  • [126] FitzGerald, V., Pickup, D. M., Greenspan, D., Wetherall, K. M., Moss, R. M., Jones, J. R., et al, “An Atomic Scale Comparison of the Reaction of Bioglass® in Two Types of Simulated Body Fluid”, Physics and Chemistry of Glasses–European Journal of Glass Science and Technology Part B., 50(3): 137–43, 2009.
  • [127] FitzGerald, V., Pickup, D. M., Greenspan, D., Sarkar, G., Fitzgerald, J. J., Wetherall, K. M., Moss, R. M., Jones, J. R., Newport, R., “A Neutron and X–Ray Diffraction Study of Bioglass® with Reverse Monte Carlo Modelling”, Adv. Funct. Mater., 17, 3746–3753, June, 2007.
  • [128]Tilocca, A., Cormack, A. N., de Leeuw, N. H., “The Structure of Bioactive Silicate Glasses: New Insight from Molecular Dynamics Simulations”, Chem. Mater., 19, 95 doi:10.1021/cm061631g, 2007.
  • [129]Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M. C., Mustarelli, P., Pedone, A., Segre, U., “Medium–Range Order in Phospho–Silicate Bioactive Glasses: Insights from MAS-NMR Spectra, Chemical Durability Experiments and Molecular Dynamics Simulations”, J. Non–Cryst. Solids, 354, 84–89, 2008.
  • [130] Martin, R. B., Burr, D. B., Sharkey, N. A., “Skeletal Tissue Mechanics”, New York: Springer–Verlag; 1998.
  • [131] Goldstein, S. A., “The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function”, J. Biomech., 20:1055–1062, 1987. [132] Reilly, D. T., Burstein, A. H., Frankel, V. H., “The Elastic Modulus of Bone”, J. Biomech., 7: 271–275, 1974.
  • [133] Fung, Y. C., “Biomechanics: Mechanical Properties of Living Tissues”, New York: Springer; 1993.
  • [134] Rho, J. Y., Hobatho, M. C., Ashman, R. B., “Relations of Density and CT Numbers to Mechanical Properties for Human Cortical and Cancellous Bone”, Med. Eng. Phys., 17: 347–355, 1995.
  • [135] Fu, Q., Rahaman, M. N., Bal, B. S., Brown, R. F., “Preparation and in Vitro Evaluation of Bioactive Glass (13–93) Scaffolds with Oriented Microstructures for Repair and Regeneration of Load–Bearing Bones”, J. Biomed. Mater. Res., 93A: 1380–1390, 2010.
  • [136] Liu, X., Rahaman, M. N., Fu, Q., “Oriented Bioactive Glass (13–93) Scaffolds with Controllable Pore Size by Unidirectional Freezing of Camphene–Based Suspensions: Microstructure and Mechanical Response”, Acta Biomater., 7: 410–416, 2011.
  • [137] Hench, L. L., Andersson, O. H., LaTorre, G. P., “The Kinetics of Bioactive Ceramics, Part III. Surface Reactions for Bioactive Glasses Compared with an Inactive Glass”, Bioceramics, 4: 156–62, 1991.
  • [138] Hench, L. L., Andersson, O. H., LaTorre, G. P., “The Kinetics of Bioactive Ceramics”, Bioceramics, USA., 43, 1991.
  • [139] Hench, L. L., West, J. K., “Biological Applications of Bioactive Glasses”, Life Chemistry Reports, 13: 187–241, 1996.
  • [140] https://ryortho.com/2014/10/bioglass-is-back-in-an-incredible-new-form/ Access 08.05.2017
  • [141] Andersson, O. H., Karlsson, K. H., Kangasniemi, K., “Calcium Phosphate Formation at the Surface of Bioactive Glass in Vivo”, Journal of Non–Crystalline Solids, 119(3): 290–6, 1990.
  • [142] Aitasalo, K., Peltola, M., Suonpää, J., Yli–Urpo, A., editors, “Bioactive Glass S53P4 in sinus Frontal Obliteration, In A 9–Year Experience”, 13th International Symposium on Ceramics in Medicine; Bologna, Italy, 2000.
  • [143] Peltola, M., “Experimental Follow–up Model for Clinical Frontal Sinus Obliteration with Bioactive Glass (S53P4)”, Acta Oto–Laryngologica, 120(543): 167–9, 2000.
  • [144] Brink. M., Turunen. T., Happonen. R. P., Yli–Urpo, A., “Compositional Dependence of Bioactivity of Glasses in the System Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2”, Journal of Biomedical Materials Research, 37(1): 114–21, 1997.
  • [145] Ylänen, H., Karlsson, K. H., Itälä, A., Aro, H. T., “Effect of Immersion in SBF on Porous Bioactive Bodies Made by Sintering Bioactive Glass Microspheres”, Journal of Non–Crystalline Solids, 275(1): 107–15, 2000.
  • [146] Itälä, A., Nordström, E. G., Ylänen, H., Aro, H. T., Hupa M., “Creation of Microrough Surface on Sintered Bioactive Glass Microspheres", Journal of Biomedical Materials Research, 56(2): 282–8, 2001.
  • [147] http://www.azom.com/article.aspx?ArticleID=11730. Access 08.05.2017
  • [148] Xynos, I. D., Hukkanen, M. V., Batten, J. J., Buttery, L. D., Hench, L. L., Polak, J.M., “Bioglass 45S5® Stimulates Osteoblast Turnover and Enhances Bone Formation in Vitro: Implications and Applications for Bone Tissue Engineering”, Calcif Tissue Int., 67: 321–9, 2000.
  • [149] Venugopal, J., Vadgma, P., Sampath, Kumar T., Ramakrishna, S., “Biocomposite Nanofibres and Osteoblasts for Bone Tissue Engineering”, Nanotechnology, 18, 2007.
  • [150] Chen, Q. Z., Thompson, I. D., Boccaccini, A. R., “45S5 Bioglass (R)–Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering”, Biomaterials, 27(11): 2414–2425, 2006.
  • [151] http://www.plascarb.eu/news_and_events/plascarb/news/585 Access 18.04.2017
  • [152] Bi, L., Jung, S. B., Day, D. E., Neidig, K., Dusevich, V., Eick, D., et al., “Evaluation of Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in Critical–Sized Rat Calvarial Defects Implanted with Bioactive Glass Scaffolds”, J. Biomed. Mater. Res. Part A., 100A, 3267–3275, 2012.
  • [153] http://www.mo-sci.com/bioactive-glass/ Access 08.05.2017.
  • [154] Krish, E. R., Garg, A. K., “Post–Extraction Ridge Maintenance Using the Endosseous Ridge Maintenance Implant (ERMI) Compendium”, 15: 234–42, 1994.
  • [155] Stanley, H. R., Hall, M. B., Colaizzi, F., Clark, A. E., “Residual Alveolar Ridge Maintenance with a New Endosseous Implant Material”, J. Prosthet. Dent., 58: 607–13, 1987.
  • [156] Wilson, J., Clark, A. E., Hall, M., Hench, L. L., “Tissue Response to Bioglass Endosseous Ridge Maintenance Implants”, J. Oral Implantol., 19: 295–302, 1993.
  • [157] Atwood, D. A., “Some Clinical Factors Related to Rate of Resorption of Residual Ridges”, 1962, J. Prosthet. Dent., 86: 119–25, 2001. [158] Veldhuis, H., Driessen, T., Denissen, H., de Groot, K. A., “5–Year Evaluation of Apatite Tooth Roots as Means to Reduce Residual Ridge Resorption”, Clin. Prev. Dent., 6: 5–8, 1984.
  • [159] Quinn, J. H., Kent, J. N., “Alveolar Ridge Maintenance with Solid Nonporous Hydroxylapatite Root Implants”, Oral Surg. Oral Med. Oral Pathol., 85: 511–21, 1984.
  • [160] Hench, L. L., Ethridge, E. C., “Biomaterials: An Interfacial Approach”, New York: Academic Press; 1982.
  • [161] Sobolik, D. F., “Alveolar Bone Resorption”, J. Prosthet Dent., 10: 612–9, 1980.
  • [162] Piecuch, J. F., Topazian, R. G., Skoly, S., Wolfe, S., “Experimental Ridge Augmentation with Porous Hydroxyapatite Implants”, J. Dent. Res., 62: 148–54, 1983.
  • [163] Hall, M. B., Stanley, H. R., Excerpta Medica Proceedings International Congress on Tissue Integration and Maxillofacial Reconstruction, Brussels, Amsterdam: Elsevier Science Publishers BV; “Early Clinical Trials of 45S5 Bioglass for Endosseous Alveolar Ridge Maintenance Implants”, pp. 248–52, 1985.
  • [164] Clark, A. E., Stanley, H. R., “Clinical Trials of Bioglass Implants for Alveolar Ridge Maintenance”, J. Dent. Res., 65: 304, 1986.
  • [165] Stanley, H. R., Hall, M. B., Gainesville, Fla., University of Florida, J. H. Miller Health Center; Research protocol and consent form for project entitled: “Preservation of Alveolar Ridge with the Intraosseous Implantation of Root–Shaped Cones Made of Bioglases”, 1983.
  • [166] Weinstein, A. M., Klawitter, J. J., Cook, S. D., “Implant–Bone Characteristics of Bioglass Dental Implants”, J. Biomed. Mater. Res., 14: 23–9, 1980. [167] Fernandes, D. J., Elias, C. N., Valiev, R. Z., “Properties and Performance of Ultrafine Grained Titanium for Biomedical Applications”, Materials Research, on–line version ISSN 1980-5373, 2015.
  • [168] https://consultqd.clevelandclinic.org/2015/04/biological-solutions-show-promise-for-damaged-articular-cartilage/ Access 22.06.2017.
  • [169] Froum, S.J., Weinberg, M.A., Tarnow, D., “Comparison of Bioactive Glass Synthetic Bone Graft Particles and Open Debridement in the Treatment of Human Periodontal Defects, A Clinical Study”, J. Periodontol., 69: 698–709, 1998.
  • [170] Wilson, J., Low, S., Fetner A, Hench, L. L., “Bioactive Materials for Periodontal Treatment: A Comparative Study”, In: Pizzoferrato A, Marchetti PG, Ravaglioli A, Lee AJ, editors. Biomaterials and Clinical Applications, Amsterdam: Elsevier, pp. 223–8, 1987.
  • [171] Oonishi, H., Hench, L. L., Wilson, J., Sugihara, F., Tsuji, E., Kushitani, S., et al., “Comparative Bone Growth Behaviour in Granules of Bioceramic Materials of Various Sizes”, J. Biomed. Mater. Res., 44: 31–43, 1999.
  • [172] Zamet, J. S., Darbar, U. R., Griffiths, G. S., Bulman, J. S., Brägger, U., Bürgin, W., et al., “Particulate Bioglass as a Grafting Material in the Treatment of Periodontal Intrabony Defects”, J. Clin. Periodontol., 24: 410–8, 1997.
  • [173] Zhang, X., Jia, W. T., Gu, Yi–fei, “Borate Bioglass Based Drug Delivery of Teicoplanin for Treating Osteomyelitis”, J. Inorg. Mater., 25: 293–8, 2010. [174] http://www.wellpets.com/bone-graft-materials-in-veterinary-dentistry/ Access 18.04.2017
  • [175] Vallet–Regi, M., “Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering”, Chem. Eur. J. 12, 5934–5943, 2006.
  • [176] Xie, Z., Liu, X., Jia, W., Zhang, C., Huang, W., Wang, J., “Treatment of Osteomyelitis and Repair of Bone Defect by Degradable Bioactive Glass Releasing Vancomycin”, J. Control Release, 139: 118–26, 2009.
  • [177] Otsuka, M., Matsuda, Y., Kokubo, T., Yoshihara, S., Nakamura, T., Yamamuro, T., “A Novel Skeletal Drug Delivery System Using Self–Setting Bioactive Glass Bone Cement, III: The in vitro Drug Release from Bone Cement Containing Indomethacin and its Physicochemical Properties”, J. Control Release, 31: 111–9, 1994.
  • [178] Ladrón de Guevara–Fernández, S., Ragel C. V., Vallet-Regí M., “Bioactive Glass–Polymer Materials for Controlled Release of Ibuprofen”, Biomaterials, 24: 4037–43, 2003.
  • [179] Méndez, J. A., Fernández, M, González–Corchón, A., Salvado, M., Collía F., de Pedro, J. A., et al., “Injectable Self–Curing Bioactive Acrylic–Glass Composites Charged with Specific Anti–Inflammatory/Analgesic Agent”, Biomaterials, 25: 2381–92, 2004.
  • [180] Baino, F., Novajra, G., Miguez–Pacheco, V., R. Boccaccini, A. R., Vitale–Brovarone, C., “Bioactive Glasses: Special Applications Outside the Skeletal System”, Journal of Non–Crystalline Solids 432, 15–30, 2016.
  • [181] Ben–Arfa, B. A E., Salvado, I. M., Ferreira, J. M. F., Pullar, R. C., “The Effect of Functional Ions (Y3+, F−, Ti4+) on the Structure, Sintering and Crystallization of Diopside–Calcium Pyrophosphate Bioglases”, Journal of Non–Crystalline Solids, 443, 162–171, 2016.
  • [182] Liu, J., Rawlinson S. C. F., Hill, R. G., Fortune, F., “Fluoride Incorporation in High Phosphate Containing Bioactive Glasses and in Vitro Osteogenic, Angiogenic and Antibacterial Effects”, Dental Materials 32, e221–e237, 2016.
  • [183] Dziadek, M., Zagrajczuk, B., Menaszek, E., Wegrzynowicz, A., Pawlik, J., Katarzyna Cholewa–Kowalska, K., “Gel–Derived SiO2–CaO–P2O5 Bioactive Glasses and Glass–Ceramics Modified by SrO Addition”, Ceramics International 42, 5842–5857, 2016.
  • [184] ElBatal, F. H., Ouis, M. A., ElBatal, H. A., “Comparative Studies on the Bioactivity of Some Borate Glasses and Glass–Ceramics from the Two Systems: Na2O–CaO–B2O3 and NaF–CaF2–B2O3”, Ceramics International 42, 8247–8256, 2016.
  • [185] Siyu, Ni, Xiaohong, Li, Pengan, Y., Shirong Ni, Hong, F., Webster, T. J., “Enhanced Apatite–Forming Ability and Antibacterial Activity of Porous Anodic Alumina Embedded with CaO–SiO2–Ag2O Bioactive Materials”, Materials Science and Engineering C 58, 700–708, 2016.
  • [186] Arepalli, S. K., Tripathi, H., Hira, S. K., Manna, P. P., Pyare, R., Singh, S. P., “Enhanced Bioactivity, Biocompatibility and Mechanical Behavior of Strontium Substituted Bioactive Glasses”, Materials Science and Engineering C 69, 108–116, 2016.
  • [187] Abdelghany, A. M., Ouis, M. A., Azooz, M. A., ElBatal, H. A., El–Bassyouni, G. T., “Role of SrO on the Bioactivity Behavior of Some Ternary Borate Glassesand Their Glass Ceramic Derivatives”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 152, 126–133, 2016.
  • [188] Orgaz, F., Dzika, A., Szycht, O., Amat, D., Barba, F., Becerra, J., Santos–Ruiz, L., “Surface Nitridation Improves Bone Cell Response to Melt–Derived Bioactive Silicate/Borosilicate Glass Composite Scaffolds”, Acta Biomaterialia 29, 424–434, 2016.
  • [189] Li, H. F., Zheng, Y. F., “Recent Advances in Bulk Metallic Glasses for Biomedical Applications”, Acta Biomaterialia, 36, 1–20, 2016.
  • [190] Karasu, B., Yanar, A. O., Erdoğan, O., Kartal, S., Ak, G., Pirangil, S. E., “Metallic Glasses”, Şişe Cam Technical Bulletin, Vol: 45, Issue: 2(231), 5-17, 2017 (inTurkish).
  • [191] Huang, M., Hill, R. G., Rawlinson, S. C. F., “Zinc Bioglasses Regulate Mineralization in Human Dental Pulp Stem Cells”, Dental Materials 33, 543–552, 2017.
  • [192] Szesz, E. M., Lepienski, C. M., “Anodic Bonding of Titanium Alloy with Bioactive Glass”, Journal of Non–Crystalline Solids, http://dx.doi.org/10.1016/j.jnoncrysol.2017.04.038, 2017 (in press).
  • [193] Alhalawani, A. M. F., Towler, M. R., “A Novel Tantalum–Containing Bioglass. Part I. Structure and Solubility”, Materials Science and Engineering C 72, 202–211, 2017.
  • [194] Lizzi, F., Villat, C., Attik, N., Jackson, P., Grosgogeat, B., Goutaudier, C., “Mechanical Characteristic and Biological Behaviour of Implanted and Restorative Bioglasses Used in Medicine and Dentistry: A Systematic Review”, Dental Materials 33, 702–712, 2017.
  • [195] Ferraris, S., Miola, M., Cochis, A., Azzimonti, B., Rimondini, L., Prenesti, E., Vernè, E., “In situ Reduction of Antibacterial Silver Ions to Metallic Silver Nanoparticles on Bioactive Glasses Functionalized with Polyphenols”, Applied Surface Science 396, 461–470, 2017.
  • [196] Kumari, Ch V., Sobhanachalam, P., Jayasankar, C. K., Veeraiah, N., Kumar, V. R., “Bioactive Properties of CuO Doped CaF2‒CaO‒B2O3‒P2O5‒MO(M=Ba, Sr, Zn, Mg) Glasses”, Ceramics International 43, 4335–4343, 2017.
  • [197] Melli, V., Lefebvre, L‒P., Lenci, M., Mondon, M., Sao‒Joao, S., Cigada, A., Delafosse, D., De Nardo, L., “Resorbability of a Bioglass®–Based Glass–Ceramic Scaffold Produced via a Powder Metallurgy Approach”, Ceramics International 43, 8625–8635, 2017.
  • [198] Satyanarayana, T., Babu, M. V., Nagarjuna, G., Koti Reddy, D. V. R., , Rao, P. V., Prasad, P. S., “Structural Investigations on P2O5‒CaO‒Na2O‒K2O: SrO Bioactive Glass Ceramics”, Ceramics International 43, 10144–10150, 2017.
  • [199] Samudrala, R., Abdul Azeem, P., Penugurti, V., Manavathi, B., “Cytocompatibility Studies of Titania–Doped Calcium Borosilicate Bioactive Glasses in–Vitro”, Materials Science and Engineering C 77, 772–779, 2017.
  • [200] Bellucci, D., Anesi, A., Salvatori, R., Chiarini, L., Cannillo, V., “A Comparative in Vivo Evaluation of Bioactive Glasses and Bioactive Glass–Based Composites for Bone Tissue Repair”, Materials Science and Engineering C 79, 286–295, 2017.

Biyoaktif Camlar

Year 2017, , 436 - 471, 30.09.2017
https://doi.org/10.31202/ecjse.323652

Abstract

Biyoaktif
camlar 1969 yılında keşfedilmiş ve ilk kez neredeyse tamamen inert malzemelere
bir alternatif olmuştur. Dokularla hızlı, sağlam ve kararlı bağ oluştururlar. Bu
makalede konuyla ilgili yapılan çalışmalardan ve biyoaktif camlarla cam
seramiklerin klinik uygulamalarından bahsedilecektir. 1980’lerde biyoaktif
camların özellikle dokuların yeniden şekil alması anlamında
kullanılabilecekleri bulunmuştur. Daha sonra, camdan çözünen iyonların
hücrelere sinyal vererek büyütücü etken gibi davrandıkları belirlenmiştir.
Mevcut çalışmada, biyoaktif camların gelişiminde (a) keşif, (b) klinik
uygulama, (c) doku oluşturma (d) yenilik olmak üzere dört evrenin ortaya
çıkışına ve bu grup malzemelerin biyoaktiflikleri sayesinde yaygın klinik ve
ticari kullanımlarına yol açan ilk bileşimden (45S5 Bioglases®) bahsedilerek
devam edilecektir.

References

  • [1] Hench, L. L., Splinter, R. J., Allen, W. C., Greenlee, T. K., “Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials”, J. Biomed. Mater. Res. Symp., 2, 117–141, 1971.
  • [2] http://wwwf.imperial.ac.uk/blog/videoarchive/2016/06/01/larry-hench-june-1996, Access 22.06.2017. [3] Stanley, H. R., Hench, L. L., Bennett, C. G. Jr., Chellemi, S. J., King, C. J. 3rd, Going, R. E., Ingersoll, N. J., Ethridge, E. C., Kreutziger, K. L., Loeb, L., Clark, A. E. Implantologist; 2(2): 26–36, 1981.
  • [4] Hench, L. L., Paschall, H. A., J. Biomed. Mater. Res., 7(3): 25–42, 1973.
  • [5] Clark, A. E., Pantano, C. G., Hench, L. L., “Auger Spectroscopic Analysis of Bioglass Corrosion Films”, J. Am. Ceram. Soc., 59, 37–39, 1976.
  • [6] Ogino, M., Hench, L. L., “Formation of Calcium–Phosphate Films on Silicate–Glasses”, J. Non−Cryst. Solids 3, 673–678.10.1016/0022–3093(80)90514–1, 1980.
  • [7] Wilson, J., Noletti, D., “Bonding of Soft Tissues to Bioglass®”, in Handbook of Bioactive Ceramics, eds. Yamamuro, T., Hench, L. L., Wilson, J., editors, (Boca Raton, FL: CRC Press), 283–302, 1990.
  • [8] Wilson, J., Clark, A. E., Hall, M., Hench, L. L., J. Oral Implantol., 19(4): 295–302, 1993.
  • [9] Stanley, H. R., Hall, M. B., Clark, A. E., King, C. J. 3rd, Hench, L. L., Berte, J. J., Int J. Oral Maxillofac Implants. Jan–Feb; 12(1): 95–105, 1997.
  • [10] Wilson, J., Low, S. B., J. Appl. Biomater., Summer; 3(2): 123–9, 1992.
  • [11] http://nikceram.ir/bioactive-glass/ Access 22.06.2017.
  • [12] Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L., Polak, J. M., “Ionic Products of Bioactive Glass Dissolution Increase Proliferation of Human Osteoblasts and Induce Insulin–like Growth Factor II mRNA Expression and Protein Synthesis”, Biochem. Biophys. Res. Comm., 276:461–465, 2000.
  • [13] Hench, L. L., A. E. Clark, A. E. and Schaake, H. F., J. Non–Cryst. Sol., 8–10 837, 1972.
  • [14] Hench, L. L., Splinter, R. J., Greenlee, T. K. and Allen, W. C., J. Biomed. Mater. Res., 2. 117, 1971.
  • [15] Hench, L. L., Hand, H. A., Paschall, J., Biomed. Mats. Res. Symp., 5. 49, 1974.
  • [16] Greenlee, Jr. T. K., Beckham, C. A., Crebo, A. R. and Malmborg, J. C., “Glass Ceramic Bone Implants”, Journal of Biomedical Materials Research, Vol. 6, No. 3, pp. 235–244, 1972.
  • [17] Piotrowski, G., Hench, L. L., Allen, W. C. and Miller, G. J., “Mechanical Studies of the Bone–Bioglass Interfacial Bond”, Journal of Biomedical Materials Research, Vol. 9, No. 4, pp. 47–61, 1975.
  • [18] Hench, L. L., Paschall, H. A., Allen, W. C. and Piotrowski, G., “Interfacial Behavior of Ceramics Implants”, National Bureau of Standards Special Publication, Vol. 415, pp. 19–35, 1975.
  • [19] Griss, P., Greenspan, D. C., Heimke, G., Krempien, B., Buchinger, R., Hench, L. L. and Jentschura, G., “Evaluation of a Bioglass Coated Al2O3 Total Hip Prosthesis in Sheep”, Journal of Biomedical Materials Research, Vol. 10, No. 4, pp. 511–518, 1976.
  • [20] Hench, L. L., June, W. and Greenspan, D. C., “Bioglass: A Short History and Bibliography”, Journal of the Australian Ceramic Society, Vol. 40, No. 1, pp. 1–42, 2004.
  • [21] Wilson, J., Pigott, G. H., Schoen, F. J. and Hench, L. L., “Toxicology and Biocompatibility of Bioglass”, Journal of Biomedical Materials Research, Vol. 15, No. 6, pp. 805, 1981.
  • [22] Merwin, G. E., Atkins, J. S., Wilson, J. and Hench, L. L., “Comparison of Ossicular Replacement Materials in a Mouse Ear Model”, Otolaryngology, Head and Neck Surgery, Vol. 90, No. 4, pp. 461–469, 1982.
  • [23] Merwin, G. E., “Bioglass® Middle Ear Prosthesis: Preliminary Report”, The Annals of Otology, Rhinology and Laryngology, Vol. 5, No. 1, Part 1, pp. 78–82, 1986. [24] LeGeros, R. Z., “Properties of Osteoconductive Biomaterials: Calcium Phosphates”, Clin. Orthop. Relat. Res., 395: 81–98, 2002.
  • [25] Wilson, J., Low, S., Fetner, A. and Hench, L. L., “Bioactive Materials for Periodontal Treatment: A Comparative Study”, In: A. Pizzoferrato, P. G. Marchetti, A. Ravaglioli and A. J. C. Lee, Eds., Biomaterials and Clinical Applications, Elsevier Science Publishers, Amsterdam, pp. 223–228, 1987.
  • [26] Wilson, J. and Low, S. B., “Bioactive Ceramics for Periodontal Treatment: Comparative Studies in the Patus Monkey”, Journal of Applied Biomaterials, Vol. 3, No. 2, pp. 123–169, 1992.
  • [27] Stanley, H. R., Hench, L. L., Going, R., Bennett, C., Chellemi, S. J., King, C., Ingersoll, N., Ethridge, E. and Kreutziger, K., “The Implantation of Natural Tooth Form Bioglasses in Baboons”, Oral Surgery, Oral Medicine, Oral Pathology, Vol. 45, No. 5, pp. 339–356, 1976.
  • [28] Stanley, H. R., Hench ,L. L., Bennett, Jr. C. G., Chellemi, S. J., King III, C. J., Going, R. E., Ingersoll, N. J., Ethridge, E. C., Kreutziger, K. L., Loeb, L. and Clark, A. E., “The Implantation of Natural Tooth Form Bioglass® in Baboons–Long Term Results”, The International Journal of Oral Implantology, Vol. 2, No. 2, pp. 26–36, 1981.
  • [29] Hall, M. B., Stanley, H. R., King, C., Colaizzi, F., Spilman, D. and Hench, L. L., “Early Clinical Trials of 45S5 Bioglass® for Endosseous Ridge Maintenance with a New Endosseous Implant Material”, The Journal of Prosthetic Dentistry, Vol. 58, No. 5, pp. 607–613, 1987.
  • [30] Stanley, H. R., Hall, M. B., Colaizzi, F. and Clark, A. E., “Residual Alveolar Ridge Maintenance with a New Endosseous Implant Material”, Journal of Prosthetic Dentistry, Vol. 58, No. 5, pp. 607–613, 1987.
  • [31] Hench, L. L., West, J. K., “The Sol–Gel Process”, Chemical Reviews, 90(1): 33–72, 1990.
  • [32] Li, R., Clark, A. E. and Hench, L. L., “An Investigation of Bioactive Glass Powders by Sol-Gel Processing”, Journal of Applied Biomaterials, Vol. 2, No. 4, pp. 231–239, 1991.
  • [33] Karlan, M. S., Hench, L. L., Madden, M. and Ogino, M., “A Bone–Bonding Bioactive Material Implant in the Head and Neck: Bioglass”, Surgical Forum, Vol. 39, pp. 575–577, 1979.
  • [34] Wilson, J. and Merwin, G., E., “Biomaterials for Facial Bone Augmentation: Comparative Studies”, Journal of Biomedical Materials Research, Vol. 22, Suppl. A2, pp. 159–177, 1988.
  • [35] Oonishi, H., Hench, L. L., Wilson, J., Sugihara, F., Tsuji, E., Matsuwura, M., Kin, S., Yamamoto, T. and Mizokawa, S., “Quantitative Comparison of Bone Growth Behaviour in Granules in Bioglass®, A–W Glass–Ceramic, and Hydroxyapatite”, Journal of Biomedical Materials Research, Vol. 51, No. 1, pp. 37–46, 2000.
  • [36] Kim, C. Y., Clark, A. E. and Hench, L. L., “Early Stages of Calcium–Phosphate Layer Formation in Bioglass”, Journal of Non–Crystalline Solids, Vol. 113, No. 2–3, pp. 195–202, 1989.
  • [37] Hench, L. L., Polak, J. M., Xynos, I. D. and Buttery, L. D. K., “Bioactive Materials to Control Cell Cycle”, Material Research Innovations, Vol. 3, No. 6, pp. 313–323, 2000.
  • [38] Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L. and Polak, J. M., “Ionic Dissolution Products of Bioactive Glass Increase Proliferation of Human Osteoblasts and Induce Insulin–Like Growth Factor II mRNA Expression and Protein Synthesis”, Biochemical and Biophysical Research Communications, Vol. 276, No. 2, pp. 461– 465, 2000.
  • [39] Xynos, I. D., Edgar, A. J., Buttery, L. D. K., Hench, L. L. and Polak, J. M., “Gene Expression Profiling of Human Osteoblasts Following Treatment with the Ionic Dissolution Products of Bioglass® 45S5 Dissolution”, Journal of Biomedical Materials Research, Vol. 55, No. 2, pp. 151–157, 2001.
  • [40] Hench, L. L., Ed., “An Introduction to Bioceramics”, Chapters 6-12 & 31, 2nd Edition, Imperial College Press, London, 2013.
  • [41] Shi, D., “Biomaterials and Tissue Engineering”, Springer, ISBN 3–540–22203–0, p. 27, 2004.
  • [42] Nicholson, J. W., “The Chemistry of Medical and Dental Materials”, Royal Society of Chemistry, ISBN 0–85404–572–4, p. 92, 2002.
  • [43] Processing and Fabrication of Advanced Materials, XVII: Part 8: Polymer–Based Composites and Nano Composites Volume 2, Edited by N. Bhatnagar, Srivatsan, T. S., ISBN 81–907770–2–5, 2008.
  • [44] Tilocca, A., “Models of Structure, Dynamics and Reactivity of Bioglasses: A Review”, J. Mater. Chem., 20, 6848–6858, 2010.
  • [45] Donglu, Shi., “Biomaterials and Tissue Engineering”, Heidelberg, Germany: Springer; p. 27, 2004.
  • [46] Bronzino, J. D., “Biomedical Engineering Handbook Vol. 1”, Heidelberg, Germany: Springer; 2000.
  • [47] Hench, L. L., “The Story of Bioglass®”, Journal of Materials Science: Materials in Medicine, 17(11): 967–78, 2006.
  • [48] Hulbert, S. F., Young, F. A., Mathews, R. S., Klawitter, J. J., Talbert, C. D., Stelling, F. H., “Potential of Ceramic Materials as Permanently Implantable Skeletal Prostheses”, J. Biomed. Mater. Res., 4: 433–456, 1970.
  • [49] Hollinger, J. O., Brekke, J., Gruskin, E., Lee, D., “Role of Bone Substitutes”, Clin. Orthop. Relat. Res., 324: 55–65, 1996.
  • [50] https://www.intechopen.com/books/advanced-techniques-in-bone-regeneration/doped-bioactive-glass-materials-in-bone-regeneration. Access 18.04.2017
  • [51] Lacefleld, W., Hench, L. L., “The Bonding of Bioglass® to a Cobalt–Chromium Surgical Implant Alloy”, Biomaterials, 7(2): 104–8, 1986.
  • [52] Hench, L. L., Andersson, O., “Bioactive Glass Coatings”, Advanced Series in Ceramics, 1: 239–60, 1993.
  • [53] Bloyer, D. R., Gomez–Vega, J. M., Saiz, E., McNaney, J. M., Cannon, R. M., Tomsia, A. P., “Fabrication and Characterization of a Bioactive Glass Coating on Titanium Implant Alloys”, Acta Materialia, 47(15): 4221–4, 1999.
  • [54] Moritz, N., Vedel, E., Ylänen, H., Jokinen, M., Hupa, M., Yli–Urpo, A., “Characterisation of Bioactive Glass Coatings on Titanium Substrates Produced Using a CO2 Laser”, Journal of Materials Science: Materials in Medicine, 15(7): 787–94, 2004.
  • [55] Borrajo, J. P., Serra, J., González, P., León, B., Munoz, F. M., Lopez, M., “In vivo Evaluation of Titanium Implants Coated with Bioactive Glass by Pulsed Laser Deposition”, Journal of Materials Science: Materials in Medicine, 18(12): 2371–6, 2007.
  • [56] Lopez–Esteban, S., Gutierrez–Gonzalez, C. F., Gremillard, L., Saiz, E., Tomsia, A.P., “Interfaces in Graded Coatings on Titanium–Based Implants”, Journal of Biomedical Materials Research Part A., 88(4): 1010–21, 2009.
  • [57] James, P., “Glass Ceramics: New Compositions and Uses”, Journal of Non–Crystalline Solids, 181(1): 1–15, 1995.
  • [58] Lockyer, M. W. G., Holland, D., Dupree, R., “NMR Investigation of the Structure of Some Bioactive and Related Glasses”, Journal of Non–Crystalline Solids, 188(3): 207–19, 1995.
  • [59] Aboud, T., Stoch, L., “Crystallization Behaviour in the Glass System SiO2–P2O5–Al2O3–MgO– Na2O”, Journal of Non–Crystalline Solids, 219: 149–54, 1997.
  • [60] Szabo, I., Nagy, B., Völksch, G., Höland, W., “Structure, Chemical Durability and Microhardness of Glass–Ceramics Containing Apatite and Leucite Crystals”, Journal of Non–Crystalline Solids, 272(2): 191–9, 2000.
  • [61] Begum, A. N., Rajendran, V., Ylänen, H., “Effect of Thermal Treatment on Physical Properties of Bioactive Glass”, Materials Chemistry and Physics, 96(2): 409–17, 2006.
  • [62] Liu, J., Miao, X., “Sol–Gel Derived Bioglass as a Coating Material for Porous Alumina Scaffolds”, Ceramics International, 30(7): 1781–5, 2004.
  • [63] Li, N., Jie, Q., Zhu, S., Wang, R., “Preparation and Characterization of Macroporous Sol–Gel Bioglases”, Ceramics International, 31(5): 641–6, 2005.
  • [64] Xia, W., Chang, J., “Well–Ordered Mesoporous Bioactive Glasses (MBG): A Promising Bioactive Drug Delivery System”, Journal of Controlled Release, 110(3): 522–30, 2006.
  • [65] Balamurugan, A., Sockalingum, G., Michel, J., Fauré, J., Banchet, V., Wortham, L., et al., “Synthesis and Characterisation of Sol Gel Derived Bioactive Glass for Biomedical Applications”, Materials Letters, 60(29): 3752–7, 2006.
  • [66] Balamurugan, A., Balossier, G., Michel, J., Kannan, S., Benhayoune, H., Rebelo, A., et al., “Sol–gel Derived SiO2–CaO–MgO–P2O5 Bioglass System—Preparation and in Vitro Characterization”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 83(2): 546–53, 2007.
  • [67] Li, R., Clark, A., Hench, L. L., “An Investigation of Bioactive Glass Powders by Sol–Gel Processing”, Journal of Applied Biomaterials, 2(4): 231–9, 1991. [68] Rideal, E., Davies, J., “Interfacial Phenomena”, New York: Academic Press; 1963.
  • [69] Kaur, G., Pandey, O. P., Singh, K., Homa, D., Scott, B., Pickrell, G., “A Review of Bioactive Glasses: Their Structure, Properties, Fabrication and Apatite Formation”, Journal of Biomedical Materials Research Part A., 102(1): 254–74, 2014.
  • [70] Vallet–Regí, M., “Ceramics for Medical Applications”, Journal of the Chemical Society, Dalton Transactions, (2): 97–108, 2001. [71] Iler, R. K., “The Colloid Chemistry of Silica and Silicates”, Soil Science, 80–86, 1955. [72] Brinker, C. J., Scherer, G. W., Roth, E., “Sol→ Gel→ Glass, II. Physical and Structural Evolution during Constant Heating Rate Experiments”, Journal of Non–Crystalline Solids, 72(2): 345–68, 1985. [73] Hench, L. L., Ulrich, D. R., “Science of Ceramic Chemical Processing”, Wiley–Interscience; 1986. [74] Colby, M. W., Osaka, A., Mackenzie, J. D., “Temperature Dependence of the Gelation of Silicon Alkoxides”, Journal of Non–Crystalline Solids, 99(1): 129–39, 1988. [75] Falcone, J. S., “Soluble Silicates”, American Chemical Society; 1982.
  • [76] Iler, R. K., “The Chemistry of Silica”, New York: Wiley; 1979.
  • [77] Liu, S., “Aging of Gels”, University of Florida, Internal Report, 1989.
  • [78] Hench, L. L., Wilson J., “An Introduction to Bioceramics”, World Scientific; Singapore, 1993.
  • [79] Sepulveda, P., Jones, J. R., Hench, L. L., “Characterization of Melt–Derived 45S5 and Sol–Gel–Derived 58S Bioactive Glasses”, Journal of Biomedical Materials Research, 58(6): 734–40, 2001.
  • [80] Brinker, C. J., Scherer, G. W., “Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing”, Academic Press; London, 2013.
  • [81] “Bioceramics Development and Applications Vol. 1”, Article ID D110155, doi:10.4303/bda/D110155, 2011.
  • [82] Strnad, Z., “Role of the Glass Phase in Bioactive Glass–Ceramics”, Biomaterials, 13(5): 317–21, 1992.
  • [83] Shelby, J. E., “Introduction to Glass Science and Technology”, UK: Royal Society of Chemistry; 2005.
  • [84] Cormack, A. N., Tilocca, A., “Structure and Biological Activity of Glasses and Ceramics”, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 370(1963): 1271–80, 2012.
  • [85] Elgayar, I., Aliev, A. E., Boccaccini, A. R., Hill, R. G., “Structural Analysis of Bioactive Glasses”, Journal of Non–Crystalline Solids, 351(2): 173–83, 2005. [86] Ylänen, H., “Bone Ingrowth into Porous Bodies Made by Sintering Bioactive Glass Microspheres”, Åbo Akademi Process Chemistry Group, Combustion and Materials Chemistry; 2000.
  • [87] Hench, L. L., Andersson, O. H., LaTorre, G. P., “The Kinetics of Bioactive Ceramics, Part III. Surface Reactions for Bioactive Glasses Compared with an Inactive Glass”, Bioceramics, 4: 156–62, 1991.
  • [88] Andersson, O., Liu, G., Karlsson, K., Niemi, L., Miettinen, J., Juhanoja, J., “In vivo Behaviour of Glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 System”, Journal of Materials Science: Materials in Medicine, 1(4): 219–27, 1990.
  • [89] Osaka, A., Hayakawa, S., Tsuru, K., Ohtsuki, C., “Bioactivity of Alkali and Alkaline Earth Borosilicate Glasses, Borate Glasses”, Crystals and Melts, 490–7, 1997.
  • [90] Saranti, A., Koutselas, I., Karakassides, M. A., “Bioactive Glasses in the System CaO–B2O3–P2O5: Preparation, Structural Study and in Vitro Evaluation”, Journal of Non–Crystalline Solids, 352(5): 390–8, 2006.
  • [91] Yao, A., Wang, D., Huang, W., Fu, Q., Rahaman, M. N., Day, D. E., “In Vitro Bioactive Characteristics of Borate–Based Glasses with Controllable Degradation Behaviour”, Journal of the American Ceramic Society, 90(1): 303–6, 2007.
  • [92] Barrios de Arenas, I., Schattner, C., Vásquez, M., “Bioactivity and Mechanical Properties of Na2O–CaO–SiO2–P2O5 Modified Glasses”, Ceram. Int., 32(5): 515–20, 2005.
  • [93] Rude, R. K., Gruber, H. E., “Magnesium Deficiency and Osteoporosis: Animal and Human Observations”, The Journal of Nutritional Biochemistry, 15(12): 710–6, 2004.
  • [94] Okuma, T., “Magnesium and Bone Strength”, Nutrition, 17(7–8): 679–80, 2001.
  • [95] Cowan, J. A., “Structural and Catalytic Chemistry of Magnesium–Dependent Enzymes”, Biometals: An International Journal on the Role of Metal Ions in Biology, Biochemistry, and Medicine, 15(3): 225–35, 2002.
  • [96] Gomez, S., Rizzo, R., Pozzi–Mucelli, M., Bonucci, E., Vittur, F., “Zinc Mapping in Bone Tissues by Histochemistry and Synchrotron Radiation–Induced X–Ray Emission: Correlation with the Distribution of Alkaline Phosphatase”, Bone, 25(1): 33–8, 1999.
  • [97] Peretz, A., Papadopoulos, T., Willems, D., Hotimsky, A., Michiels, N., Siderova, V., et al., “Zinc Supplementation Increases Bone Alkaline Phosphatase in Healthy Men”, Journal of Trace Elements in Medicine and Biology, 15(2–3): 175–8, 2001.
  • [98] Nishi, Y., “Zinc and Growth”, Journal of the American College of Nutrition, 15(4): 340– 4, 1996.
  • [99] Tapiero, H., Townsend, D. M., Tew, K. D., “Trace Elements in Human Physiology and Pathology”, Copper, Biomedicine and Pharmacotherapy, 57(9): 386–98, 2003.
  • [100] Li, X., Wang, X., He, D., Shi, J., “Synthesis and Characterization of Mesoporous CaO–MO–SiO2–P2O5 (M= Mg, Zn, Cu) Bioactive Glasses/Composites”, Journal of Materials Chemistry, 18(34): 4103–9, 2008.
  • [101] Sitarz, M., Bulat, K., Szumera, M., “Influence of Modifiers and Glass-Forming Ions on the Crystallization of Glasses of the NaCaPO4–SiO2 System”, Journal of Thermal Analysis and Calorimetry, 109(2): 577–84, 2012.
  • [102] Brink, M., “Bioactive Glasses with a Large Working Range”, Abo Akademi University; 1997.
  • [103] Hench, L. L., “Bioceramics”, J. Am. Ceram. Soc., 81: 1705–1728, 1998.
  • [104] Hench, L. L., “Bioactive Ceramics: Theory and Clinical Applications”, Bioceramics, 7: 3–14, 1994.
  • [105] Day, D. E., White, J. E., Brown, R. F., McMenamin, K. D., “Transformation of Borate Glasses into Biologically Useful Materials”, Glass Technol. Part A., 44: 75–81, 2003.
  • [106] Day, D. E., Erbe, E. M., Richard, M., Wojcik, J. A., “Bioactive Materials”, No. 6709, 744. US Patent, March 23, 2004.
  • [107] Han, X., Day, D. E., “Reaction of Sodium Calcium Borate Glasses to Form Hydroxyapatite”, J. Mater. Sci. Mater. Med., 18: 1837–1847, 2007.
  • [108] Zhao, D., Huang, W., Rahaman, M. N., Day, D. E., Wang, D. P., “Mechanism for Converting Al2O3–Containing Borate Glass to Hydroxyapatite in Aqueous Phosphate Solution”, Acta Biomater., 5: 1265–1273, 2009.
  • [109] Pan, H., Zhao, X., Zhang, X., Zhang, K., Li, L., Li, Z., et al., “Strontium Borate Glass: Potential Biomaterial for Bone Regeneration”, J. Roy. Soc. Interface, 7: 1025–1031, 2010.
  • [110] Huang, W., Day, D. E., Kittiratanapiboon, K., Rahaman, M. N., “Kinetics and Mechanisms of the Conversion of Silicate (45S5), Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solution”, J. Mater. Sci. Mater. Med., 17: 583–596, 2006.
  • [111] Huang, W., Rahaman, M. N., Day, D. E., Li, Y., “Mechanisms of Converting Silicate, Borate, and Borosilicate Glasses to Hydroxyapatite in Dilute Phosphate Solution”, Phys. Chem. Glasses Europ. J. Glass. Sci. Technol. B., 47: 647–658, 2006.
  • [112] Fu, Q., Rahaman, M. N, Fu, H., Liu X., “Bioactive Glass Scaffolds with Controllable Degradation Rates for Bone Tissue Engineering Applications, I. Preparation and in Vitro Degradation”, J. Biomed. Mater. Res., 95A: 164–171, 2010.
  • [113] Marion, N., Liang, W., Reilly, G., Day, D. E., Rahaman, M. N., Mao, J. J., “Bioactive Borate Glass Supports the Osteogenic Potential of Human Mesenchymal Stem Cells”, Mech. Adv. Mater. Struct., 12: 239–246, 2005.
  • [114] Fu, H., Fu, Q., Zhou, N., Huang, W., Rahaman, M. N., Wang, D., et al., “In Vitro Evaluation of Borate–Based Bioactive Glass Scaffolds Prepared by a Polymer Foam Replication Method”, Mater. Sci. Eng. C., 29: 2275–2281, 2009.
  • [115] Fu, Q., Rahaman, M. N., Bal, B. S., Bonewald, L. F., Kuroki, K., Brown, R. F., “Bioactive Glass Scaffolds with Controllable Degradation Rates for Bone Tissue Engineering Applications, II. In Vitro and in Vivo Biological Evaluation”, J. Biomed. Mater. Res., 95A: 172–179, 2010.
  • [116] Liu, X., Xie, Z., Zhang, C., Pan, H., Rahaman, M. N., Zhang, X., et al., “Bioactive Borate Glass Scaffolds: in Vitro and in Vivo Evaluation for Use as a Drug Delivery System in the Treatment of Bone Infection”, J. Mater. Sci. Mater. Med., 21: 575–582, 2010.
  • [117] Jia ,W. T., Zhang, X., Luo, S. H., Huang, W. H., Rahaman, M. N., Day, D. E., et al., “Novel Borate Glass/Chitosan Composite as a Delivery Vehicle for Teicoplanin in the Treatment of Chronic Osteomyelitis”, Acta Biomater., 6: 812–819, 2010.
  • [118] Zhang, X., Jia, W., Gu, Y., Liu, X., Wang, D., Zhang C., et al., “Teicoplanin–Loaded Borate Bioactive Glass Implants for Treating Chronic Bone Infection in a Rabbit Tibia Osteomyelitis Model”, Biomaterials, 31: 5865–5874, 2010.
  • [119] Skipper, L. J., Sowrey, F. E., Pickup, D. M., Drake, K. O., Smith, M. E., Saravanapavan, P., et al., “The Structure of a Bioactive Calcia–Silica Sol–Gel Glass”, Journal of Materials Chemistry, 15(24): 2369–74, 2005.
  • [120] Jung, S. B., Day, D. E., Brown, R. F., Bonewald, L. F. “Potential Toxicity of Bioactive Borate Glasses in–Vitro and in–Vivo”, In Advances in Bioceramics and Porous Ceramics V; Narayan, R., Colombo, R.P., Halbig, M., Mathur, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
  • [121] Hench, L. L., “Bioceramics: from Concept to Clinic”, Journal of the American Ceramic Society, 74(7): 1487–510, 1991.
  • [122] Jones, J. R., “Review of Bioactive Glass: from Hench to Hybrids”, Acta Biomaterialia, 9(1): 4457–86, 2013.
  • [123] Li, P., Zhang, F., “The Electrochemistry of a Glass Surface and its Application to Bioactive Glass in Solution”, Journal of Non–Crystalline Solids, 119(1): 112–8, 1990.
  • [124] Doostmohammadi, A., Monshi, A, Fathi, M. H., Braissant, O., “A Comparative Physicochemical Study of Bioactive Glass and Bone–Derived Hydroxyapatite”, Ceramics International, 37(5): 1601–7, 2011.
  • [125] Karlsson, K. H., Fröberg, K., Ringbom, T., “A Structural Approach to Bone Adhering of Bioactive Glasses”, Journal of Non–Crystalline Solids, 112(1): 69–72, 1989.
  • [126] FitzGerald, V., Pickup, D. M., Greenspan, D., Wetherall, K. M., Moss, R. M., Jones, J. R., et al, “An Atomic Scale Comparison of the Reaction of Bioglass® in Two Types of Simulated Body Fluid”, Physics and Chemistry of Glasses–European Journal of Glass Science and Technology Part B., 50(3): 137–43, 2009.
  • [127] FitzGerald, V., Pickup, D. M., Greenspan, D., Sarkar, G., Fitzgerald, J. J., Wetherall, K. M., Moss, R. M., Jones, J. R., Newport, R., “A Neutron and X–Ray Diffraction Study of Bioglass® with Reverse Monte Carlo Modelling”, Adv. Funct. Mater., 17, 3746–3753, June, 2007.
  • [128]Tilocca, A., Cormack, A. N., de Leeuw, N. H., “The Structure of Bioactive Silicate Glasses: New Insight from Molecular Dynamics Simulations”, Chem. Mater., 19, 95 doi:10.1021/cm061631g, 2007.
  • [129]Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M. C., Mustarelli, P., Pedone, A., Segre, U., “Medium–Range Order in Phospho–Silicate Bioactive Glasses: Insights from MAS-NMR Spectra, Chemical Durability Experiments and Molecular Dynamics Simulations”, J. Non–Cryst. Solids, 354, 84–89, 2008.
  • [130] Martin, R. B., Burr, D. B., Sharkey, N. A., “Skeletal Tissue Mechanics”, New York: Springer–Verlag; 1998.
  • [131] Goldstein, S. A., “The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function”, J. Biomech., 20:1055–1062, 1987. [132] Reilly, D. T., Burstein, A. H., Frankel, V. H., “The Elastic Modulus of Bone”, J. Biomech., 7: 271–275, 1974.
  • [133] Fung, Y. C., “Biomechanics: Mechanical Properties of Living Tissues”, New York: Springer; 1993.
  • [134] Rho, J. Y., Hobatho, M. C., Ashman, R. B., “Relations of Density and CT Numbers to Mechanical Properties for Human Cortical and Cancellous Bone”, Med. Eng. Phys., 17: 347–355, 1995.
  • [135] Fu, Q., Rahaman, M. N., Bal, B. S., Brown, R. F., “Preparation and in Vitro Evaluation of Bioactive Glass (13–93) Scaffolds with Oriented Microstructures for Repair and Regeneration of Load–Bearing Bones”, J. Biomed. Mater. Res., 93A: 1380–1390, 2010.
  • [136] Liu, X., Rahaman, M. N., Fu, Q., “Oriented Bioactive Glass (13–93) Scaffolds with Controllable Pore Size by Unidirectional Freezing of Camphene–Based Suspensions: Microstructure and Mechanical Response”, Acta Biomater., 7: 410–416, 2011.
  • [137] Hench, L. L., Andersson, O. H., LaTorre, G. P., “The Kinetics of Bioactive Ceramics, Part III. Surface Reactions for Bioactive Glasses Compared with an Inactive Glass”, Bioceramics, 4: 156–62, 1991.
  • [138] Hench, L. L., Andersson, O. H., LaTorre, G. P., “The Kinetics of Bioactive Ceramics”, Bioceramics, USA., 43, 1991.
  • [139] Hench, L. L., West, J. K., “Biological Applications of Bioactive Glasses”, Life Chemistry Reports, 13: 187–241, 1996.
  • [140] https://ryortho.com/2014/10/bioglass-is-back-in-an-incredible-new-form/ Access 08.05.2017
  • [141] Andersson, O. H., Karlsson, K. H., Kangasniemi, K., “Calcium Phosphate Formation at the Surface of Bioactive Glass in Vivo”, Journal of Non–Crystalline Solids, 119(3): 290–6, 1990.
  • [142] Aitasalo, K., Peltola, M., Suonpää, J., Yli–Urpo, A., editors, “Bioactive Glass S53P4 in sinus Frontal Obliteration, In A 9–Year Experience”, 13th International Symposium on Ceramics in Medicine; Bologna, Italy, 2000.
  • [143] Peltola, M., “Experimental Follow–up Model for Clinical Frontal Sinus Obliteration with Bioactive Glass (S53P4)”, Acta Oto–Laryngologica, 120(543): 167–9, 2000.
  • [144] Brink. M., Turunen. T., Happonen. R. P., Yli–Urpo, A., “Compositional Dependence of Bioactivity of Glasses in the System Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2”, Journal of Biomedical Materials Research, 37(1): 114–21, 1997.
  • [145] Ylänen, H., Karlsson, K. H., Itälä, A., Aro, H. T., “Effect of Immersion in SBF on Porous Bioactive Bodies Made by Sintering Bioactive Glass Microspheres”, Journal of Non–Crystalline Solids, 275(1): 107–15, 2000.
  • [146] Itälä, A., Nordström, E. G., Ylänen, H., Aro, H. T., Hupa M., “Creation of Microrough Surface on Sintered Bioactive Glass Microspheres", Journal of Biomedical Materials Research, 56(2): 282–8, 2001.
  • [147] http://www.azom.com/article.aspx?ArticleID=11730. Access 08.05.2017
  • [148] Xynos, I. D., Hukkanen, M. V., Batten, J. J., Buttery, L. D., Hench, L. L., Polak, J.M., “Bioglass 45S5® Stimulates Osteoblast Turnover and Enhances Bone Formation in Vitro: Implications and Applications for Bone Tissue Engineering”, Calcif Tissue Int., 67: 321–9, 2000.
  • [149] Venugopal, J., Vadgma, P., Sampath, Kumar T., Ramakrishna, S., “Biocomposite Nanofibres and Osteoblasts for Bone Tissue Engineering”, Nanotechnology, 18, 2007.
  • [150] Chen, Q. Z., Thompson, I. D., Boccaccini, A. R., “45S5 Bioglass (R)–Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering”, Biomaterials, 27(11): 2414–2425, 2006.
  • [151] http://www.plascarb.eu/news_and_events/plascarb/news/585 Access 18.04.2017
  • [152] Bi, L., Jung, S. B., Day, D. E., Neidig, K., Dusevich, V., Eick, D., et al., “Evaluation of Bone Regeneration, Angiogenesis, and Hydroxyapatite Conversion in Critical–Sized Rat Calvarial Defects Implanted with Bioactive Glass Scaffolds”, J. Biomed. Mater. Res. Part A., 100A, 3267–3275, 2012.
  • [153] http://www.mo-sci.com/bioactive-glass/ Access 08.05.2017.
  • [154] Krish, E. R., Garg, A. K., “Post–Extraction Ridge Maintenance Using the Endosseous Ridge Maintenance Implant (ERMI) Compendium”, 15: 234–42, 1994.
  • [155] Stanley, H. R., Hall, M. B., Colaizzi, F., Clark, A. E., “Residual Alveolar Ridge Maintenance with a New Endosseous Implant Material”, J. Prosthet. Dent., 58: 607–13, 1987.
  • [156] Wilson, J., Clark, A. E., Hall, M., Hench, L. L., “Tissue Response to Bioglass Endosseous Ridge Maintenance Implants”, J. Oral Implantol., 19: 295–302, 1993.
  • [157] Atwood, D. A., “Some Clinical Factors Related to Rate of Resorption of Residual Ridges”, 1962, J. Prosthet. Dent., 86: 119–25, 2001. [158] Veldhuis, H., Driessen, T., Denissen, H., de Groot, K. A., “5–Year Evaluation of Apatite Tooth Roots as Means to Reduce Residual Ridge Resorption”, Clin. Prev. Dent., 6: 5–8, 1984.
  • [159] Quinn, J. H., Kent, J. N., “Alveolar Ridge Maintenance with Solid Nonporous Hydroxylapatite Root Implants”, Oral Surg. Oral Med. Oral Pathol., 85: 511–21, 1984.
  • [160] Hench, L. L., Ethridge, E. C., “Biomaterials: An Interfacial Approach”, New York: Academic Press; 1982.
  • [161] Sobolik, D. F., “Alveolar Bone Resorption”, J. Prosthet Dent., 10: 612–9, 1980.
  • [162] Piecuch, J. F., Topazian, R. G., Skoly, S., Wolfe, S., “Experimental Ridge Augmentation with Porous Hydroxyapatite Implants”, J. Dent. Res., 62: 148–54, 1983.
  • [163] Hall, M. B., Stanley, H. R., Excerpta Medica Proceedings International Congress on Tissue Integration and Maxillofacial Reconstruction, Brussels, Amsterdam: Elsevier Science Publishers BV; “Early Clinical Trials of 45S5 Bioglass for Endosseous Alveolar Ridge Maintenance Implants”, pp. 248–52, 1985.
  • [164] Clark, A. E., Stanley, H. R., “Clinical Trials of Bioglass Implants for Alveolar Ridge Maintenance”, J. Dent. Res., 65: 304, 1986.
  • [165] Stanley, H. R., Hall, M. B., Gainesville, Fla., University of Florida, J. H. Miller Health Center; Research protocol and consent form for project entitled: “Preservation of Alveolar Ridge with the Intraosseous Implantation of Root–Shaped Cones Made of Bioglases”, 1983.
  • [166] Weinstein, A. M., Klawitter, J. J., Cook, S. D., “Implant–Bone Characteristics of Bioglass Dental Implants”, J. Biomed. Mater. Res., 14: 23–9, 1980. [167] Fernandes, D. J., Elias, C. N., Valiev, R. Z., “Properties and Performance of Ultrafine Grained Titanium for Biomedical Applications”, Materials Research, on–line version ISSN 1980-5373, 2015.
  • [168] https://consultqd.clevelandclinic.org/2015/04/biological-solutions-show-promise-for-damaged-articular-cartilage/ Access 22.06.2017.
  • [169] Froum, S.J., Weinberg, M.A., Tarnow, D., “Comparison of Bioactive Glass Synthetic Bone Graft Particles and Open Debridement in the Treatment of Human Periodontal Defects, A Clinical Study”, J. Periodontol., 69: 698–709, 1998.
  • [170] Wilson, J., Low, S., Fetner A, Hench, L. L., “Bioactive Materials for Periodontal Treatment: A Comparative Study”, In: Pizzoferrato A, Marchetti PG, Ravaglioli A, Lee AJ, editors. Biomaterials and Clinical Applications, Amsterdam: Elsevier, pp. 223–8, 1987.
  • [171] Oonishi, H., Hench, L. L., Wilson, J., Sugihara, F., Tsuji, E., Kushitani, S., et al., “Comparative Bone Growth Behaviour in Granules of Bioceramic Materials of Various Sizes”, J. Biomed. Mater. Res., 44: 31–43, 1999.
  • [172] Zamet, J. S., Darbar, U. R., Griffiths, G. S., Bulman, J. S., Brägger, U., Bürgin, W., et al., “Particulate Bioglass as a Grafting Material in the Treatment of Periodontal Intrabony Defects”, J. Clin. Periodontol., 24: 410–8, 1997.
  • [173] Zhang, X., Jia, W. T., Gu, Yi–fei, “Borate Bioglass Based Drug Delivery of Teicoplanin for Treating Osteomyelitis”, J. Inorg. Mater., 25: 293–8, 2010. [174] http://www.wellpets.com/bone-graft-materials-in-veterinary-dentistry/ Access 18.04.2017
  • [175] Vallet–Regi, M., “Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering”, Chem. Eur. J. 12, 5934–5943, 2006.
  • [176] Xie, Z., Liu, X., Jia, W., Zhang, C., Huang, W., Wang, J., “Treatment of Osteomyelitis and Repair of Bone Defect by Degradable Bioactive Glass Releasing Vancomycin”, J. Control Release, 139: 118–26, 2009.
  • [177] Otsuka, M., Matsuda, Y., Kokubo, T., Yoshihara, S., Nakamura, T., Yamamuro, T., “A Novel Skeletal Drug Delivery System Using Self–Setting Bioactive Glass Bone Cement, III: The in vitro Drug Release from Bone Cement Containing Indomethacin and its Physicochemical Properties”, J. Control Release, 31: 111–9, 1994.
  • [178] Ladrón de Guevara–Fernández, S., Ragel C. V., Vallet-Regí M., “Bioactive Glass–Polymer Materials for Controlled Release of Ibuprofen”, Biomaterials, 24: 4037–43, 2003.
  • [179] Méndez, J. A., Fernández, M, González–Corchón, A., Salvado, M., Collía F., de Pedro, J. A., et al., “Injectable Self–Curing Bioactive Acrylic–Glass Composites Charged with Specific Anti–Inflammatory/Analgesic Agent”, Biomaterials, 25: 2381–92, 2004.
  • [180] Baino, F., Novajra, G., Miguez–Pacheco, V., R. Boccaccini, A. R., Vitale–Brovarone, C., “Bioactive Glasses: Special Applications Outside the Skeletal System”, Journal of Non–Crystalline Solids 432, 15–30, 2016.
  • [181] Ben–Arfa, B. A E., Salvado, I. M., Ferreira, J. M. F., Pullar, R. C., “The Effect of Functional Ions (Y3+, F−, Ti4+) on the Structure, Sintering and Crystallization of Diopside–Calcium Pyrophosphate Bioglases”, Journal of Non–Crystalline Solids, 443, 162–171, 2016.
  • [182] Liu, J., Rawlinson S. C. F., Hill, R. G., Fortune, F., “Fluoride Incorporation in High Phosphate Containing Bioactive Glasses and in Vitro Osteogenic, Angiogenic and Antibacterial Effects”, Dental Materials 32, e221–e237, 2016.
  • [183] Dziadek, M., Zagrajczuk, B., Menaszek, E., Wegrzynowicz, A., Pawlik, J., Katarzyna Cholewa–Kowalska, K., “Gel–Derived SiO2–CaO–P2O5 Bioactive Glasses and Glass–Ceramics Modified by SrO Addition”, Ceramics International 42, 5842–5857, 2016.
  • [184] ElBatal, F. H., Ouis, M. A., ElBatal, H. A., “Comparative Studies on the Bioactivity of Some Borate Glasses and Glass–Ceramics from the Two Systems: Na2O–CaO–B2O3 and NaF–CaF2–B2O3”, Ceramics International 42, 8247–8256, 2016.
  • [185] Siyu, Ni, Xiaohong, Li, Pengan, Y., Shirong Ni, Hong, F., Webster, T. J., “Enhanced Apatite–Forming Ability and Antibacterial Activity of Porous Anodic Alumina Embedded with CaO–SiO2–Ag2O Bioactive Materials”, Materials Science and Engineering C 58, 700–708, 2016.
  • [186] Arepalli, S. K., Tripathi, H., Hira, S. K., Manna, P. P., Pyare, R., Singh, S. P., “Enhanced Bioactivity, Biocompatibility and Mechanical Behavior of Strontium Substituted Bioactive Glasses”, Materials Science and Engineering C 69, 108–116, 2016.
  • [187] Abdelghany, A. M., Ouis, M. A., Azooz, M. A., ElBatal, H. A., El–Bassyouni, G. T., “Role of SrO on the Bioactivity Behavior of Some Ternary Borate Glassesand Their Glass Ceramic Derivatives”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 152, 126–133, 2016.
  • [188] Orgaz, F., Dzika, A., Szycht, O., Amat, D., Barba, F., Becerra, J., Santos–Ruiz, L., “Surface Nitridation Improves Bone Cell Response to Melt–Derived Bioactive Silicate/Borosilicate Glass Composite Scaffolds”, Acta Biomaterialia 29, 424–434, 2016.
  • [189] Li, H. F., Zheng, Y. F., “Recent Advances in Bulk Metallic Glasses for Biomedical Applications”, Acta Biomaterialia, 36, 1–20, 2016.
  • [190] Karasu, B., Yanar, A. O., Erdoğan, O., Kartal, S., Ak, G., Pirangil, S. E., “Metallic Glasses”, Şişe Cam Technical Bulletin, Vol: 45, Issue: 2(231), 5-17, 2017 (inTurkish).
  • [191] Huang, M., Hill, R. G., Rawlinson, S. C. F., “Zinc Bioglasses Regulate Mineralization in Human Dental Pulp Stem Cells”, Dental Materials 33, 543–552, 2017.
  • [192] Szesz, E. M., Lepienski, C. M., “Anodic Bonding of Titanium Alloy with Bioactive Glass”, Journal of Non–Crystalline Solids, http://dx.doi.org/10.1016/j.jnoncrysol.2017.04.038, 2017 (in press).
  • [193] Alhalawani, A. M. F., Towler, M. R., “A Novel Tantalum–Containing Bioglass. Part I. Structure and Solubility”, Materials Science and Engineering C 72, 202–211, 2017.
  • [194] Lizzi, F., Villat, C., Attik, N., Jackson, P., Grosgogeat, B., Goutaudier, C., “Mechanical Characteristic and Biological Behaviour of Implanted and Restorative Bioglasses Used in Medicine and Dentistry: A Systematic Review”, Dental Materials 33, 702–712, 2017.
  • [195] Ferraris, S., Miola, M., Cochis, A., Azzimonti, B., Rimondini, L., Prenesti, E., Vernè, E., “In situ Reduction of Antibacterial Silver Ions to Metallic Silver Nanoparticles on Bioactive Glasses Functionalized with Polyphenols”, Applied Surface Science 396, 461–470, 2017.
  • [196] Kumari, Ch V., Sobhanachalam, P., Jayasankar, C. K., Veeraiah, N., Kumar, V. R., “Bioactive Properties of CuO Doped CaF2‒CaO‒B2O3‒P2O5‒MO(M=Ba, Sr, Zn, Mg) Glasses”, Ceramics International 43, 4335–4343, 2017.
  • [197] Melli, V., Lefebvre, L‒P., Lenci, M., Mondon, M., Sao‒Joao, S., Cigada, A., Delafosse, D., De Nardo, L., “Resorbability of a Bioglass®–Based Glass–Ceramic Scaffold Produced via a Powder Metallurgy Approach”, Ceramics International 43, 8625–8635, 2017.
  • [198] Satyanarayana, T., Babu, M. V., Nagarjuna, G., Koti Reddy, D. V. R., , Rao, P. V., Prasad, P. S., “Structural Investigations on P2O5‒CaO‒Na2O‒K2O: SrO Bioactive Glass Ceramics”, Ceramics International 43, 10144–10150, 2017.
  • [199] Samudrala, R., Abdul Azeem, P., Penugurti, V., Manavathi, B., “Cytocompatibility Studies of Titania–Doped Calcium Borosilicate Bioactive Glasses in–Vitro”, Materials Science and Engineering C 77, 772–779, 2017.
  • [200] Bellucci, D., Anesi, A., Salvatori, R., Chiarini, L., Cannillo, V., “A Comparative in Vivo Evaluation of Bioactive Glasses and Bioactive Glass–Based Composites for Bone Tissue Repair”, Materials Science and Engineering C 79, 286–295, 2017.
There are 187 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Bekir Karasu

Ali Ozan Yanar This is me

Alper Koçak

Özden Kısacık This is me

Publication Date September 30, 2017
Submission Date June 24, 2017
Acceptance Date July 15, 2017
Published in Issue Year 2017

Cite

IEEE B. Karasu, A. O. Yanar, A. Koçak, and Ö. Kısacık, “Biyoaktif Camlar”, ECJSE, vol. 4, no. 3, pp. 436–471, 2017, doi: 10.31202/ecjse.323652.