Research Article
BibTex RIS Cite

Karbon Fiber-Silikon Arayüzey Kayma Kuvvetinin İrdelenmesi Üzerine Deneysel Bir Çalışma

Year 2017, , 541 - 546, 30.09.2017
https://doi.org/10.31202/ecjse.334175

Abstract

Bu çalışmanın amacı, üç farklı katkı maddesinin silikona karıştırılarak silikon ve karbon fiber demetinin arayüzey kayma mukavemetinin nasıl değiştirdiğinin araştırılmasıdır. Son yıllarda polimer matrisli kompozitlerin kullanımı savunma, havacılık, spor gibi alanlarda belirli bir şekilde arttığından, bu malzemelerin özelliklerini anlamak ve geliştirmek ilgi çeker hale gelmiştir. Bu çalışma silikon matrisin davranışına odaklanmıştır. Silikonun viskozitesi diğer birçok reçineden daha yüksek olduğu için, ıslatma yeteneği, takviye edici kumaşların fiberlerinin arasına sızmak için yeterli değildir. Viskoziteyi düşürmek için çeşitli katkı maddeleri kullanılabilirken, bu katkı maddelerinin fiber-matris ara yüzeyinin kayma mukavemeti üzerindeki etkileri iyi bilinmemektedir. Fiber çekme testi, katkı maddesinin değiştirilmesiyle görünür ara yüzey kayma mukavemetinin nasıl değiştiğini görmek için tasarlanmıştır. 

References

  • 1. D. Campbell, M.S. Lake, and K. Mallick. A study of the bending mechanics of elastic memory composites. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, 2004. 2. T. W. Murphey, T. Meink, and M. M. Mikulas. Some micromechanics considerations of the folding of rigidizable composite materials. In 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, number AIAA-2001-1418, 2001.
  • 3. W. H. Francis, M.S. Lake, and J. Steven Mayes. A review of classical _ber microbuckling analytical solutions for use with elastic memory composites. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, number AIAA-2006-1764, Newport, RI, 2006.
  • 4. W. H. Francis. Mechanics of post-microbuckled compliant-matrix composites. Master's thesis, Colorado State University, 2008.
  • 5. Lopez Jimenez, F.Mechanics of thin carbon fiber composites with a silicone matrix .Doctoral dissertation, California Institute of Technology,2011
  • 6. III, R. D. V., Kothera, C. S., Woods, B. K., Bubert, E. A., & Wereley, N. M. One Dimensional Morphing Structures for Advanced Aircraft,2012.
  • 7. Baier, H., L. Datashvili, and J. Hoffmann. "Mechanically reconfigurable and massively shape morphing space structures." Proceedings of the 11th European Spacecraft Structures, Materials and Mechanical Testing Conference. 2009.
  • 8. F. Lopez Jimenez and S. Pellegrino. Folding of fiber composites with a hyperelastic matrix. International Journal of Solids and Structures 49, February 2012(3-4): 395-407.
  • 9. Murphey, Thomas W. "Large strain composite materials in deployable space structures." 17th International Conference on Composite Materials. Vol. 28. Edinburgh, UK: The British Composites Soc., 2009.
  • 10. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., and Inman, D.J. “A Review of Morphing Aircraft,” Journal of Intelligent Material Systems and Structures, 22: 823-877. doi:10.1177/1045389X11414084,2011.
  • 11. Gern, F.H., Inman, D.J., and Kapania, R.K. (2002). “Structural and Aeroelastic Modeling of General Planform Wings with Morphing Airfoils,” AIAA Journal, 40(4): 628-637. doi: 10.2514/2.1719.
  • 12. Bae, J.S., Seigler, T.M. and Inman, D.J. (2005). ‘‘Aerodynamic and Static Aeroelastic Characteristics of a Variable-Span Morphing Wing,’’ Journal of Aircraft, 42(2): 528- 534. doi: 10.2514/1.4397.
  • 13. Gomez, J. C., and Garcia, E. (2011). Morphing unmanned aerial vehicles. Smart Materials and Structures, 20(10):103001. doi:10.1088/0964-1726/20/10/103001.
  • 14. Miller, Bernard, Pierre Muri, and Ludwig Rebenfeld. "A microbond method for determination of the shear strength of a fiber/resin interface." Composites Science and Technology 28.1 (1987): 17-32

An Experimental Study on Investigation of Carbon Fiber- Silicone Interfacial Shear Strength

Year 2017, , 541 - 546, 30.09.2017
https://doi.org/10.31202/ecjse.334175

Abstract

The aim of this study was to investigate how
interface shear strength of silicone and carbon fiber tow changes by mixing
three different types of additives into silicone. As the interest on polymer
matrix composites has been rising in last decades in a certain manner in many
fields like defense, aerospace and sports, understanding and improving the
characteristics of these materials arouses interest. This work focused on the
behavior of silicone matrix. As the silicone’s viscosity is higher than many
other resins, it’s wetting ability is not enough to penetrate through the tows
of reinforcing fabrics. Various additives can be utilized to decrease the
viscosity whereas the effects of these additives on the fiber-matrix interface
shear strength are not well-known. Fiber pull-out testing was designed to see
how the apparent interfacial shear strength changes via changing the additive.               

References

  • 1. D. Campbell, M.S. Lake, and K. Mallick. A study of the bending mechanics of elastic memory composites. In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, 2004. 2. T. W. Murphey, T. Meink, and M. M. Mikulas. Some micromechanics considerations of the folding of rigidizable composite materials. In 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, number AIAA-2001-1418, 2001.
  • 3. W. H. Francis, M.S. Lake, and J. Steven Mayes. A review of classical _ber microbuckling analytical solutions for use with elastic memory composites. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, number AIAA-2006-1764, Newport, RI, 2006.
  • 4. W. H. Francis. Mechanics of post-microbuckled compliant-matrix composites. Master's thesis, Colorado State University, 2008.
  • 5. Lopez Jimenez, F.Mechanics of thin carbon fiber composites with a silicone matrix .Doctoral dissertation, California Institute of Technology,2011
  • 6. III, R. D. V., Kothera, C. S., Woods, B. K., Bubert, E. A., & Wereley, N. M. One Dimensional Morphing Structures for Advanced Aircraft,2012.
  • 7. Baier, H., L. Datashvili, and J. Hoffmann. "Mechanically reconfigurable and massively shape morphing space structures." Proceedings of the 11th European Spacecraft Structures, Materials and Mechanical Testing Conference. 2009.
  • 8. F. Lopez Jimenez and S. Pellegrino. Folding of fiber composites with a hyperelastic matrix. International Journal of Solids and Structures 49, February 2012(3-4): 395-407.
  • 9. Murphey, Thomas W. "Large strain composite materials in deployable space structures." 17th International Conference on Composite Materials. Vol. 28. Edinburgh, UK: The British Composites Soc., 2009.
  • 10. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I., and Inman, D.J. “A Review of Morphing Aircraft,” Journal of Intelligent Material Systems and Structures, 22: 823-877. doi:10.1177/1045389X11414084,2011.
  • 11. Gern, F.H., Inman, D.J., and Kapania, R.K. (2002). “Structural and Aeroelastic Modeling of General Planform Wings with Morphing Airfoils,” AIAA Journal, 40(4): 628-637. doi: 10.2514/2.1719.
  • 12. Bae, J.S., Seigler, T.M. and Inman, D.J. (2005). ‘‘Aerodynamic and Static Aeroelastic Characteristics of a Variable-Span Morphing Wing,’’ Journal of Aircraft, 42(2): 528- 534. doi: 10.2514/1.4397.
  • 13. Gomez, J. C., and Garcia, E. (2011). Morphing unmanned aerial vehicles. Smart Materials and Structures, 20(10):103001. doi:10.1088/0964-1726/20/10/103001.
  • 14. Miller, Bernard, Pierre Muri, and Ludwig Rebenfeld. "A microbond method for determination of the shear strength of a fiber/resin interface." Composites Science and Technology 28.1 (1987): 17-32
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

İsmail Sinan Atlı

Atilla Evcin

Publication Date September 30, 2017
Submission Date August 11, 2017
Acceptance Date August 21, 2017
Published in Issue Year 2017

Cite

IEEE İ. S. Atlı and A. Evcin, “Karbon Fiber-Silikon Arayüzey Kayma Kuvvetinin İrdelenmesi Üzerine Deneysel Bir Çalışma”, ECJSE, vol. 4, no. 3, pp. 541–546, 2017, doi: 10.31202/ecjse.334175.