Research Article
BibTex RIS Cite

A review of smart materials: researches and applications

Year 2019, , 755 - 788, 30.09.2019
https://doi.org/10.31202/ecjse.562177

Abstract

Smart materials are a family of materials that are listed in advanced materials. These groups of materials have self-accommodation with environment and they are classified according to their responses, such as physical (pressure, temperature, humidity, light, electric field, magnetic field), chemical (pH, CO2, etc.), or biological stimuli. The smart materials can convert the absorbed energy or their characteristics may undergo a change. Smart materials are getting high attentions due to their commercial applications in either actuator or sensor form. This work demonstrates an exclusive review of different types of smart materials with their specific characteristics, and some related investigations that improved smart material properties. In addition, the applications of smart materials are categorized according to the different application areas, such as medical implantation, reducing waste, and nano engineered systems.


References

  • 1. Levy, T.E., et al., Early Bronze Age metallurgy: a newly discovered copper manufactory in southern Jordan. Antiquity, 2002. 76(292): p. 425-437.2. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 7. 2007: John Wiley & Sons New York.3. Braun, A., E. Braun, and S. MacDonald, Revolution in miniature: The history and impact of semiconductor electronics. 1982: Cambridge University Press.4. Akiyama, M., et al., Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film. 2010, Google Patents.5. Humphrey, T. and H. Linke, Reversible thermoelectric nanomaterials. Physical review letters, 2005. 94(9): p. 096601.6. Ward, M.A. and T.K. Georgiou, Thermoresponsive polymers for biomedical applications. Polymers, 2011. 3(3): p. 1215-1242.7. Andle, J.C. and R.M. Lec, Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands. 2000, Google Patents.8. Ueno, N., M. Akiyama, and H. Tateyama, Piezoelectric sensor and input device including same. 2006, Google Patents.9. Shahinpoor, M., Shape memory alloy temperature sensor. 2005, Google Patents.10. MacGregor, R., Shape memory alloy actuators and control methods. 2003, Google Patents.11. Mernøe, M., Shape memory alloy actuator. 2005, Google Patents.12. Ormerod, W. and R.R. Tipton, Piezo-electric actuator operable in an electrolytic fluid. 2000, Google Patents.13. Ryynänen, M., Electrostrictive polymer as a combined haptic-seal actuator. 2008, Google Patents.14. Dietz, T.G. and H. Jaeger, Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator. 2013, Google Patents.15. Hawkins, M.J., P. Soon-Shiong, and N. Desai, Protein nanoparticles as drug carriers in clinical medicine. Advanced drug delivery reviews, 2008. 60(8): p. 876-885.16. Piras, A.M., et al., A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. International journal of pharmaceutics, 2008. 357(1-2): p. 260-271.17. Takagi, T. A concept of intelligent materials and the current activities of intelligent materials in Japan. in First European Conference on Smart Structures and Materials. 1992. International Society for Optics and Photonics.18. McCabe, J., et al., Smart materials in dentistry. Australian dental journal, 2011. 56: p. 3-10.19. Bogue, R., Smart materials: a review of recent developments. Assembly Automation, 2012. 32(1): p. 3-7.20. Hensel, M.U., Performance-oriented Architecture and the Spatial and Material Organisation Complex. Rethinking the Definition, Role and Performative Capacity of the Spatial and Material Boundaries of the Built Environment. FormAkademisk-forskningstidsskrift for design og designdidaktikk, 2011. 4(1).21. Addington, D.M. and D.L. Schodek, Smart materials and new technologies: for the architecture and design professions. 2005: Routledge.22. Addington, M. and D. Schodek, Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. 2012: Routledge.23. Sadeghi, M.J., P. Masudifar, and F. Faizi. The Function of Smart Material's behavior in architecture. in International Conference on Intelligent Building and Management, LACSIT press. 2011.24. Mohamed, A.S.Y., Smart materials innovative technologies in architecture; towards innovative design paradigm. Energy Procedia, 2017. 115: p. 139-154.25. Song, Y., W. Wei, and X. Qu, Colorimetric biosensing using smart materials. Advanced Materials, 2011. 23(37): p. 4215-4236.26. Kamila, S., Introduction, classification and applications of smart materials: an overview. American Journal of Applied Sciences, 2013. 10(8): p. 876.27. Gautam, P. and A. Valiathan, Bio-smart dentistry: stepping into the future! Trends in Biomaterials and Artificial Organs, 2008. 21(2): p. 94-97.28. Ferrara, M. and M. Bengisu, Materials that change color, in Materials that Change Color. 2014, Springer. p. 9-60.29. Parida, B., S. Iniyan, and R. Goic, A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 2011. 15(3): p. 1625-1636.30. Chang, M.-H., et al., Light emitting diodes reliability review. Microelectronics Reliability, 2012. 52(5): p. 762-782.31. Bai, Y., et al., Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide. Applied Physics Letters, 2017. 110(6): p. 063903.32. Schodek, D.L., Smart Materials And Technologies in Architecture. 2005: Taylor & Francis.33. Vainstein, E., Smart materials and constructions. Polymer-Plastics Technology and Engineering, 2001. 40(5): p. 703-714.34. Dye, D., Shape memory alloys: Towards practical actuators. Nature materials, 2015. 14(8): p. 760.35. Ölander, A., An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 1932. 54(10): p. 3819-3833.36. Greninger, A.B. and V.G. Mooradian, Strain transformation in metastable beta copper-zinc and beta copper-Ti alloys. AIME TRANS, 1938. 128: p. 337-369.37. Kumar, M.P., D. Simhachalam, and N. Ramanaiah, A review on Titanium Niobium Shape Memory Alloys (SMA). Journal of Material Science and Mechanical Engineering (JMSME), ISSN, 2015: p. 2293-9095.38. Buehler, W.J. and F.E. Wang, A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. Ocean Engineering, 1968. 1(1): p. 105-120.39. Huang, W., Shape memory alloys and their application to actuators for deployable structures. 1998.40. Hautcoeur, A., F. Fouché, and J. Sicre, Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature. 2016.41. Smith, G., Photochromic glasses: properties and applications. Journal of Materials Science, 1967. 2(2): p. 139-152.42. Kök, M., et al., Examination of phase changes in the CuAl high-temperature shape memory alloy with the addition of a third element. Journal of Thermal Analysis and Calorimetry, 2018. 133(2): p. 845-850.43. Ibrahim, M.K., E. Hamzah, and S.N. Saud, Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x= 0, 0.25, 0.5 and 1.5) SMAs. Journal of Materials Engineering and Performance, 2019. 28(1): p. 382-393.44. Kök, M. and G. Ateş, The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application. The European Physical Journal Plus, 2017. 132(4): p. 185.45. Ibrahim, M.K., et al., Effect of Sn additions on the microstructure, mechanical properties, corrosion and bioactivity behaviour of biomedical Ti–Ta shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2018. 131(2): p. 1165-1175.46. Kök, M. and Y. Aydogdu, Effect of heat treatment on the physical properties of Ni–Mn–Ga alloy. Thermochimica acta, 2012. 548: p. 51-55.47. Dagdelen, F., et al., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus, 2019. 134(2): p. 66.48. Qader, I.N., M. Kök, and F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter, 2019. 553: p. 1-5.49. Saedi, S., et al., The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. Journal of Alloys and Compounds, 2016. 677: p. 204-210.50. Varzaneh, A.G., et al., Effect of heat treatment on martensitic transformation of Ni 47 Mn 40 Sn 13 ferromagnetic shape memory alloy prepared by mechanical alloying. Metals and Materials International, 2015. 21(4): p. 758-764.51. Aydoğdu, Y., et al. The effects of thermal procedure on transformation temperature, crystal structure and microstructure of Cu-Al-Co shape memory alloy. in Journal of Physics: Conference Series. 2016. IOP Publishing.52. Ozcan, H., et al., Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scripta Materialia, 2017. 134: p. 66-70.53. Kök, M., et al. The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing. in Journal of Physics: Conference Series. 2016. IOP Publishing.54. Yang, C., et al., Effects of thermo-mechanical treatment on a Fe–30Mn–6Si shape memory alloy. Materials Science and Engineering: A, 2008. 497(1-2): p. 445-450.55. Saud, S.N., et al., Structure-property relationship of Cu-Al-Ni-Fe shape memory alloys in different quenching media. Journal of materials engineering and performance, 2014. 23(1): p. 255-261.56. Saud, S.N., et al., Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys. Journal of Materials Engineering and Performance, 2015. 24(4): p. 1522-1530.57. Yildiz, K., E. Balci, and S. Akpinar, Quenching media effects on martensitic transformation, thermodynamic and structural properties of Cu–Al–Fe–Ti high-temperature shape memory alloy. Journal of Thermal Analysis and Calorimetry, 2017. 129(2): p. 937-945.58. Haidar, M.A., S.N. Saud, and E. Hamzah, Microstructure, Mechanical Properties, and Shape Memory Effect of Annealed Cu-Al-Ni-xCo Shape Memory Alloys. Metallography, Microstructure, and Analysis, 2018. 7(1): p. 57-64.59. SMA, M.O.C.A.N.T., COOLING CONDITION EFFECTS ON TRANSFORMATION TEMPERATURE. Journal of Chemical Technology and Metallurgy, 2019. 54(1): p. 204-208.60. Firstov, G., et al., Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002. 23(24): p. 4863-4871.61. Xu, C., et al., Oxidation behavior of TiNi shape memory alloy at 450–750 C. Materials Science and Engineering: A, 2004. 371(1-2): p. 45-50.62. Ibrahim, M.K., et al., Powder Metallurgy Fabrication of Porous 51 (at.%) Ni–Ti Shape Memory Alloys for Biomedical Applications. Shape Memory and Superelasticity, 2018. 4(2): p. 327-336.63. Ibrahim, M.K., et al., Parameter optimization of microwave sintering porous Ti-23% Nb shape memory alloys for biomedical applications. Transactions of Nonferrous Metals Society of China, 2018. 28(4): p. 700-710.64. Bahador, A., et al., Microstructure and superelastic properties of free forged Ti–Ni shape-memory alloy. Transactions of Nonferrous Metals Society of China, 2018. 28(3): p. 502-514.65. Woodside, C.R., P.E. King, and C. Nordlund, Arc distribution during the vacuum arc remelting of Ti-6Al-4V. Metallurgical and Materials Transactions B, 2013. 44(1): p. 154-165.66. Griesenauer, N., S. Lyon, and C. Alexander, Vacuum Induction Melting of Titanium. Journal of Vacuum Science and Technology, 1972. 9(6): p. 1351-1355.67. Cronskär, M., M. Bäckström, and L.-E. Rännar, Production of customized hip stem prostheses–a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyping Journal, 2013. 19(5): p. 365-372.68. Grummon, D.S., J.A. Shaw, and A. Gremillet, Low-density open-cell foams in the NiTi system. Applied Physics Letters, 2003. 82(16): p. 2727-2729.69. Chung, C., C. Chu, and S. Wang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis. Materials Letters, 2004. 58(11): p. 1683-1686.70. Wen, C., et al., Porous shape memory alloy scaffolds for biomedical applications: a review. Physica scripta, 2010. 2010(T139): p. 014070.71. Bram, M., et al., Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Materials Science and Engineering: A, 2002. 337(1-2): p. 254-263.72. Tian, X., et al., Martensitic transformation, mechanical property and magnetic-field-induced strain of Ni–Mn–Ga alloy fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2011. 509(10): p. 4081-4083.73. Butler, J., et al., Production of Nitinol wire from elemental nickel and titanium powders through spark plasma sintering and extrusion. Journal of materials engineering and performance, 2011. 20(4-5): p. 757-761.74. Guoxin, H., et al., Fabrication of high porous NiTi shape memory alloy by metal injection molding. Journal of materials processing technology, 2008. 206(1-3): p. 395-399.75. Khoo, Z., et al., A review of selective laser melted NiTi shape memory alloy. Materials, 2018. 11(4): p. 519.76. Yap, C.Y., et al., Review of selective laser melting: Materials and applications. Applied physics reviews, 2015. 2(4): p. 041101.77. Krishna, B.V., S. Bose, and A. Bandyopadhyay, Laser processing of net-shape NiTi shape memory alloy. Metallurgical and Materials transactions A, 2007. 38(5): p. 1096-1103.78. Bernard, S.A., et al., Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta biomaterialia, 2011. 7(4): p. 1902-1912.79. Rafi, H., et al., Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. Journal of materials engineering and performance, 2013. 22(12): p. 3872-3883.80. Otubo, J., et al. Scale up of NiTi shape memory alloy production by EBM. in Journal de Physique IV (Proceedings). 2003. EDP sciences.81. Haldar, A., S. Suwas, and D. Bhattacharjee, Microstructure and Texture in Steels: and Other Materials. 2009: Springer.82. Motemani, Y., et al., Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. Journal of Alloys and Compounds, 2009. 469(1-2): p. 164-168.83. Alaneme, K.K. and E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options–a review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 2016. 19(3): p. 1582-1592.84. Otsuka, K. and C.M. Wayman, Shape memory materials. 1999: Cambridge university press.85. Watson, R.E., Comparison of the response of shape memory alloy actuators using air-cooling and water-cooling. 1984.86. Popescu, R., D. Popescu, and A. Grumezescu, Applications of rubber-based blends, in Recent Developments in Polymer Macro, Micro and Nano Blends. 2017, Elsevier. p. 75-109.87. Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 2014. 56: p. 1078-1113.88. Santoro, M., O.F. Nicolay, and T.J. Cangialosi, Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part I: Temperature transitional ranges. American Journal of Orthodontics and Dentofacial Orthopedics, 2001. 119(6): p. 587-593.89. Gurka, M., Active hybrid structures made of shape memory alloys and fibre-reinforced composites. Multifunctionality of Polymer Composites, 2015: p. 727-751.90. Wayman, C., An introduction to martensite and shape memory. Engineering aspects of shape memory alloys, 1990.91. Pan, Q. and C. Cho, The investigation of a shape memory alloy micro-damper for MEMS applications. Sensors, 2007. 7(9): p. 1887-1900.92. Van Humbeeck, J. and S. Kustov, Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms. Smart Materials and Structures, 2005. 14(5): p. S171.93. Heywang, W., K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology. Vol. 114. 2008: Springer Science & Business Media.94. Anton, S.R. and H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart materials and Structures, 2007. 16(3): p. R1.95. Vatansever, D., E. Siores, and T. Shah, Alternative resources for renewable energy: piezoelectric and photovoltaic smart structures, in Global Warming-Impacts and Future Perspective. 2012, IntechOpen.96. Starr, M.B. and X. Wang, Coupling of piezoelectric effect with electrochemical processes. Nano Energy, 2015. 14: p. 296-311.97. Katsouras, I., et al., The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride). Nature materials, 2016. 15(1): p. 78.98. Arnau, A. and D. Soares, Fundamentals of piezoelectricity, in Piezoelectric transducers and applications. 2009, Springer. p. 1-38.99. Liu, H., et al., A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation. Journal of Micromechanics and microengineering, 2003. 13(2): p. 295.100. Gautschi, G., Piezoelectric sensors, in Piezoelectric Sensorics. 2002, Springer. p. 73-91.101. Chang, Y., et al., ⟨ 001⟩ textured (K 0.5 Na 0.5)(Nb 0.97 Sb 0.03) O 3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Applied Physics Letters, 2009. 95(23): p. 232905.102. Algueró, M., et al., High-sensitivity piezoelectric, low-tolerance-factor perovskites by mechanosynthesis. Chemistry of Materials, 2007. 19(20): p. 4982-4990.103. Sasaki, H. and K. Iguchi, Driving method of piezoelectric transformer and driving circuit for the same. 2000, Google Patents.104. Shung, K.K., J. Cannata, and Q. Zhou, Piezoelectric materials for high frequency medical imaging applications: A review. Journal of Electroceramics, 2007. 19(1): p. 141-147.105. Zhou, Q., et al., Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Progress in materials science, 2011. 56(2): p. 139-174.106. Li, H., et al., Fabrication of a high frequency piezoelectric microvalve. Sensors and Actuators A: Physical, 2004. 111(1): p. 51-56.107. Minary-Jolandan, M. and M.-F. Yu, Shear piezoelectricity in bone at the nanoscale. Applied Physics Letters, 2010. 97(15): p. 153127.108. Hu, S., et al., Ferroelectric polarization of hydroxyapatite from density functional theory. RSC Advances, 2017. 7(35): p. 21375-21379.109. Yamamoto, T., T. Shiosaki, and A. Kawabata, Characterization of ZnO piezoelectric films prepared by rf planar‐magnetron sputtering. Journal of Applied Physics, 1980. 51(6): p. 3113-3120.110. Tonisch, K., et al., Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sensors and Actuators A: Physical, 2006. 132(2): p. 658-663.111. Fraden, J., Acoustic Sensors, in Handbook of Modern Sensors. 2010, Springer. p. 431-443.112. Jaffe, B., Piezoelectric ceramics. Vol. 3. 2012: Elsevier.113. Datta, S., Piezoelectric materials: Crystal orientation and poling direction. COMSOL Blog, 2014.114. Pasquale, M., Mechanical sensors and actuators. Sensors and Actuators A: Physical, 2003. 106(1-3): p. 142-148.115. Dapino, M.J., et al., A magnetoelastic model for Villari-effect magnetostrictive sensors. 2002, North Carolina State University. Center for Research in Scientific Computation.116. Gibbs, M.R., Materials optimization for magnetic MEMS. IEEE transactions on magnetics, 2007. 43(6): p. 2666-2671.117. Yamamoto, Y., H. Eda, and J. Shimizu. Application of giant magnetostrictive materials to positioning actuators. in Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on. 1999. IEEE.118. Olabi, A.-G. and A. Grunwald, Design and application of magnetostrictive materials. Materials & Design, 2008. 29(2): p. 469-483.119. Newnham, R., et al., Electrostriction: nonlinear electromechanical coupling in solid dielectrics. The Journal of Physical Chemistry B, 1997. 101(48): p. 10141-10150.120. Coutte, J., et al., Design, production and testing of PMN–PT electrostrictive transducers. Ultrasonics, 2002. 40(1-8): p. 883-888.121. Yang, J., An introduction to the theory of piezoelectricity. Vol. 9. 2004: Springer Science & Business Media.122. Davoudi, S., Effect of Temperature and Thermal Cycles on PZT Ceramic Performance in Fuel Injector Applications. 2012.123. Mattila, H., Intelligent textiles and clothing. 2006: Woodhead Publishing.124. Osterby, B., R.D. McKelvey, and L. Hill, Photochromic sunglasses: A patent-based advanced organic synthesis project and demonstration. Journal of Chemical Education, 1991. 68(5): p. 424.125. Wilusz, E., Military textiles. 2008: Elsevier.126. Wang, Z. and P.P. Nguyen, Durable reflection-controllable electrochromic thin film material. 2010, Google Patents.127. Fuss, E.A., R.W. Phillips, and P.P. Nguyen, Electrical characteristics of electrochromic devices. 2010, Google Patents.128. Marinella, F. and B. Murat, Materials that Change Color. Smart Materials, Intelligent Design. 2013, Milano, Politecnico di Milano, Springer.129. Mortimer, R.J., Switching colors with electricity. American Scientist, 2013. 101(1): p. 38.130. Ghosh, D., Synthesis, characterization, and application of functional nanomaterials. 2009: University of California, Santa Cruz.131. Richardson, T.J., New electrochromic mirror systems. Solid State Ionics, 2003. 165(1-4): p. 305-308.132. Horng, H.-E., et al., Magnetochromatic effects in magnetic fluid thin films. Applied optics, 1998. 37(13): p. 2674-2680.133. Sung, Y.K., B.W. Ahn, and T.J. Kang, Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. Journal of magnetism and magnetic materials, 2012. 324(6): p. 916-922.134. Rodriguez, F., et al., Optical study of the piezochromic transition in CuMoO 4 by pressure spectroscopy. Physical Review B, 2000. 61(24): p. 16497.135. Takagi, H.D., et al., Piezochromism and related phenomena exhibited by palladium complexes. Platinum Metals Review, 2004. 48(3): p. 117-124.136. Bamfield, P., Chromic phenomena: technological applications of colour chemistry. 2010: Royal Society of Chemistry.137. Seeboth, A., D. Loetzsch, and R. Ruhmann, Piezochromic polymer materials displaying pressure changes in bar-ranges. American Journal of Materials Science, 2011. 1(2): p. 139-142.138. Almeida, H., M.H. Amaral, and P. Lobão, Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. 2012.139. Chaturvedi, K., et al., Polymeric hydrogels for oral insulin delivery. Journal of controlled release, 2013. 165(2): p. 129-138.140. Kocak, G., C. Tuncer, and V. Bütün, pH-Responsive polymers. Polymer Chemistry, 2017. 8(1): p. 144-176.141. Dounas-Frazer, D., et al., Learning about non-Newtonian fluids in a student-driven classroom. arXiv preprint arXiv:1203.2682, 2012.142. Mazlan, B. and S. Amri, The behaviour of magnetorheological fluids in squeeze mode. 2008, Dublin City University.143. Park, B.J., F.F. Fang, and H.J. Choi, Magnetorheology: materials and application. Soft Matter, 2010. 6(21): p. 5246-5253.144. Kim, Y., R. Langari, and S. Hurlebaus, Semiactive nonlinear control of a building with a magnetorheological damper system. Mechanical Systems and Signal Processing, 2009. 23(2): p. 300-315.145. Lindler, J.E., G.A. Dimock, and N.M. Wereley. Design of a magnetorheological automotive shock absorber. in Smart Structures and Materials 2000: Smart Structures and Integrated Systems. 2000. International Society for Optics and Photonics.146. Hong, J.-Y., E. Kwon, and J. Jang, Fabrication of silica/polythiophene core/shell nanospheres and their electrorheological fluid application. Soft Matter, 2009. 5(5): p. 951-953.147. Khanicheh, A., et al., Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment. IEEE/ASME Transactions on Mechatronics, 2008. 13(3): p. 286-294.148. Madeja, J., Z. Kesy, and A. Kesy, Application of electrorheological fluid in a hydrodynamic clutch. Smart Materials and Structures, 2011. 20(10): p. 105005.149. Spanner, K. and B. Koc. Piezoelectric motors, an overview. in Actuators. 2016. Multidisciplinary Digital Publishing Institute.150. Toozandehjani, M., et al., Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited. American Journal of Aerospace Engineering, 2018. 5(1): p. 9-15.151. Barbarino, S., et al., Wing shape control through an SMA-based device. Journal of Intelligent Material Systems and Structures, 2009. 20(3): p. 283-296.152. Giurgiutiu, V. and A.N. Zagrai. Use of smart materials technologies in radiation environments and nuclear industry. in Smart Structures and Materials 2000: Smart Structures and Integrated Systems. 2000. International Society for Optics and Photonics.153. Thakur, S., Shape Memory Polymers for Smart Textile Applications, in Textiles for Advanced Applications. 2017, InTech.154. Rock, M., Temperature responsive smart textile. 2012, Google Patents.155. Mondal, S. and J. Hu, A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. Journal of Applied Polymer Science, 2007. 103(5): p. 3370-3376.156. Fu, Y., et al., Thin film shape memory alloys and microactuators. International Journal of Computational Materials Science and Surface Engineering, 2009. 2(3-4): p. 208-226.157. Crăciunescu, C. and A. Ercuta, Modulated interaction in double-layer shape memory-based micro-designed actuators. Science and technology of advanced materials, 2015. 16(6): p. 065003.158. Shang, X., E. Pan, and L. Qin, Mathematical modeling and numerical computation for the vibration of a magnetostrictive actuator. Smart materials and structures, 2008. 17(4): p. 045026.159. Qader, I.N. and M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bulletin of Materials Science, 2017. 40(3): p. 599-607.160. Purushothaman, K. and G. Muralidharan, The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1195-1201.161. Mamand, S., M. Omar, and A. Muhammed, Calculation of lattice thermal conductivity of suspended GaAs nanobeams: Effect of size dependent parameters. Adv Mat Lett, 2012. 3(6): p. 449-58.162. Qader, I.N., B.J. Abdullah, and H.H. Karim, Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer. Eurasian Journal of Science & Engineering, 2017. 3(1): p. 9-26.163. Li, D., et al., Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003. 83(14): p. 2934-2936.164. Omar, M., Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles. International Journal of Thermophysics, 2016. 37(1): p. 11.165. Abdullah, B.J., M.S. Omar, and Q. Jiang, Size effects on cohesive energy, Debye temperature and lattice heat capacity from first-principles calculations of Sn nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018. 88(4): p. 629-632.166. Abdullah, B.J., Q. Jiang, and M.S. Omar, Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. Bulletin of Materials Science, 2016. 39(5): p. 1295-1302.167. Li, C., E.T. Thostenson, and T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review. Composites Science and Technology, 2008. 68(6): p. 1227-1249.168. Kim, P. and C.M. Lieber, Nanotube nanotweezers. Science, 1999. 286(5447): p. 2148-2150.169. Li, C. and T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Composites Science and Technology, 2003. 63(11): p. 1517-1524.170. Cramm, J., et al., Investigating the feasibility of implementing Pavegen energy: harvesting piezoelectric floor tiles in the new SUB. 2011.171. Miyazaki, S. and R. Sachdeva, Shape memory effect and superelasticity in Ti—Ni alloys, in Shape memory alloys for biomedical applications. 2009, Elsevier. p. 3-19.172. Machado, L. and M. Savi, Medical applications of shape memory alloys. Brazilian journal of medical and biological research, 2003. 36(6): p. 683-691.173. Kauffman, G.B. and I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator, 1997. 2(2): p. 1-21.174. Hartl, D., et al., Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Materials and Structures, 2009. 19(1): p. 015021.175. Petrini, L. and F. Migliavacca, Biomedical applications of shape memory alloys. Journal of Metallurgy, 2011. 2011.176. Rush, J.A., Memory wire robotic hand. 1997, Google Patents.177. Duerig, T.W., K. Melton, and D. Stöckel, Engineering aspects of shape memory alloys. 2013: Butterworth-Heinemann.178. Gray, H.N. and D.E. Bergbreiter, Applications of polymeric smart materials to environmental problems. Environmental health perspectives, 1997. 105(Suppl 1): p. 55.179. Bergbreiter, D.E., L. Zhang, and V.M. Mariagnanam, Smart ligands that regulate homogeneously catalyzed reactions. Journal of the American Chemical Society, 1993. 115(20): p. 9295-9296.180. Yin, H., et al., Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water. Advanced materials, 2013. 25(43): p. 6270-6276.181. Bao, Q., D. Zhang, and P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of colloid and interface science, 2011. 360(2): p. 463-470.182. Xie, G., et al., Graphene‐based materials for hydrogen generation from light‐driven water splitting. Advanced materials, 2013. 25(28): p. 3820-3839.183. Mishra, A.K., Smart materials for waste water applications. 2016: John Wiley & Sons.184. Tofighy, M.A. and T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of hazardous materials, 2011. 185(1): p. 140-147.185. Bagheri, H., Z. Ayazi, and A. Aghakhani, A novel needle trap sorbent based on carbon nanotube-sol–gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media. Analytica chimica acta, 2011. 683(2): p. 212-220.186. Yang, K. and B. Xing, Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution, 2007. 145(2): p. 529-537.187. Jung, C., et al., Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. Journal of Industrial and Engineering Chemistry, 2015. 27: p. 1-11.188. Lu, T.-L. and Y.-C. Tsai, Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2011. 153(2): p. 439-444.189. Varaprasad, D.V., et al., Electrochromic mirrors and devices. 1998, Google Patents.190. Niklasson, G.A. and C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry, 2007. 17(2): p. 127-156.191. Saito, K., Magnetic rheological fluid shock absorber. 2017, Google Patents.192. Zuo, L., X. Tang, and P.S. Zhang, Electricity generating shock absorbers. 2015, Google Patents.193. Li, W., et al., Testing and steady state modeling of a linear MR damper under sinusoidal loading. Smart Materials and Structures, 2000. 9(1): p. 95.

Akıllı Malzemeler üzerine derleme: araştırmalar ve uygulamaları

Year 2019, , 755 - 788, 30.09.2019
https://doi.org/10.31202/ecjse.562177

Abstract

Akıllı malzemeler, ileri malzemeler grubunda yeralan, bir malzeme grubudur. Bu malzeme grupları, çevresi ile kendi kendine uyum içindedir ve bazı fiziksel (basınç, sıcaklık, nem, ışık, elektrik alan, manyetik alan), kimyasal (pH, CO2 vb.) veya biyolojik uyarılara verdikleri tepkilere göre sınıflandırılırlar. Akıllı malzemeler, soğurulan enerjiyi, karakteristik özelliklerini değiştirmek için dönüştürürler. Akıllı malzemeler, aktüatör veya sensör şeklindeki ticari uygulamaları nedeniyle yüksek oranda dikkat çeker. Bu çalışma, farklı türdeki akıllı malzemelerin spesifik özellikleriyle birlikte özel bir incelemesini ve akıllı malzemelerin özelliklerini iyileştiren bazı ilgili araştırmaları göstermektedir. Ayrıca, akıllı malzemelerin uygulamaları, tıbbi implantasyon, atıkları azaltma ve nano mühendislik sistemleri gibi farklı uygulama alanlarına göre kategorilere ayrılmaktadır

References

  • 1. Levy, T.E., et al., Early Bronze Age metallurgy: a newly discovered copper manufactory in southern Jordan. Antiquity, 2002. 76(292): p. 425-437.2. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 7. 2007: John Wiley & Sons New York.3. Braun, A., E. Braun, and S. MacDonald, Revolution in miniature: The history and impact of semiconductor electronics. 1982: Cambridge University Press.4. Akiyama, M., et al., Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film. 2010, Google Patents.5. Humphrey, T. and H. Linke, Reversible thermoelectric nanomaterials. Physical review letters, 2005. 94(9): p. 096601.6. Ward, M.A. and T.K. Georgiou, Thermoresponsive polymers for biomedical applications. Polymers, 2011. 3(3): p. 1215-1242.7. Andle, J.C. and R.M. Lec, Monolithic piezoelectric sensor (MPS) for sensing chemical, biochemical and physical measurands. 2000, Google Patents.8. Ueno, N., M. Akiyama, and H. Tateyama, Piezoelectric sensor and input device including same. 2006, Google Patents.9. Shahinpoor, M., Shape memory alloy temperature sensor. 2005, Google Patents.10. MacGregor, R., Shape memory alloy actuators and control methods. 2003, Google Patents.11. Mernøe, M., Shape memory alloy actuator. 2005, Google Patents.12. Ormerod, W. and R.R. Tipton, Piezo-electric actuator operable in an electrolytic fluid. 2000, Google Patents.13. Ryynänen, M., Electrostrictive polymer as a combined haptic-seal actuator. 2008, Google Patents.14. Dietz, T.G. and H. Jaeger, Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator. 2013, Google Patents.15. Hawkins, M.J., P. Soon-Shiong, and N. Desai, Protein nanoparticles as drug carriers in clinical medicine. Advanced drug delivery reviews, 2008. 60(8): p. 876-885.16. Piras, A.M., et al., A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs. International journal of pharmaceutics, 2008. 357(1-2): p. 260-271.17. Takagi, T. A concept of intelligent materials and the current activities of intelligent materials in Japan. in First European Conference on Smart Structures and Materials. 1992. International Society for Optics and Photonics.18. McCabe, J., et al., Smart materials in dentistry. Australian dental journal, 2011. 56: p. 3-10.19. Bogue, R., Smart materials: a review of recent developments. Assembly Automation, 2012. 32(1): p. 3-7.20. Hensel, M.U., Performance-oriented Architecture and the Spatial and Material Organisation Complex. Rethinking the Definition, Role and Performative Capacity of the Spatial and Material Boundaries of the Built Environment. FormAkademisk-forskningstidsskrift for design og designdidaktikk, 2011. 4(1).21. Addington, D.M. and D.L. Schodek, Smart materials and new technologies: for the architecture and design professions. 2005: Routledge.22. Addington, M. and D. Schodek, Smart Materials and Technologies in Architecture: For the Architecture and Design Professions. 2012: Routledge.23. Sadeghi, M.J., P. Masudifar, and F. Faizi. The Function of Smart Material's behavior in architecture. in International Conference on Intelligent Building and Management, LACSIT press. 2011.24. Mohamed, A.S.Y., Smart materials innovative technologies in architecture; towards innovative design paradigm. Energy Procedia, 2017. 115: p. 139-154.25. Song, Y., W. Wei, and X. Qu, Colorimetric biosensing using smart materials. Advanced Materials, 2011. 23(37): p. 4215-4236.26. Kamila, S., Introduction, classification and applications of smart materials: an overview. American Journal of Applied Sciences, 2013. 10(8): p. 876.27. Gautam, P. and A. Valiathan, Bio-smart dentistry: stepping into the future! Trends in Biomaterials and Artificial Organs, 2008. 21(2): p. 94-97.28. Ferrara, M. and M. Bengisu, Materials that change color, in Materials that Change Color. 2014, Springer. p. 9-60.29. Parida, B., S. Iniyan, and R. Goic, A review of solar photovoltaic technologies. Renewable and sustainable energy reviews, 2011. 15(3): p. 1625-1636.30. Chang, M.-H., et al., Light emitting diodes reliability review. Microelectronics Reliability, 2012. 52(5): p. 762-782.31. Bai, Y., et al., Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide. Applied Physics Letters, 2017. 110(6): p. 063903.32. Schodek, D.L., Smart Materials And Technologies in Architecture. 2005: Taylor & Francis.33. Vainstein, E., Smart materials and constructions. Polymer-Plastics Technology and Engineering, 2001. 40(5): p. 703-714.34. Dye, D., Shape memory alloys: Towards practical actuators. Nature materials, 2015. 14(8): p. 760.35. Ölander, A., An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 1932. 54(10): p. 3819-3833.36. Greninger, A.B. and V.G. Mooradian, Strain transformation in metastable beta copper-zinc and beta copper-Ti alloys. AIME TRANS, 1938. 128: p. 337-369.37. Kumar, M.P., D. Simhachalam, and N. Ramanaiah, A review on Titanium Niobium Shape Memory Alloys (SMA). Journal of Material Science and Mechanical Engineering (JMSME), ISSN, 2015: p. 2293-9095.38. Buehler, W.J. and F.E. Wang, A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. Ocean Engineering, 1968. 1(1): p. 105-120.39. Huang, W., Shape memory alloys and their application to actuators for deployable structures. 1998.40. Hautcoeur, A., F. Fouché, and J. Sicre, Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature. 2016.41. Smith, G., Photochromic glasses: properties and applications. Journal of Materials Science, 1967. 2(2): p. 139-152.42. Kök, M., et al., Examination of phase changes in the CuAl high-temperature shape memory alloy with the addition of a third element. Journal of Thermal Analysis and Calorimetry, 2018. 133(2): p. 845-850.43. Ibrahim, M.K., E. Hamzah, and S.N. Saud, Microstructure, Phase Transformation, Mechanical Behavior, Bio-corrosion and Antibacterial Properties of Ti-Nb-xSn (x= 0, 0.25, 0.5 and 1.5) SMAs. Journal of Materials Engineering and Performance, 2019. 28(1): p. 382-393.44. Kök, M. and G. Ateş, The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application. The European Physical Journal Plus, 2017. 132(4): p. 185.45. Ibrahim, M.K., et al., Effect of Sn additions on the microstructure, mechanical properties, corrosion and bioactivity behaviour of biomedical Ti–Ta shape memory alloys. Journal of Thermal Analysis and Calorimetry, 2018. 131(2): p. 1165-1175.46. Kök, M. and Y. Aydogdu, Effect of heat treatment on the physical properties of Ni–Mn–Ga alloy. Thermochimica acta, 2012. 548: p. 51-55.47. Dagdelen, F., et al., Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy. The European Physical Journal Plus, 2019. 134(2): p. 66.48. Qader, I.N., M. Kök, and F. Dağdelen, Effect of heat treatment on thermodynamics parameters, crystal and microstructure of (Cu-Al-Ni-Hf) shape memory alloy. Physica B: Condensed Matter, 2019. 553: p. 1-5.49. Saedi, S., et al., The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. Journal of Alloys and Compounds, 2016. 677: p. 204-210.50. Varzaneh, A.G., et al., Effect of heat treatment on martensitic transformation of Ni 47 Mn 40 Sn 13 ferromagnetic shape memory alloy prepared by mechanical alloying. Metals and Materials International, 2015. 21(4): p. 758-764.51. Aydoğdu, Y., et al. The effects of thermal procedure on transformation temperature, crystal structure and microstructure of Cu-Al-Co shape memory alloy. in Journal of Physics: Conference Series. 2016. IOP Publishing.52. Ozcan, H., et al., Effects of cyclic heat treatment and aging on superelasticity in oligocrystalline Fe-Mn-Al-Ni shape memory alloy wires. Scripta Materialia, 2017. 134: p. 66-70.53. Kök, M., et al. The change of transformation temperature on NiTi shape memory alloy by pressure and thermal ageing. in Journal of Physics: Conference Series. 2016. IOP Publishing.54. Yang, C., et al., Effects of thermo-mechanical treatment on a Fe–30Mn–6Si shape memory alloy. Materials Science and Engineering: A, 2008. 497(1-2): p. 445-450.55. Saud, S.N., et al., Structure-property relationship of Cu-Al-Ni-Fe shape memory alloys in different quenching media. Journal of materials engineering and performance, 2014. 23(1): p. 255-261.56. Saud, S.N., et al., Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys. Journal of Materials Engineering and Performance, 2015. 24(4): p. 1522-1530.57. Yildiz, K., E. Balci, and S. Akpinar, Quenching media effects on martensitic transformation, thermodynamic and structural properties of Cu–Al–Fe–Ti high-temperature shape memory alloy. Journal of Thermal Analysis and Calorimetry, 2017. 129(2): p. 937-945.58. Haidar, M.A., S.N. Saud, and E. Hamzah, Microstructure, Mechanical Properties, and Shape Memory Effect of Annealed Cu-Al-Ni-xCo Shape Memory Alloys. Metallography, Microstructure, and Analysis, 2018. 7(1): p. 57-64.59. SMA, M.O.C.A.N.T., COOLING CONDITION EFFECTS ON TRANSFORMATION TEMPERATURE. Journal of Chemical Technology and Metallurgy, 2019. 54(1): p. 204-208.60. Firstov, G., et al., Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002. 23(24): p. 4863-4871.61. Xu, C., et al., Oxidation behavior of TiNi shape memory alloy at 450–750 C. Materials Science and Engineering: A, 2004. 371(1-2): p. 45-50.62. Ibrahim, M.K., et al., Powder Metallurgy Fabrication of Porous 51 (at.%) Ni–Ti Shape Memory Alloys for Biomedical Applications. Shape Memory and Superelasticity, 2018. 4(2): p. 327-336.63. Ibrahim, M.K., et al., Parameter optimization of microwave sintering porous Ti-23% Nb shape memory alloys for biomedical applications. Transactions of Nonferrous Metals Society of China, 2018. 28(4): p. 700-710.64. Bahador, A., et al., Microstructure and superelastic properties of free forged Ti–Ni shape-memory alloy. Transactions of Nonferrous Metals Society of China, 2018. 28(3): p. 502-514.65. Woodside, C.R., P.E. King, and C. Nordlund, Arc distribution during the vacuum arc remelting of Ti-6Al-4V. Metallurgical and Materials Transactions B, 2013. 44(1): p. 154-165.66. Griesenauer, N., S. Lyon, and C. Alexander, Vacuum Induction Melting of Titanium. Journal of Vacuum Science and Technology, 1972. 9(6): p. 1351-1355.67. Cronskär, M., M. Bäckström, and L.-E. Rännar, Production of customized hip stem prostheses–a comparison between conventional machining and electron beam melting (EBM). Rapid Prototyping Journal, 2013. 19(5): p. 365-372.68. Grummon, D.S., J.A. Shaw, and A. Gremillet, Low-density open-cell foams in the NiTi system. Applied Physics Letters, 2003. 82(16): p. 2727-2729.69. Chung, C., C. Chu, and S. Wang, Porous TiNi shape memory alloy with high strength fabricated by self-propagating high-temperature synthesis. Materials Letters, 2004. 58(11): p. 1683-1686.70. Wen, C., et al., Porous shape memory alloy scaffolds for biomedical applications: a review. Physica scripta, 2010. 2010(T139): p. 014070.71. Bram, M., et al., Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Materials Science and Engineering: A, 2002. 337(1-2): p. 254-263.72. Tian, X., et al., Martensitic transformation, mechanical property and magnetic-field-induced strain of Ni–Mn–Ga alloy fabricated by spark plasma sintering. Journal of Alloys and Compounds, 2011. 509(10): p. 4081-4083.73. Butler, J., et al., Production of Nitinol wire from elemental nickel and titanium powders through spark plasma sintering and extrusion. Journal of materials engineering and performance, 2011. 20(4-5): p. 757-761.74. Guoxin, H., et al., Fabrication of high porous NiTi shape memory alloy by metal injection molding. Journal of materials processing technology, 2008. 206(1-3): p. 395-399.75. Khoo, Z., et al., A review of selective laser melted NiTi shape memory alloy. Materials, 2018. 11(4): p. 519.76. Yap, C.Y., et al., Review of selective laser melting: Materials and applications. Applied physics reviews, 2015. 2(4): p. 041101.77. Krishna, B.V., S. Bose, and A. Bandyopadhyay, Laser processing of net-shape NiTi shape memory alloy. Metallurgical and Materials transactions A, 2007. 38(5): p. 1096-1103.78. Bernard, S.A., et al., Bone cell–materials interactions and Ni ion release of anodized equiatomic NiTi alloy. Acta biomaterialia, 2011. 7(4): p. 1902-1912.79. Rafi, H., et al., Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting. Journal of materials engineering and performance, 2013. 22(12): p. 3872-3883.80. Otubo, J., et al. Scale up of NiTi shape memory alloy production by EBM. in Journal de Physique IV (Proceedings). 2003. EDP sciences.81. Haldar, A., S. Suwas, and D. Bhattacharjee, Microstructure and Texture in Steels: and Other Materials. 2009: Springer.82. Motemani, Y., et al., Effect of cooling rate on the phase transformation behavior and mechanical properties of Ni-rich NiTi shape memory alloy. Journal of Alloys and Compounds, 2009. 469(1-2): p. 164-168.83. Alaneme, K.K. and E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options–a review of copper and iron based shape memory metallic systems. Engineering Science and Technology, an International Journal, 2016. 19(3): p. 1582-1592.84. Otsuka, K. and C.M. Wayman, Shape memory materials. 1999: Cambridge university press.85. Watson, R.E., Comparison of the response of shape memory alloy actuators using air-cooling and water-cooling. 1984.86. Popescu, R., D. Popescu, and A. Grumezescu, Applications of rubber-based blends, in Recent Developments in Polymer Macro, Micro and Nano Blends. 2017, Elsevier. p. 75-109.87. Jani, J.M., et al., A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 2014. 56: p. 1078-1113.88. Santoro, M., O.F. Nicolay, and T.J. Cangialosi, Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part I: Temperature transitional ranges. American Journal of Orthodontics and Dentofacial Orthopedics, 2001. 119(6): p. 587-593.89. Gurka, M., Active hybrid structures made of shape memory alloys and fibre-reinforced composites. Multifunctionality of Polymer Composites, 2015: p. 727-751.90. Wayman, C., An introduction to martensite and shape memory. Engineering aspects of shape memory alloys, 1990.91. Pan, Q. and C. Cho, The investigation of a shape memory alloy micro-damper for MEMS applications. Sensors, 2007. 7(9): p. 1887-1900.92. Van Humbeeck, J. and S. Kustov, Active and passive damping of noise and vibrations through shape memory alloys: applications and mechanisms. Smart Materials and Structures, 2005. 14(5): p. S171.93. Heywang, W., K. Lubitz, and W. Wersing, Piezoelectricity: evolution and future of a technology. Vol. 114. 2008: Springer Science & Business Media.94. Anton, S.R. and H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart materials and Structures, 2007. 16(3): p. R1.95. Vatansever, D., E. Siores, and T. Shah, Alternative resources for renewable energy: piezoelectric and photovoltaic smart structures, in Global Warming-Impacts and Future Perspective. 2012, IntechOpen.96. Starr, M.B. and X. Wang, Coupling of piezoelectric effect with electrochemical processes. Nano Energy, 2015. 14: p. 296-311.97. Katsouras, I., et al., The negative piezoelectric effect of the ferroelectric polymer poly (vinylidene fluoride). Nature materials, 2016. 15(1): p. 78.98. Arnau, A. and D. Soares, Fundamentals of piezoelectricity, in Piezoelectric transducers and applications. 2009, Springer. p. 1-38.99. Liu, H., et al., A motor-piezo actuator for nano-scale positioning based on dual servo loop and nonlinearity compensation. Journal of Micromechanics and microengineering, 2003. 13(2): p. 295.100. Gautschi, G., Piezoelectric sensors, in Piezoelectric Sensorics. 2002, Springer. p. 73-91.101. Chang, Y., et al., ⟨ 001⟩ textured (K 0.5 Na 0.5)(Nb 0.97 Sb 0.03) O 3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Applied Physics Letters, 2009. 95(23): p. 232905.102. Algueró, M., et al., High-sensitivity piezoelectric, low-tolerance-factor perovskites by mechanosynthesis. Chemistry of Materials, 2007. 19(20): p. 4982-4990.103. Sasaki, H. and K. Iguchi, Driving method of piezoelectric transformer and driving circuit for the same. 2000, Google Patents.104. Shung, K.K., J. Cannata, and Q. Zhou, Piezoelectric materials for high frequency medical imaging applications: A review. Journal of Electroceramics, 2007. 19(1): p. 141-147.105. Zhou, Q., et al., Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Progress in materials science, 2011. 56(2): p. 139-174.106. Li, H., et al., Fabrication of a high frequency piezoelectric microvalve. Sensors and Actuators A: Physical, 2004. 111(1): p. 51-56.107. Minary-Jolandan, M. and M.-F. Yu, Shear piezoelectricity in bone at the nanoscale. Applied Physics Letters, 2010. 97(15): p. 153127.108. Hu, S., et al., Ferroelectric polarization of hydroxyapatite from density functional theory. RSC Advances, 2017. 7(35): p. 21375-21379.109. Yamamoto, T., T. Shiosaki, and A. Kawabata, Characterization of ZnO piezoelectric films prepared by rf planar‐magnetron sputtering. Journal of Applied Physics, 1980. 51(6): p. 3113-3120.110. Tonisch, K., et al., Piezoelectric properties of polycrystalline AlN thin films for MEMS application. Sensors and Actuators A: Physical, 2006. 132(2): p. 658-663.111. Fraden, J., Acoustic Sensors, in Handbook of Modern Sensors. 2010, Springer. p. 431-443.112. Jaffe, B., Piezoelectric ceramics. Vol. 3. 2012: Elsevier.113. Datta, S., Piezoelectric materials: Crystal orientation and poling direction. COMSOL Blog, 2014.114. Pasquale, M., Mechanical sensors and actuators. Sensors and Actuators A: Physical, 2003. 106(1-3): p. 142-148.115. Dapino, M.J., et al., A magnetoelastic model for Villari-effect magnetostrictive sensors. 2002, North Carolina State University. Center for Research in Scientific Computation.116. Gibbs, M.R., Materials optimization for magnetic MEMS. IEEE transactions on magnetics, 2007. 43(6): p. 2666-2671.117. Yamamoto, Y., H. Eda, and J. Shimizu. Application of giant magnetostrictive materials to positioning actuators. in Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on. 1999. IEEE.118. Olabi, A.-G. and A. Grunwald, Design and application of magnetostrictive materials. Materials & Design, 2008. 29(2): p. 469-483.119. Newnham, R., et al., Electrostriction: nonlinear electromechanical coupling in solid dielectrics. The Journal of Physical Chemistry B, 1997. 101(48): p. 10141-10150.120. Coutte, J., et al., Design, production and testing of PMN–PT electrostrictive transducers. Ultrasonics, 2002. 40(1-8): p. 883-888.121. Yang, J., An introduction to the theory of piezoelectricity. Vol. 9. 2004: Springer Science & Business Media.122. Davoudi, S., Effect of Temperature and Thermal Cycles on PZT Ceramic Performance in Fuel Injector Applications. 2012.123. Mattila, H., Intelligent textiles and clothing. 2006: Woodhead Publishing.124. Osterby, B., R.D. McKelvey, and L. Hill, Photochromic sunglasses: A patent-based advanced organic synthesis project and demonstration. Journal of Chemical Education, 1991. 68(5): p. 424.125. Wilusz, E., Military textiles. 2008: Elsevier.126. Wang, Z. and P.P. Nguyen, Durable reflection-controllable electrochromic thin film material. 2010, Google Patents.127. Fuss, E.A., R.W. Phillips, and P.P. Nguyen, Electrical characteristics of electrochromic devices. 2010, Google Patents.128. Marinella, F. and B. Murat, Materials that Change Color. Smart Materials, Intelligent Design. 2013, Milano, Politecnico di Milano, Springer.129. Mortimer, R.J., Switching colors with electricity. American Scientist, 2013. 101(1): p. 38.130. Ghosh, D., Synthesis, characterization, and application of functional nanomaterials. 2009: University of California, Santa Cruz.131. Richardson, T.J., New electrochromic mirror systems. Solid State Ionics, 2003. 165(1-4): p. 305-308.132. Horng, H.-E., et al., Magnetochromatic effects in magnetic fluid thin films. Applied optics, 1998. 37(13): p. 2674-2680.133. Sung, Y.K., B.W. Ahn, and T.J. Kang, Magnetic nanofibers with core (Fe3O4 nanoparticle suspension)/sheath (poly ethylene terephthalate) structure fabricated by coaxial electrospinning. Journal of magnetism and magnetic materials, 2012. 324(6): p. 916-922.134. Rodriguez, F., et al., Optical study of the piezochromic transition in CuMoO 4 by pressure spectroscopy. Physical Review B, 2000. 61(24): p. 16497.135. Takagi, H.D., et al., Piezochromism and related phenomena exhibited by palladium complexes. Platinum Metals Review, 2004. 48(3): p. 117-124.136. Bamfield, P., Chromic phenomena: technological applications of colour chemistry. 2010: Royal Society of Chemistry.137. Seeboth, A., D. Loetzsch, and R. Ruhmann, Piezochromic polymer materials displaying pressure changes in bar-ranges. American Journal of Materials Science, 2011. 1(2): p. 139-142.138. Almeida, H., M.H. Amaral, and P. Lobão, Temperature and pH stimuli-responsive polymers and their applications in controlled and selfregulated drug delivery. 2012.139. Chaturvedi, K., et al., Polymeric hydrogels for oral insulin delivery. Journal of controlled release, 2013. 165(2): p. 129-138.140. Kocak, G., C. Tuncer, and V. Bütün, pH-Responsive polymers. Polymer Chemistry, 2017. 8(1): p. 144-176.141. Dounas-Frazer, D., et al., Learning about non-Newtonian fluids in a student-driven classroom. arXiv preprint arXiv:1203.2682, 2012.142. Mazlan, B. and S. Amri, The behaviour of magnetorheological fluids in squeeze mode. 2008, Dublin City University.143. Park, B.J., F.F. Fang, and H.J. Choi, Magnetorheology: materials and application. Soft Matter, 2010. 6(21): p. 5246-5253.144. Kim, Y., R. Langari, and S. Hurlebaus, Semiactive nonlinear control of a building with a magnetorheological damper system. Mechanical Systems and Signal Processing, 2009. 23(2): p. 300-315.145. Lindler, J.E., G.A. Dimock, and N.M. Wereley. Design of a magnetorheological automotive shock absorber. in Smart Structures and Materials 2000: Smart Structures and Integrated Systems. 2000. International Society for Optics and Photonics.146. Hong, J.-Y., E. Kwon, and J. Jang, Fabrication of silica/polythiophene core/shell nanospheres and their electrorheological fluid application. Soft Matter, 2009. 5(5): p. 951-953.147. Khanicheh, A., et al., Evaluation of electrorheological fluid dampers for applications at 3-T MRI environment. IEEE/ASME Transactions on Mechatronics, 2008. 13(3): p. 286-294.148. Madeja, J., Z. Kesy, and A. Kesy, Application of electrorheological fluid in a hydrodynamic clutch. Smart Materials and Structures, 2011. 20(10): p. 105005.149. Spanner, K. and B. Koc. Piezoelectric motors, an overview. in Actuators. 2016. Multidisciplinary Digital Publishing Institute.150. Toozandehjani, M., et al., Conventional and Advanced Composites in Aerospace Industry: Technologies Revisited. American Journal of Aerospace Engineering, 2018. 5(1): p. 9-15.151. Barbarino, S., et al., Wing shape control through an SMA-based device. Journal of Intelligent Material Systems and Structures, 2009. 20(3): p. 283-296.152. Giurgiutiu, V. and A.N. Zagrai. Use of smart materials technologies in radiation environments and nuclear industry. in Smart Structures and Materials 2000: Smart Structures and Integrated Systems. 2000. International Society for Optics and Photonics.153. Thakur, S., Shape Memory Polymers for Smart Textile Applications, in Textiles for Advanced Applications. 2017, InTech.154. Rock, M., Temperature responsive smart textile. 2012, Google Patents.155. Mondal, S. and J. Hu, A novel approach to excellent UV protecting cotton fabric with functionalized MWNT containing water vapor permeable PU coating. Journal of Applied Polymer Science, 2007. 103(5): p. 3370-3376.156. Fu, Y., et al., Thin film shape memory alloys and microactuators. International Journal of Computational Materials Science and Surface Engineering, 2009. 2(3-4): p. 208-226.157. Crăciunescu, C. and A. Ercuta, Modulated interaction in double-layer shape memory-based micro-designed actuators. Science and technology of advanced materials, 2015. 16(6): p. 065003.158. Shang, X., E. Pan, and L. Qin, Mathematical modeling and numerical computation for the vibration of a magnetostrictive actuator. Smart materials and structures, 2008. 17(4): p. 045026.159. Qader, I.N. and M. Omar, Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bulletin of Materials Science, 2017. 40(3): p. 599-607.160. Purushothaman, K. and G. Muralidharan, The effect of annealing temperature on the electrochromic properties of nanostructured NiO films. Solar Energy Materials and Solar Cells, 2009. 93(8): p. 1195-1201.161. Mamand, S., M. Omar, and A. Muhammed, Calculation of lattice thermal conductivity of suspended GaAs nanobeams: Effect of size dependent parameters. Adv Mat Lett, 2012. 3(6): p. 449-58.162. Qader, I.N., B.J. Abdullah, and H.H. Karim, Lattice Thermal Conductivity of Wurtzite Bulk and Zinc Blende CdSe Nanowires and Nanoplayer. Eurasian Journal of Science & Engineering, 2017. 3(1): p. 9-26.163. Li, D., et al., Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003. 83(14): p. 2934-2936.164. Omar, M., Structural and Thermal Properties of Elementary and Binary Tetrahedral Semiconductor Nanoparticles. International Journal of Thermophysics, 2016. 37(1): p. 11.165. Abdullah, B.J., M.S. Omar, and Q. Jiang, Size effects on cohesive energy, Debye temperature and lattice heat capacity from first-principles calculations of Sn nanoparticles. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018. 88(4): p. 629-632.166. Abdullah, B.J., Q. Jiang, and M.S. Omar, Effects of size on mass density and its influence on mechanical and thermal properties of ZrO 2 nanoparticles in different structures. Bulletin of Materials Science, 2016. 39(5): p. 1295-1302.167. Li, C., E.T. Thostenson, and T.-W. Chou, Sensors and actuators based on carbon nanotubes and their composites: a review. Composites Science and Technology, 2008. 68(6): p. 1227-1249.168. Kim, P. and C.M. Lieber, Nanotube nanotweezers. Science, 1999. 286(5447): p. 2148-2150.169. Li, C. and T.-W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Composites Science and Technology, 2003. 63(11): p. 1517-1524.170. Cramm, J., et al., Investigating the feasibility of implementing Pavegen energy: harvesting piezoelectric floor tiles in the new SUB. 2011.171. Miyazaki, S. and R. Sachdeva, Shape memory effect and superelasticity in Ti—Ni alloys, in Shape memory alloys for biomedical applications. 2009, Elsevier. p. 3-19.172. Machado, L. and M. Savi, Medical applications of shape memory alloys. Brazilian journal of medical and biological research, 2003. 36(6): p. 683-691.173. Kauffman, G.B. and I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications. The chemical educator, 1997. 2(2): p. 1-21.174. Hartl, D., et al., Use of a Ni60Ti shape memory alloy for active jet engine chevron application: II. Experimentally validated numerical analysis. Smart Materials and Structures, 2009. 19(1): p. 015021.175. Petrini, L. and F. Migliavacca, Biomedical applications of shape memory alloys. Journal of Metallurgy, 2011. 2011.176. Rush, J.A., Memory wire robotic hand. 1997, Google Patents.177. Duerig, T.W., K. Melton, and D. Stöckel, Engineering aspects of shape memory alloys. 2013: Butterworth-Heinemann.178. Gray, H.N. and D.E. Bergbreiter, Applications of polymeric smart materials to environmental problems. Environmental health perspectives, 1997. 105(Suppl 1): p. 55.179. Bergbreiter, D.E., L. Zhang, and V.M. Mariagnanam, Smart ligands that regulate homogeneously catalyzed reactions. Journal of the American Chemical Society, 1993. 115(20): p. 9295-9296.180. Yin, H., et al., Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water. Advanced materials, 2013. 25(43): p. 6270-6276.181. Bao, Q., D. Zhang, and P. Qi, Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disinfection. Journal of colloid and interface science, 2011. 360(2): p. 463-470.182. Xie, G., et al., Graphene‐based materials for hydrogen generation from light‐driven water splitting. Advanced materials, 2013. 25(28): p. 3820-3839.183. Mishra, A.K., Smart materials for waste water applications. 2016: John Wiley & Sons.184. Tofighy, M.A. and T. Mohammadi, Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of hazardous materials, 2011. 185(1): p. 140-147.185. Bagheri, H., Z. Ayazi, and A. Aghakhani, A novel needle trap sorbent based on carbon nanotube-sol–gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media. Analytica chimica acta, 2011. 683(2): p. 212-220.186. Yang, K. and B. Xing, Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution, 2007. 145(2): p. 529-537.187. Jung, C., et al., Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. Journal of Industrial and Engineering Chemistry, 2015. 27: p. 1-11.188. Lu, T.-L. and Y.-C. Tsai, Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sensors and Actuators B: Chemical, 2011. 153(2): p. 439-444.189. Varaprasad, D.V., et al., Electrochromic mirrors and devices. 1998, Google Patents.190. Niklasson, G.A. and C.G. Granqvist, Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. Journal of Materials Chemistry, 2007. 17(2): p. 127-156.191. Saito, K., Magnetic rheological fluid shock absorber. 2017, Google Patents.192. Zuo, L., X. Tang, and P.S. Zhang, Electricity generating shock absorbers. 2015, Google Patents.193. Li, W., et al., Testing and steady state modeling of a linear MR damper under sinusoidal loading. Smart Materials and Structures, 2000. 9(1): p. 95.
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

İbrahim Nazem Qader 0000-0003-1167-3799

Mediha Kök 0000-0001-7404-4311

Fethi Dagdelen 0000-0001-9849-590X

Yıldırım Aydoğdu This is me 0000-0002-1115-0691

Publication Date September 30, 2019
Submission Date May 9, 2019
Acceptance Date June 25, 2019
Published in Issue Year 2019

Cite

IEEE İ. N. Qader, M. Kök, F. Dagdelen, and Y. Aydoğdu, “A review of smart materials: researches and applications”, ECJSE, vol. 6, no. 3, pp. 755–788, 2019, doi: 10.31202/ecjse.562177.

Cited By























Mechanical and Thermal Behavior of Cu84−xAl13Ni3Hfx Shape Memory Alloys
Iranian Journal of Science and Technology, Transactions A: Science
Ibrahim Nazem Qader
https://doi.org/10.1007/s40995-020-01008-w