Review
BibTex RIS Cite

Glass Microspheres

Year 2019, , 613 - 641, 30.09.2019
https://doi.org/10.31202/ecjse.562013

Abstract

Glass microspheres are microscopic spheres of glass manufactured for a wide variety of uses in thermal insulation coating, putty, plastic casting polyester, radome, synthetic foam, adhesives, printed circuit board substrate, bowling, fan blades, and caulking materials, emulsion explosives, golf, sealant, pipeline insulation materials, artificial marble, PVC, low density oil drilling, light cement etc. Glass microspheres are usually between 1 and 1000 micrometres in diameter, although the sizes can range from 100 nanometres to 5 millimetres in diameter. Microspheres are spherical particles that can be distinguished into two categories; solid or hollow. This paper presented a general overview of glass microspheres.


Supporting Institution

---

Project Number

---

Thanks

---

References

  • [1] Saferstein R., Criminalistics, an introduction to forensic science, Cram101 Text Book, 11th edition, 2017.
  • [2] Stuart M. L., Handbooks of composite reinforcements, VCH Publishers, California, pp 248–50, 1993.
  • [3] Glass beads & retro reflectivity, ALL Glass Limited, 49 Burnbrae Road, Linwood Industrial Estate, Linwood, PA3 3BD Scotland (Access Date: 15. 03. 2019).
  • [4] Çelebi H., J. of Sci. and Techn. A–Appl. Sci. and Eng. 2017, 18: 3.
  • [5] Ochoa O. O., Reddy J. N., Finite element analysis of composite laminates. Dordrecht: Springer Science & Business Media, 1992.
  • [6] Sorensen L., Gmür T., Botsis J., in: Proceedings of the 3rd International Conference on Composites Testing and Model Identification Comp Test, University Press, Porto, pp. 174–175, 2006.
  • [7] Beyatricks K. J., Kavimani S. et al., Earth Journals, 2013, 2: 1, 2013.
  • [8] Righini G. C., Glassy microspheres for energy applications, Micro machines (Basel), Published online 2018 Jul 30. doi: 10.3390/mi9080379 (Access Date: 18.03.2019).
  • [9] Standard specification for roadworks, November 2015, accessible on http://www.nt.gov.au/infrastructure/techspecs/index.shtml (Access Date: 18.03.2019).
  • [10] Evans M. R., Pavement marking demonstration projects: State of Alaska and state of Tennessee, FHWA–HRT–12–048, November 2013.
  • [11] Product information: Floated product series, 3M Glass Bubbles, accessible on www.3M.com/oilandgas (Access Date: 29.03.2019).
  • [12] Yung W. K. C. et al., Comp. Sci. and Techno., 2009, 69 (2) :260–264.
  • [13] Verweij H., G. de With, Veeneman D., J. of Mater. Sci., 1985, 20 (3) :1069–1078.
  • [14] Whatever floats your boat, Clemson student chapter of the American Society of Civil Engineers, Wayback Machine. ces.clemson.edu, 2009.
  • [15] Erikson R., Foams on the cutting edge, Mechanical Engineering–CIME, 1999.
  • [16] Shelby J. E. et al., A radically new method for hydrogen storage in hollow glass microspheres, DOE Technical Report FG26–04NT42170, 2017.
  • [17] Mee S. J., The synthesis, characterisation and properties of self-assembled hollow and low density microspheres, PhD Thesis, College of Engineering and Physical Sciences, University of Birmingham, May 2011.
  • [18] Amos S. E., Yalçın B., Hollow glass microspheres for plastics, elastomers, and adhesives compounds, PDL Handbook Series, William Andrew, Elsevier, 2015.
  • [19] Big world, professional producer for glass beads!: Products manual, Landscapus INC., accessible on http://www.landscapusinc.com/ (Access Date: 20.03.2019).
  • [20] Gauthier M. M., Glass processing, pp 1115–1170, 1995 (Access Date: 20.03.2019).
  • [21] Garza–Cruz T. V., Nakagava M., Granular Matter, 14. 10.1007/s10035–012–0315–6, 2012.
  • [22] Liang J. Z., Li F. H., Measurement of thermal conductivity of hollow glass–bead–filled polypropylene composites polymer testing, 25. 527-531.
  • 10.1016/j.polymertesting.2006.02.007., 2006 (Access Date: 21.03.2019).
  • [23] Wang J. H. et al., DOI: 10.3144/expresspolymlett.2008.16, December 2007.
  • [24] Shunmugasam V. C., Pinisetty D., Gupta N., DOI 10.1007/s10853–013–7691–0, 2013.
  • [25] Rosato D., Density in plastics engineered product design, 2003.
  • [26] Zhu, B. L. et al., J. Reinf. Plast. Compos., 2012, 31: 1311–1326.
  • [27] Bing L. et al., Modelling and characterization of effective thermal conductivity of single hollow glass microsphere and its powder, materials, 11. 133. 10.3390/ma11010133., 2018.
  • [28] Mukund J. Y. et al., Brazilian J. of Pharmaceutical Sci., 2012, 48: 1.
  • [29] Awaja F. et al., Progress in Mater. Sci., 2016, 83.
  • [30] Li Z. et al., J. Phys. Chem. C, 2009, 113: 7, 2792–2797.
  • [31] Liang J. Z., Li F. H., Polym. Test., 2006, 25: 527–531.
  • [32] Wong Y. et al., J. Vis. Exp., 2017, 122.
  • [33] Debasmita M., Alok S., Plast. Polym. Technol., 2013; 2: 39-47.
  • [34] Zhang H. et al., Electroplating Finishing, 2007, 26(1): 26–29.
  • [35] Kureha. Available online: http://www.kureha.co.jp/en/business/material/microspheres.html (Access Date: 25.03.2019).
  • [36] Han M. G. et al., J. Magn. Mater., 2009, 321(9): 1125–1129.
  • [37] Li, B. et al., J., Mater. Lett. 2011, 65, 1992–1994.
  • [38] Ari, T. C., Akin, S., in Proceedings of the World Geothermal Congress, Melbourne, Australia, pp. 1–7, 2015.
  • [39] Budov V. V., Glass Ceram. 1994, 51, 230–23.
  • [40] Minhas A. et al., Hollow–glass sphere application in drilling fluids: Case study, in Proceedings of the SPE Western Regional Meeting, Garden Grove, CA, USA, 2015.
  • [41] Ganesan P. et al., Am. J. Drug Discov. Dev., 2014, 4: 153–179.
  • [42] Nussinovitch A., Polymer macro– and micro–gel beads: Fundamentals and applications, Springer Sci. & Business Media: Berlin, German, 2010.
  • [43] Gu G. et al., Chin. Opt. Lett., 2013, 11: 101401.
  • [44] Rembaum A., Tokes Z. A., Microspheres: Medical and biological applications, CRC Press Revivals: Boca Raton, FL, USA, 2017.
  • [45] Veatch F. et al., Method of producing hollow glass spheres, U.S. Patent 2,978,339, 4 April 1961.
  • [46] Fan K. C. et al., Meas. Sci. Technol., 2010, 21: 054002.
  • [47] Nogami M. et al., Rev. Laser Eng., 1980, 8: 793–797.
  • [48] Li T., Fundamental tests of physics with optically trapped microspheres, PhD Thesis, University of Texas, Austin, TX, USA, 2013.
  • [49] Liepins R. et al., Progr. Polym. Sci., 1980, 6: 169–186.
  • [50] Gulyaev I., Experience in plasma production of hollow ceramic microspheres with required wall thickness, Ceram. Int. 2015, 41, 101–107.
  • [51] Okamot S. et al., Sci. Rep., 2014, 4: 5186.
  • [52] Sanghera J. et al., C. R. Chim., 2002, 5: 873–883.
  • [53] Lim K. L. et al., Chem. Eng. Technol., 2010, 33: 213–226.
  • [54] Schmid G. H. S. et al., Int. J. Energy Res., 2017, 41: 297–314.
  • [55] https://www.cospheric.com/ (Access Date: 30.03.2019).
  • [56] Qi X. et al., Sci. Rep., 2016, 6: 33241.
  • [57] Nuckolls J. et al., Nature 1972, 239: 139–142.
  • [58] Pfalzner S., An introduction to inertial confinement fusion, CRC Press: Boca Raton, FL, USA, 2006.
  • [59] Craxton R. S. et al., Phys. Plasmas., 2015, 22: 110501.
  • [60] Betti R., Hurricane O. A., Nat. Phys., 2016, 12: 435–448.
  • [61] Zohuri B., Inertial confinement fusion driven thermonuclear energy, Springer: Berlin, Germany, 2017.
  • [62] Lewkowicz I., J. Phys. D Appl. Phys., 1974, 7: L61–L62.
  • [63] Solomon D. E., Henderson T. M., J. Phys. D Appl. Phys., 1975, 8: L85–L86.
  • [64] Hendricks C. D. et al., J. Nucl. Mater., 1979, 85–86: 107–111.
  • [65] Koo J. et al., J. Nucl. Mater., 1979, 85–86: 113–115.
  • [66] Nogami M. et al., Rev. Laser Eng. 1980, 8: 793–797.
  • [67] Righini G. C., Glassy microspheres for energy applications, Micromachines (Basel), 2018 Aug; 9(8): 379, Published online 2018 Jul 30. doi: 10.3390/mi9080379.
  • [68] www.glass-bubble.com/blog/archives/tag/hollow-glass-microsphere (Access Date: 01.04.2019).
  • [69] Schmitt M. L. et al., J. of Non–Crys. Solids, 2006, 352 (6): 626–631.
  • [70] Ranjbar N., Künzel C., Cenospheres: A review, Fuel, 2017, 207:1–12.
  • [71] Bica I., Mater. Sci. and Eng. B, 2002, 88 (1): 107–109.
  • [72] Marchand C. et al., J. of Thermal Spray Techno., 2007, 16 (5): 705–712.
  • [73] Watkins I. G., Prado M., Procedia Mater. Sci., 2015, 8: 1057–1065.
  • [74] Budov V. V., Hollow glass microspheres. use, properties, and technology (Review), Glass and Ceramics, 1994, 51 (7): 230–235.
  • [75] Righini G. C., Righini N., Glassy materials based microdevices, ISBN 978-3-03897-618-9 (Pbk); ISBN 978-3-03897-619-6, Feb. 2019.
  • [76] Bermel P. et al., 2015, 23 (24): A1533–A1540.
  • [77] Patankar S. N., Kranov Y. A., Mater. Sci. and Eng. A, 2010, 527: 1361–1366.
  • [78] Martinelli J. R. et al., J. of Non–Cryst. Solids, 2010, 356: 2683–2688.
  • [79] Schmid G. et al., Surface and Coatings Techn., 2010, 205 (7): 1929–1936.
  • [80] Dong C. H. et al., Optics Commun., 2010, 283: 5117–5120.
  • [81] Li S. et al., Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6: 127–136.
  • [82] Xie Y. et al., J. of Power Sources, 2011, 196: 10727–10730.
  • [83] Li B. et al., Mater. Letters, 2011, 65: 1992–1994.
  • [84] Xu N. et al., Ceram. Int., 2011, 37: 2663–2667.
  • [85] Shetty S., Hall M., Hydrogen Energy Publications, 2011, 36: 9694–9701.
  • [86] Poorbaygi H. et al., Appl. Radiation and Isotopes, 2011, 69: 1407–1414.
  • [87] Huang W. et al., Fuel and Energy Abst., 2011, 36 (16): 9758–9766.
  • [88] Duan X. J. et al., Mater. Letters, 2011, 65: 243–250.
  • [89] Liu J. et al., Mater. Letters, 2011, 65: 929–932.
  • [90] Swetha C., Kumar R., Materials and Design, 2011, 32: 4152–4163.
  • [91] Keränen P. et al., J. Mech. Behav. Biomed. Mater., 2011, 4 (7): 1483–91.
  • [92] Xu N. et al., Mater. Research Bull., 46, 2011, 92–97.
  • [93] Bortot M. B. et al., Procedia Mater. Sci., 2012, 1: 351–358.
  • [94] Lakhkar N. J., Park J. H., Acta Biomaterialia 8, 2012, 4181–4190.
  • [95] Peroni L. et al., Mater. Sci. and Eng. A, 2012, 552: 364–375.
  • [96] Qi X. et al., Int. J. of Hydrogen Energy, 2012, 37: 1518–1530.
  • [97] Xu N. et al., Comp. Sci. and Tech., 2012, 72: 528–532.
  • [98] Zhou S. et al., Mater. Chem. and Phys., 2012, 134: 224– 228.
  • [99] Jiao Y. et al., Mater. Sci. and Eng., C, 2013, 33: 2744–2751.
  • [100] Li J. et al., Mater. and Design, 2013, 46: 902–909.
  • [101] Hu Y. et al., Comp. Sci. and Techn., 2013, 79: 64–69.
  • [102] Zhou R. et al., Mater. Letters, 2013, 112: 97–100.
  • [103] Miao G. et al., Mater. Sci. and Eng., C, 2013, 33: 4236–4243.
  • [104] Jiang W. et al., J. of Photochem. and Photobio. A, 2013, 262: 7–13.
  • [105] Dalai S. et al., Int. J. of Hydrogen Energy, 2014, 39: 16451–16458.
  • [106] Sorge M. et al., J. of Power Sources, 2014, 266: 496–511.
  • [107] Dalai S. et al., Int. J. of Hydrogen Energy, 2014, 39: 3304–3312.
  • [108] Guimaraes C. et al., Radiation Phys. and Chem., 2014, 95: 185–187.
  • [109] Liu L. et al., Polymer Degradation and Stability, 2014, 104: 87–94.
  • [110] Shrivastava P. et al., Microelectronic Eng., 2014, 126: 103–106.
  • [111] Pereira D. A. et al., Bioresource Techn., 2014, 158: 98–104.
  • [112] Dalai S. et al., Microelectronic Eng., 2014, 126: 65–70.
  • [113] Sun L. et al., Separation and Purification Techn., 2014, 125: 156–162.
  • [114] Lehmhusa D. et al., Procedia Mater. Sci., 2014, 4: 383–387.
  • [115] Domanická A. et al., Ceram. Int., 2014, 40: 6005–6012.
  • [116] Zhu B. L. et al., Comp. Part B, 2014, 58: 91–102.
  • [117] Lyubimov V. V. et al., Procedia CIRP, 2015, 37: 107–111.
  • [118] Hmood F. J. et al., J. of the Euro. Ceram. Soc., 2015, 35: 4143–4151.
  • [119] Malinowski R. et al., Comp. Part B, 2015, 76: 13–19.
  • [120] He G. et al., Mater. Research Bull., 2015, 66: 45–50.
  • [121] Ahn K. et al., Polymer, 2015, 56: 178–188.
  • [122] Wang H. et al., Sensors and Actuators B, 2015, 216: 332–336.
  • [123] Zhu B. L. et al., Comp. Part B, 2015, 69: 496–506.
  • [124] Páez L. L. et al., Sensors and Actuators A, 2015, 233: 422–426.
  • [125] Huang J. et al., J. of Luminescence, 2015, 157: 215–219.
  • [126] Pestana C. J. et al., J. of Hazardous Mater., 2015, 300: 347–353.
  • [127] Perfilov V. A. et al., Procedia Eng., 2016, 150: 1479–1484.
  • [128] Ghosh D. et al., J. of the Euro. Ceram. Soc., 2016, 36: 781–789.
  • [129] Moosavi S. S., Alizadeh P., Mater. Letters, 2016, 167: 98–101.
  • [130] Mingfei X. et al., J. of Hazardous Mater., 2016, 305: 51–58.
  • [131] Li L. et al., J. of Magnetism and Magnetic Mater., 2016, 417: 349–354.
  • [132] Ren S. et al., Mater. Sci. & Eng. A, 2016, 674: 604–614.
  • [133] Oreshkin D. et al., Procedia Eng., 2016, 153: 638–643.
  • [134] Geng H. et al., Mater. and Design, 2016, 95: 32–38.
  • [135] Zhang X., Wang P., Comp. Part B, 2016, 101: 53–63.
  • [136] Li F. et al., Int. J. of Hydrogen Energy, 2016, 41: 12705–12713.
  • [137] Westcott M. A. et al., Adv. in Radiation Oncology, 2016, 1: 351–364.
  • [138] Wang Q. et al., Ceram. Int., 2016, 42: 4886–4892.
  • [139] Yan H. et al., J. of Phys and Chem. of Solids, 2016, 98: 43–49.
  • [140] Li F. et al., J. of Non–Crys. Solids, 2016, 436: 22–28.
  • [141] Duan H. et al., Mater. Letters, 2016, 167: 201–204.
  • [142] Delogu M. et al., J. of Cleaner Produc., 2016, 139: 548–560.
  • [143] Li C. et al., Energy and Buildings, 2016, 125: 298–309.
  • [144] Lu D. et al. Ceram. Int., 2017, 43: 9164–9170.
  • [145] Ren S. et al., J. of Alloys and Comp., 2017, 722: 321–329.
  • [146] Li F. et al., J. of Non–Cryst. Solids 2017, 458: 52–60.
  • [147] Herrera–Ramírez L. C. et al., Comp. Sci. and Techn., 2017, 151: 211–218.
  • [148] Ren S. et al., J. of Alloys and Comp., 2017, 721: 213–219.
  • [149] Yang Z. et al., Optical Mater., 2017, 72: 524–528.
  • [150] Anbuchezhiyan G. et al., J. of Alloys and Comp., 2017, 719: 125–132.
  • [151] Jiao C. et al., J. of Hazardous Mater., 2017, 332: 176–184.
  • [152] Dalai S. et al., Mater. Today: Proceedings, 2017, 4: 11608–11616.
  • [153] Liu X. et al., Comp. Sci. and Techn., 2017, 153: 62–70.
  • [154] An Z., Zhang J., Mater. Research Bull., 2017, 93: 230–237.
  • [155] Kumar N. et al., Comp. Part B, 2017, 109: 277–285.
  • [156] Kang D. H. et al., Comp. Part B, 2017, 117: 35–42.
  • [157] Wang Y. et al., Comp. Sci. and Tech., 2017, 140: 89–98.
  • [158] Pontiroli L. et al., Mater. Letters, 2017, 190: 111–114.
  • [159] Bianchetti A. et al., Optics Commun., 2017, 394: 152–156.
  • [160] Ralite F. et al., Physica Medica, 2017, 44: 28–45.
  • [161] Zakir Hossain K. M. et al., Acta Biomaterialia, 2018, 72: 396–406.
  • [162] Tian S. et al., Progress in Organic Coatings, 2018, 115: 115–121.
  • [163] Araque L. M., de Morais A. C. L., J. of Mater. Research and Tech., 2018.
  • [164] Ren S. et al., Ceram. Int., 2018, 44: 1147–1155.
  • [165] Gao Q. et al., Solar Energy Mater. and Solar Cells, 2018, 180: 138–147.
  • [166] de Sousa–Vieira L. et al., Optical Mater., 2018, 83: 207–211.
  • [167] Lv X. et al., Construction and Building Mater., 2018, 162: 280–285.
  • [168] Zeng G. et al., Ceram. Int., 2018, 44: 8788–8794.
  • [169] Huang Y. et al., J. of Alloys and Compounds, 2018, 748: 93–99.
  • [170] Ohta S. et al., J. of Biosci. and Bioeng., 2018, 126 (4): 533–539.
  • [171] Al–Gemeel A. N. et al., Construction and Building Mater., 2018, 171: 858–870.
  • [172] Anbuchezhiyan G. et al., Archives of Civil and Mech. Eng., 2018, 18, 1645–1650.
  • [173] Li X. et al., Mater. Research Bull., 2018, 97, 567–571.
  • [174] Kafrouni M. et al., Physica Medica, 2018, 56: 33.
  • [175] Greppi M., Fabbri G., Energy Procedia, 2018, 148: 948–953.
  • [176] Zhang J. et al., Surface and Coatings Tech., 2019, 359: 62–72.
  • [177] Hong W. et al., Ceram. Int., 2019, doi: https://doi.org/10.1016/j.ceramint.2019.03.241.
  • [178] Ding J. et al., Ceram. Int., 2019, 45: 10126–10132.
  • [179] Nguyen V. A. et al., Optics Commun., 2019, 440: 14–20.
  • [180] Cheng Z. et al., Int. J. of Thermal Sci., 2019, 140: 358–367.
  • [181] Vereshchagina T. A. et al., J. of Environmental Chem. Eng., 2019, 7: 102887.
  • [182] Fang Y. et al., J. of Drug Delivery Sci. and Tech., 2019, 51: 430–437.

Cam Mikro Kürecikleri

Year 2019, , 613 - 641, 30.09.2019
https://doi.org/10.31202/ecjse.562013

Abstract

Cam mikro küreler ısı izolasyon kaplaması, yapıştırıcı, polyester, radar, sentetik köpük, bağlayıcılar, elektronik devre altlıkları, üfleç bıçakları, sıvı patlayıcılar, bowling, golf, sızdırmazlık elemanı, boru hattı izolasyon malzemeleri, sunni mermer, PVC, düşük yoğunluklu deliciler, hafif çimento vb. alanlarda çok çeşitli kullanımlar için üretilmiş mikroskobik cam kürelerdir. Bu mikro kürelerin çapı genellikle 1 ila 1000 mikrometre arasındadır. Ancak, boyutları 100 nanometre ile 5 milimetre arasında değişebilir. Mikro küreler, katı veya içi boş olmak üzere iki kategoriye ayrılabilirler. Bu makale cam mikro kürelere genel bir bakış sunmaktadır.


Project Number

---

References

  • [1] Saferstein R., Criminalistics, an introduction to forensic science, Cram101 Text Book, 11th edition, 2017.
  • [2] Stuart M. L., Handbooks of composite reinforcements, VCH Publishers, California, pp 248–50, 1993.
  • [3] Glass beads & retro reflectivity, ALL Glass Limited, 49 Burnbrae Road, Linwood Industrial Estate, Linwood, PA3 3BD Scotland (Access Date: 15. 03. 2019).
  • [4] Çelebi H., J. of Sci. and Techn. A–Appl. Sci. and Eng. 2017, 18: 3.
  • [5] Ochoa O. O., Reddy J. N., Finite element analysis of composite laminates. Dordrecht: Springer Science & Business Media, 1992.
  • [6] Sorensen L., Gmür T., Botsis J., in: Proceedings of the 3rd International Conference on Composites Testing and Model Identification Comp Test, University Press, Porto, pp. 174–175, 2006.
  • [7] Beyatricks K. J., Kavimani S. et al., Earth Journals, 2013, 2: 1, 2013.
  • [8] Righini G. C., Glassy microspheres for energy applications, Micro machines (Basel), Published online 2018 Jul 30. doi: 10.3390/mi9080379 (Access Date: 18.03.2019).
  • [9] Standard specification for roadworks, November 2015, accessible on http://www.nt.gov.au/infrastructure/techspecs/index.shtml (Access Date: 18.03.2019).
  • [10] Evans M. R., Pavement marking demonstration projects: State of Alaska and state of Tennessee, FHWA–HRT–12–048, November 2013.
  • [11] Product information: Floated product series, 3M Glass Bubbles, accessible on www.3M.com/oilandgas (Access Date: 29.03.2019).
  • [12] Yung W. K. C. et al., Comp. Sci. and Techno., 2009, 69 (2) :260–264.
  • [13] Verweij H., G. de With, Veeneman D., J. of Mater. Sci., 1985, 20 (3) :1069–1078.
  • [14] Whatever floats your boat, Clemson student chapter of the American Society of Civil Engineers, Wayback Machine. ces.clemson.edu, 2009.
  • [15] Erikson R., Foams on the cutting edge, Mechanical Engineering–CIME, 1999.
  • [16] Shelby J. E. et al., A radically new method for hydrogen storage in hollow glass microspheres, DOE Technical Report FG26–04NT42170, 2017.
  • [17] Mee S. J., The synthesis, characterisation and properties of self-assembled hollow and low density microspheres, PhD Thesis, College of Engineering and Physical Sciences, University of Birmingham, May 2011.
  • [18] Amos S. E., Yalçın B., Hollow glass microspheres for plastics, elastomers, and adhesives compounds, PDL Handbook Series, William Andrew, Elsevier, 2015.
  • [19] Big world, professional producer for glass beads!: Products manual, Landscapus INC., accessible on http://www.landscapusinc.com/ (Access Date: 20.03.2019).
  • [20] Gauthier M. M., Glass processing, pp 1115–1170, 1995 (Access Date: 20.03.2019).
  • [21] Garza–Cruz T. V., Nakagava M., Granular Matter, 14. 10.1007/s10035–012–0315–6, 2012.
  • [22] Liang J. Z., Li F. H., Measurement of thermal conductivity of hollow glass–bead–filled polypropylene composites polymer testing, 25. 527-531.
  • 10.1016/j.polymertesting.2006.02.007., 2006 (Access Date: 21.03.2019).
  • [23] Wang J. H. et al., DOI: 10.3144/expresspolymlett.2008.16, December 2007.
  • [24] Shunmugasam V. C., Pinisetty D., Gupta N., DOI 10.1007/s10853–013–7691–0, 2013.
  • [25] Rosato D., Density in plastics engineered product design, 2003.
  • [26] Zhu, B. L. et al., J. Reinf. Plast. Compos., 2012, 31: 1311–1326.
  • [27] Bing L. et al., Modelling and characterization of effective thermal conductivity of single hollow glass microsphere and its powder, materials, 11. 133. 10.3390/ma11010133., 2018.
  • [28] Mukund J. Y. et al., Brazilian J. of Pharmaceutical Sci., 2012, 48: 1.
  • [29] Awaja F. et al., Progress in Mater. Sci., 2016, 83.
  • [30] Li Z. et al., J. Phys. Chem. C, 2009, 113: 7, 2792–2797.
  • [31] Liang J. Z., Li F. H., Polym. Test., 2006, 25: 527–531.
  • [32] Wong Y. et al., J. Vis. Exp., 2017, 122.
  • [33] Debasmita M., Alok S., Plast. Polym. Technol., 2013; 2: 39-47.
  • [34] Zhang H. et al., Electroplating Finishing, 2007, 26(1): 26–29.
  • [35] Kureha. Available online: http://www.kureha.co.jp/en/business/material/microspheres.html (Access Date: 25.03.2019).
  • [36] Han M. G. et al., J. Magn. Mater., 2009, 321(9): 1125–1129.
  • [37] Li, B. et al., J., Mater. Lett. 2011, 65, 1992–1994.
  • [38] Ari, T. C., Akin, S., in Proceedings of the World Geothermal Congress, Melbourne, Australia, pp. 1–7, 2015.
  • [39] Budov V. V., Glass Ceram. 1994, 51, 230–23.
  • [40] Minhas A. et al., Hollow–glass sphere application in drilling fluids: Case study, in Proceedings of the SPE Western Regional Meeting, Garden Grove, CA, USA, 2015.
  • [41] Ganesan P. et al., Am. J. Drug Discov. Dev., 2014, 4: 153–179.
  • [42] Nussinovitch A., Polymer macro– and micro–gel beads: Fundamentals and applications, Springer Sci. & Business Media: Berlin, German, 2010.
  • [43] Gu G. et al., Chin. Opt. Lett., 2013, 11: 101401.
  • [44] Rembaum A., Tokes Z. A., Microspheres: Medical and biological applications, CRC Press Revivals: Boca Raton, FL, USA, 2017.
  • [45] Veatch F. et al., Method of producing hollow glass spheres, U.S. Patent 2,978,339, 4 April 1961.
  • [46] Fan K. C. et al., Meas. Sci. Technol., 2010, 21: 054002.
  • [47] Nogami M. et al., Rev. Laser Eng., 1980, 8: 793–797.
  • [48] Li T., Fundamental tests of physics with optically trapped microspheres, PhD Thesis, University of Texas, Austin, TX, USA, 2013.
  • [49] Liepins R. et al., Progr. Polym. Sci., 1980, 6: 169–186.
  • [50] Gulyaev I., Experience in plasma production of hollow ceramic microspheres with required wall thickness, Ceram. Int. 2015, 41, 101–107.
  • [51] Okamot S. et al., Sci. Rep., 2014, 4: 5186.
  • [52] Sanghera J. et al., C. R. Chim., 2002, 5: 873–883.
  • [53] Lim K. L. et al., Chem. Eng. Technol., 2010, 33: 213–226.
  • [54] Schmid G. H. S. et al., Int. J. Energy Res., 2017, 41: 297–314.
  • [55] https://www.cospheric.com/ (Access Date: 30.03.2019).
  • [56] Qi X. et al., Sci. Rep., 2016, 6: 33241.
  • [57] Nuckolls J. et al., Nature 1972, 239: 139–142.
  • [58] Pfalzner S., An introduction to inertial confinement fusion, CRC Press: Boca Raton, FL, USA, 2006.
  • [59] Craxton R. S. et al., Phys. Plasmas., 2015, 22: 110501.
  • [60] Betti R., Hurricane O. A., Nat. Phys., 2016, 12: 435–448.
  • [61] Zohuri B., Inertial confinement fusion driven thermonuclear energy, Springer: Berlin, Germany, 2017.
  • [62] Lewkowicz I., J. Phys. D Appl. Phys., 1974, 7: L61–L62.
  • [63] Solomon D. E., Henderson T. M., J. Phys. D Appl. Phys., 1975, 8: L85–L86.
  • [64] Hendricks C. D. et al., J. Nucl. Mater., 1979, 85–86: 107–111.
  • [65] Koo J. et al., J. Nucl. Mater., 1979, 85–86: 113–115.
  • [66] Nogami M. et al., Rev. Laser Eng. 1980, 8: 793–797.
  • [67] Righini G. C., Glassy microspheres for energy applications, Micromachines (Basel), 2018 Aug; 9(8): 379, Published online 2018 Jul 30. doi: 10.3390/mi9080379.
  • [68] www.glass-bubble.com/blog/archives/tag/hollow-glass-microsphere (Access Date: 01.04.2019).
  • [69] Schmitt M. L. et al., J. of Non–Crys. Solids, 2006, 352 (6): 626–631.
  • [70] Ranjbar N., Künzel C., Cenospheres: A review, Fuel, 2017, 207:1–12.
  • [71] Bica I., Mater. Sci. and Eng. B, 2002, 88 (1): 107–109.
  • [72] Marchand C. et al., J. of Thermal Spray Techno., 2007, 16 (5): 705–712.
  • [73] Watkins I. G., Prado M., Procedia Mater. Sci., 2015, 8: 1057–1065.
  • [74] Budov V. V., Hollow glass microspheres. use, properties, and technology (Review), Glass and Ceramics, 1994, 51 (7): 230–235.
  • [75] Righini G. C., Righini N., Glassy materials based microdevices, ISBN 978-3-03897-618-9 (Pbk); ISBN 978-3-03897-619-6, Feb. 2019.
  • [76] Bermel P. et al., 2015, 23 (24): A1533–A1540.
  • [77] Patankar S. N., Kranov Y. A., Mater. Sci. and Eng. A, 2010, 527: 1361–1366.
  • [78] Martinelli J. R. et al., J. of Non–Cryst. Solids, 2010, 356: 2683–2688.
  • [79] Schmid G. et al., Surface and Coatings Techn., 2010, 205 (7): 1929–1936.
  • [80] Dong C. H. et al., Optics Commun., 2010, 283: 5117–5120.
  • [81] Li S. et al., Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6: 127–136.
  • [82] Xie Y. et al., J. of Power Sources, 2011, 196: 10727–10730.
  • [83] Li B. et al., Mater. Letters, 2011, 65: 1992–1994.
  • [84] Xu N. et al., Ceram. Int., 2011, 37: 2663–2667.
  • [85] Shetty S., Hall M., Hydrogen Energy Publications, 2011, 36: 9694–9701.
  • [86] Poorbaygi H. et al., Appl. Radiation and Isotopes, 2011, 69: 1407–1414.
  • [87] Huang W. et al., Fuel and Energy Abst., 2011, 36 (16): 9758–9766.
  • [88] Duan X. J. et al., Mater. Letters, 2011, 65: 243–250.
  • [89] Liu J. et al., Mater. Letters, 2011, 65: 929–932.
  • [90] Swetha C., Kumar R., Materials and Design, 2011, 32: 4152–4163.
  • [91] Keränen P. et al., J. Mech. Behav. Biomed. Mater., 2011, 4 (7): 1483–91.
  • [92] Xu N. et al., Mater. Research Bull., 46, 2011, 92–97.
  • [93] Bortot M. B. et al., Procedia Mater. Sci., 2012, 1: 351–358.
  • [94] Lakhkar N. J., Park J. H., Acta Biomaterialia 8, 2012, 4181–4190.
  • [95] Peroni L. et al., Mater. Sci. and Eng. A, 2012, 552: 364–375.
  • [96] Qi X. et al., Int. J. of Hydrogen Energy, 2012, 37: 1518–1530.
  • [97] Xu N. et al., Comp. Sci. and Tech., 2012, 72: 528–532.
  • [98] Zhou S. et al., Mater. Chem. and Phys., 2012, 134: 224– 228.
  • [99] Jiao Y. et al., Mater. Sci. and Eng., C, 2013, 33: 2744–2751.
  • [100] Li J. et al., Mater. and Design, 2013, 46: 902–909.
  • [101] Hu Y. et al., Comp. Sci. and Techn., 2013, 79: 64–69.
  • [102] Zhou R. et al., Mater. Letters, 2013, 112: 97–100.
  • [103] Miao G. et al., Mater. Sci. and Eng., C, 2013, 33: 4236–4243.
  • [104] Jiang W. et al., J. of Photochem. and Photobio. A, 2013, 262: 7–13.
  • [105] Dalai S. et al., Int. J. of Hydrogen Energy, 2014, 39: 16451–16458.
  • [106] Sorge M. et al., J. of Power Sources, 2014, 266: 496–511.
  • [107] Dalai S. et al., Int. J. of Hydrogen Energy, 2014, 39: 3304–3312.
  • [108] Guimaraes C. et al., Radiation Phys. and Chem., 2014, 95: 185–187.
  • [109] Liu L. et al., Polymer Degradation and Stability, 2014, 104: 87–94.
  • [110] Shrivastava P. et al., Microelectronic Eng., 2014, 126: 103–106.
  • [111] Pereira D. A. et al., Bioresource Techn., 2014, 158: 98–104.
  • [112] Dalai S. et al., Microelectronic Eng., 2014, 126: 65–70.
  • [113] Sun L. et al., Separation and Purification Techn., 2014, 125: 156–162.
  • [114] Lehmhusa D. et al., Procedia Mater. Sci., 2014, 4: 383–387.
  • [115] Domanická A. et al., Ceram. Int., 2014, 40: 6005–6012.
  • [116] Zhu B. L. et al., Comp. Part B, 2014, 58: 91–102.
  • [117] Lyubimov V. V. et al., Procedia CIRP, 2015, 37: 107–111.
  • [118] Hmood F. J. et al., J. of the Euro. Ceram. Soc., 2015, 35: 4143–4151.
  • [119] Malinowski R. et al., Comp. Part B, 2015, 76: 13–19.
  • [120] He G. et al., Mater. Research Bull., 2015, 66: 45–50.
  • [121] Ahn K. et al., Polymer, 2015, 56: 178–188.
  • [122] Wang H. et al., Sensors and Actuators B, 2015, 216: 332–336.
  • [123] Zhu B. L. et al., Comp. Part B, 2015, 69: 496–506.
  • [124] Páez L. L. et al., Sensors and Actuators A, 2015, 233: 422–426.
  • [125] Huang J. et al., J. of Luminescence, 2015, 157: 215–219.
  • [126] Pestana C. J. et al., J. of Hazardous Mater., 2015, 300: 347–353.
  • [127] Perfilov V. A. et al., Procedia Eng., 2016, 150: 1479–1484.
  • [128] Ghosh D. et al., J. of the Euro. Ceram. Soc., 2016, 36: 781–789.
  • [129] Moosavi S. S., Alizadeh P., Mater. Letters, 2016, 167: 98–101.
  • [130] Mingfei X. et al., J. of Hazardous Mater., 2016, 305: 51–58.
  • [131] Li L. et al., J. of Magnetism and Magnetic Mater., 2016, 417: 349–354.
  • [132] Ren S. et al., Mater. Sci. & Eng. A, 2016, 674: 604–614.
  • [133] Oreshkin D. et al., Procedia Eng., 2016, 153: 638–643.
  • [134] Geng H. et al., Mater. and Design, 2016, 95: 32–38.
  • [135] Zhang X., Wang P., Comp. Part B, 2016, 101: 53–63.
  • [136] Li F. et al., Int. J. of Hydrogen Energy, 2016, 41: 12705–12713.
  • [137] Westcott M. A. et al., Adv. in Radiation Oncology, 2016, 1: 351–364.
  • [138] Wang Q. et al., Ceram. Int., 2016, 42: 4886–4892.
  • [139] Yan H. et al., J. of Phys and Chem. of Solids, 2016, 98: 43–49.
  • [140] Li F. et al., J. of Non–Crys. Solids, 2016, 436: 22–28.
  • [141] Duan H. et al., Mater. Letters, 2016, 167: 201–204.
  • [142] Delogu M. et al., J. of Cleaner Produc., 2016, 139: 548–560.
  • [143] Li C. et al., Energy and Buildings, 2016, 125: 298–309.
  • [144] Lu D. et al. Ceram. Int., 2017, 43: 9164–9170.
  • [145] Ren S. et al., J. of Alloys and Comp., 2017, 722: 321–329.
  • [146] Li F. et al., J. of Non–Cryst. Solids 2017, 458: 52–60.
  • [147] Herrera–Ramírez L. C. et al., Comp. Sci. and Techn., 2017, 151: 211–218.
  • [148] Ren S. et al., J. of Alloys and Comp., 2017, 721: 213–219.
  • [149] Yang Z. et al., Optical Mater., 2017, 72: 524–528.
  • [150] Anbuchezhiyan G. et al., J. of Alloys and Comp., 2017, 719: 125–132.
  • [151] Jiao C. et al., J. of Hazardous Mater., 2017, 332: 176–184.
  • [152] Dalai S. et al., Mater. Today: Proceedings, 2017, 4: 11608–11616.
  • [153] Liu X. et al., Comp. Sci. and Techn., 2017, 153: 62–70.
  • [154] An Z., Zhang J., Mater. Research Bull., 2017, 93: 230–237.
  • [155] Kumar N. et al., Comp. Part B, 2017, 109: 277–285.
  • [156] Kang D. H. et al., Comp. Part B, 2017, 117: 35–42.
  • [157] Wang Y. et al., Comp. Sci. and Tech., 2017, 140: 89–98.
  • [158] Pontiroli L. et al., Mater. Letters, 2017, 190: 111–114.
  • [159] Bianchetti A. et al., Optics Commun., 2017, 394: 152–156.
  • [160] Ralite F. et al., Physica Medica, 2017, 44: 28–45.
  • [161] Zakir Hossain K. M. et al., Acta Biomaterialia, 2018, 72: 396–406.
  • [162] Tian S. et al., Progress in Organic Coatings, 2018, 115: 115–121.
  • [163] Araque L. M., de Morais A. C. L., J. of Mater. Research and Tech., 2018.
  • [164] Ren S. et al., Ceram. Int., 2018, 44: 1147–1155.
  • [165] Gao Q. et al., Solar Energy Mater. and Solar Cells, 2018, 180: 138–147.
  • [166] de Sousa–Vieira L. et al., Optical Mater., 2018, 83: 207–211.
  • [167] Lv X. et al., Construction and Building Mater., 2018, 162: 280–285.
  • [168] Zeng G. et al., Ceram. Int., 2018, 44: 8788–8794.
  • [169] Huang Y. et al., J. of Alloys and Compounds, 2018, 748: 93–99.
  • [170] Ohta S. et al., J. of Biosci. and Bioeng., 2018, 126 (4): 533–539.
  • [171] Al–Gemeel A. N. et al., Construction and Building Mater., 2018, 171: 858–870.
  • [172] Anbuchezhiyan G. et al., Archives of Civil and Mech. Eng., 2018, 18, 1645–1650.
  • [173] Li X. et al., Mater. Research Bull., 2018, 97, 567–571.
  • [174] Kafrouni M. et al., Physica Medica, 2018, 56: 33.
  • [175] Greppi M., Fabbri G., Energy Procedia, 2018, 148: 948–953.
  • [176] Zhang J. et al., Surface and Coatings Tech., 2019, 359: 62–72.
  • [177] Hong W. et al., Ceram. Int., 2019, doi: https://doi.org/10.1016/j.ceramint.2019.03.241.
  • [178] Ding J. et al., Ceram. Int., 2019, 45: 10126–10132.
  • [179] Nguyen V. A. et al., Optics Commun., 2019, 440: 14–20.
  • [180] Cheng Z. et al., Int. J. of Thermal Sci., 2019, 140: 358–367.
  • [181] Vereshchagina T. A. et al., J. of Environmental Chem. Eng., 2019, 7: 102887.
  • [182] Fang Y. et al., J. of Drug Delivery Sci. and Tech., 2019, 51: 430–437.
There are 183 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Bekir Karasu 0000-0002-7769-9863

İrem Demirel 0000-0002-7769-9863

Anıl Öztuvan This is me 0000-0002-7769-9863

Burak Özdemir This is me 0000-0002-7769-9863

Project Number ---
Publication Date September 30, 2019
Submission Date May 8, 2019
Acceptance Date June 25, 2019
Published in Issue Year 2019

Cite

IEEE B. Karasu, İ. Demirel, A. Öztuvan, and B. Özdemir, “Glass Microspheres”, ECJSE, vol. 6, no. 3, pp. 613–641, 2019, doi: 10.31202/ecjse.562013.