Research Article
BibTex RIS Cite

Hidrojen Üretimi için Üç Adımlı Cu-Cl Termokimyasal Sistemin Enerji ve Ekserji Analizi

Year 2020, , 79 - 92, 31.01.2020
https://doi.org/10.31202/ecjse.585881

Abstract

Termokimyasal çevrim sistemleri yenilenebilir enerji
kaynaklarından elde edilen ısı ve elektrik enerjisini kullanarak sera gazları
salınımı olmadan hidrojen üretimi yaparlar. Sunulan çalışmada tasarlanan yüksek
sıcaklık Cu-Cl termokimyasal çevrim sisteminin enerji ve ekserji analizleri
gerçekleştirilmiştir. Yapılan analizler farklı referans sıcaklık değerleri ve
değişen reaksiyon sıcaklıklarına göre incelenerek parametrik çalışmalar
oluşturulmuştur. Çevrimin her bir adımı için ekserji hızları, ekserji yıkımları
ve tüm çevrimin ekserji verimi araştırılmıştır. 25 oC referans çevre
sıcaklığında Cu-Cl termokimyasal çevrimin enerji ve ekserji verimleri sırasıyla
55.41% ve 66.09% bulunmuştur. Ayrıca incelenen sistemdeki en büyük ekserji
yıkımı hidrojen üretim adımında gerçekleşmiştir.

References

  • Yuksel, Y. E., Ozturk, M., "Thermodynamic Analysis of an Integrated Solar-based Chemical Reactor System for Hydrogen Production", El-Cezerî Journal of Science and Engineering, 2015, 2(2), 19-27.
  • Türkiye Elektrik İletim A.Ş. (TEİAŞ), 2003. Erişim Tarihi: 13.10.2018. http://www.teias.gov.tr/sites/default/files/2017-10/60.xlsx
  • International Renewable Energy Agency (IRENA), 2009. Erişim Tarihi: 13.10.2018. http://resourceirena.irena.org/gateway/dashboard/?topic=4&subTopic=54
  • Dincer, I., "Green methods for hydrogen production", International Journal of Hydrogen Energy, 2012, 37(2); 1954-1971.
  • Acar, C., Dincer, I., “Comparative Assessment of Hydrogen Production Methods from Renewable and Non-renewable Sources”, International Journal of Hydrogen Energy, 2014, 39(1), 1-12.
  • Dincer, I., Joshi, A. S., “Hydrogen production methods”, “In Solar Based Hydrogen Production Systems”. Springer, 2013, 141s, New York.
  • Lewis, D., “Hydrogen and its relationship with nuclear energy”, Progress in Nuclear Energy, 2008, 50(2-6), 394-401.
  • Dincer, I., “Environmental and sustainability aspects of hydrogen and fuel cell systems”, International Journal of Energy Research, 2007, 31(1), 29-55.
  • Forsberg, C. W., “The hydrogen economy is coming-The question is where?”, Chemical Engineering Progress, 2005, 101(12), 20-22.
  • Khalid, F., Dincer, I., Rosen, M. A., “Co-production of Hydrogen and Copper from Copper Waste Using a Thermochemical Cu–Cl Cycle”, Energy & fuels, 2018, 32(2), 2137-2144.
  • Khalid, F., Dincer, I., Rosen, M. A., “Model development and analysis of a novel high-temperature electrolyser for gas phase electrolysis of hydrogen chloride for hydrogen production”, International Journal of Hydrogen Energy, 2018, 43(19), 9112-9118.
  • Kruger, P., “Nuclear production of hydrogen as an appropriate technology”, Nuclear Technology, 2009, 166(1), 11-17.
  • Yildiz, B., Kazimi, M. S., “Efficiency of hydrogen production systems using alternative nuclear energy technologies”, International Journal of Hydrogen Energy, 2006, 31(1), 77-92.
  • Khalid, F., Dincer, I., Rosen, M. A., “Thermodynamic viability of a new three step high temperature Cu-Cl cycle for hydrogen production”, International Journal of Hydrogen Energy, 2018, 43(41), 18783-18789.
  • Simpson, M. F., Utgikar, V., Sachdev, P., McGrady, C., “A novel method for producing hydrogen based on the Ca–Br cycle”, International Journal of Hydrogen Energy, 2007, 32(4), 505-509.
  • Sturzenegger, M., Nüesch, P., “Efficiency analysis for a manganese-oxide-based thermochemical cycle”, Energy, 1999, 24(11), 959-970.
  • Gooding, C. H., “Analysis of alternative flow sheets for the hybrid chlorine cycle”, International Journal of Hydrogen Energy, 2009, 34(9), 4168-4178.
  • Naterer, G. F., Suppiah, S., Stolberg, L., Lewis, M., Ferrandon, M., Wang, Z., Dincer, I., Gabriel, K., Rosen, M. A., Secnik, E., Easton, E. B., Trevani, L., Pioro, I., Tremaine, P., Lvov, S., Jiang, J., Rizvi, G., Ikeda, B. M., Lu, L., Kaye, M., Smith, W. R., Mostaghimi, J., Spekkens, P., Fowler, M., Avsec, J., “Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium, II: Simulations, thermochemical data and materials”, International Journal of Hydrogen Energy 2011, 36(24), 15486-15501.
  • Naterer, G. F., Suppiah, S., Stolberg, L., Lewis, M., Ferrandon, M., Wang, Z., Dincer, I., Gabriel, K., Rosen, M. A., Secnik, E., Easton, E. B., Trevani, L., Pioro, I., Tremaine, P., Lvov, S., Jiang, J., Rizvi, G., Ikeda, B. M., Lu, L., Kaye, M., Smith, W. R., Mostaghimi, J., Spekkens, P., Fowler, M., Avsec, J., “Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, I: Experimental unit operations”, International Journal of Hydrogen Energy 2011, 36(24), 15472-15485.
  • Ratlamwala, T. A. H., Dincer, I., “Energy and exergy analysis of a Cu-Cl cycle based integrated system for hydrogen production”, Chemical Engineering Science 2012, 84, 564-73.
  • Balta, M. T., Dincer, I., Hepbasli, A., “Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle”, International Journal of Hydrogen Energy, 2012, 37(6), 4855-4862.
  • Balta, M. T., Dincer, I., Hepbasli, A., “Performance assessment of solar-driven integrated Mg–Cl cycle for hydrogen production”, International Journal of Hydrogen Energy, 2014, 39(35), 20652-20661.
  • Mawdsley, J. R., Carter, J. D., Myers, D. J., Lewis, M. A., Krause, T. R., “Sulfur trioxide electrolysis studies: Implications for the sulfur–iodine thermochemical cycle for hydrogen production”, International Journal of Hydrogen Energy, 2012, 37(15), 11004-11011.
  • Orhan, M. F., Dincer, I., Rosen, M. A., “The oxygen production step of a copper–chlorine thermochemical water decomposition cycle for hydrogen production: energy and exergy analyses”, Chemical Engineering Science, 2009, 64(5), 860-869.
  • Naterer, G. F., Gabriel, K., Wang, Z. L., Daggupati, V. N., Gravelsins, R., “Thermochemical hydrogen production with a copper–chlorine cycle. I: oxygen release from copper oxychloride decomposition”, International Journal of Hydrogen Energy, 2008, 33(20), 5439-5450.
  • Dokiya, M., Kotera, Y., “Hybrid cycle with electrolysis using CuCl system”, International Journal of Hydrogen Energy, 1976, 1(2), 117-121.
  • Gupta, A. K., Parker, R. Z., Hanrahan, R. J., “Gas phase formation of hydrogen chloride by thermal chlorine-steam reaction”, International journal of hydrogen energy, 1991, 16(10), 677-682.
  • National Institute of Standards and Technology (NIST), 2018, https://webbook.nist.gov/chemistry/
  • Exergoecology Portal (EP), 2018, http://www.exergoecology.com/excalc/

Energy and Exergy Analysis of Three-Step Cu-Cl Thermochemical System for Hydrogen Production

Year 2020, , 79 - 92, 31.01.2020
https://doi.org/10.31202/ecjse.585881

Abstract

Thermochemical
cycle systems produce hydrogen without the release of greenhouse gases using
heat and electrical energy from renewable energy sources. In this study, the energy
and exergy analyses of designed high-temperature Cu-Cl thermochemical
conversion system are performed. Parametric studies are carried out by
examining the analyses according to different reference temperature values and
reaction temperatures. The exergy rates and exergy destruction rates for each
step of cycle, and also the exergy efficiency of system are investigated. The
energy and exergy efficiencies of Cu-Cl thermochemical cycle at a reference
ambient temperature of 25 °C are found as 55.41% and 66.09%, respectively. In
addition, the maximum exergy destruction in the investigated system occurred in
the hydrogen production step.

References

  • Yuksel, Y. E., Ozturk, M., "Thermodynamic Analysis of an Integrated Solar-based Chemical Reactor System for Hydrogen Production", El-Cezerî Journal of Science and Engineering, 2015, 2(2), 19-27.
  • Türkiye Elektrik İletim A.Ş. (TEİAŞ), 2003. Erişim Tarihi: 13.10.2018. http://www.teias.gov.tr/sites/default/files/2017-10/60.xlsx
  • International Renewable Energy Agency (IRENA), 2009. Erişim Tarihi: 13.10.2018. http://resourceirena.irena.org/gateway/dashboard/?topic=4&subTopic=54
  • Dincer, I., "Green methods for hydrogen production", International Journal of Hydrogen Energy, 2012, 37(2); 1954-1971.
  • Acar, C., Dincer, I., “Comparative Assessment of Hydrogen Production Methods from Renewable and Non-renewable Sources”, International Journal of Hydrogen Energy, 2014, 39(1), 1-12.
  • Dincer, I., Joshi, A. S., “Hydrogen production methods”, “In Solar Based Hydrogen Production Systems”. Springer, 2013, 141s, New York.
  • Lewis, D., “Hydrogen and its relationship with nuclear energy”, Progress in Nuclear Energy, 2008, 50(2-6), 394-401.
  • Dincer, I., “Environmental and sustainability aspects of hydrogen and fuel cell systems”, International Journal of Energy Research, 2007, 31(1), 29-55.
  • Forsberg, C. W., “The hydrogen economy is coming-The question is where?”, Chemical Engineering Progress, 2005, 101(12), 20-22.
  • Khalid, F., Dincer, I., Rosen, M. A., “Co-production of Hydrogen and Copper from Copper Waste Using a Thermochemical Cu–Cl Cycle”, Energy & fuels, 2018, 32(2), 2137-2144.
  • Khalid, F., Dincer, I., Rosen, M. A., “Model development and analysis of a novel high-temperature electrolyser for gas phase electrolysis of hydrogen chloride for hydrogen production”, International Journal of Hydrogen Energy, 2018, 43(19), 9112-9118.
  • Kruger, P., “Nuclear production of hydrogen as an appropriate technology”, Nuclear Technology, 2009, 166(1), 11-17.
  • Yildiz, B., Kazimi, M. S., “Efficiency of hydrogen production systems using alternative nuclear energy technologies”, International Journal of Hydrogen Energy, 2006, 31(1), 77-92.
  • Khalid, F., Dincer, I., Rosen, M. A., “Thermodynamic viability of a new three step high temperature Cu-Cl cycle for hydrogen production”, International Journal of Hydrogen Energy, 2018, 43(41), 18783-18789.
  • Simpson, M. F., Utgikar, V., Sachdev, P., McGrady, C., “A novel method for producing hydrogen based on the Ca–Br cycle”, International Journal of Hydrogen Energy, 2007, 32(4), 505-509.
  • Sturzenegger, M., Nüesch, P., “Efficiency analysis for a manganese-oxide-based thermochemical cycle”, Energy, 1999, 24(11), 959-970.
  • Gooding, C. H., “Analysis of alternative flow sheets for the hybrid chlorine cycle”, International Journal of Hydrogen Energy, 2009, 34(9), 4168-4178.
  • Naterer, G. F., Suppiah, S., Stolberg, L., Lewis, M., Ferrandon, M., Wang, Z., Dincer, I., Gabriel, K., Rosen, M. A., Secnik, E., Easton, E. B., Trevani, L., Pioro, I., Tremaine, P., Lvov, S., Jiang, J., Rizvi, G., Ikeda, B. M., Lu, L., Kaye, M., Smith, W. R., Mostaghimi, J., Spekkens, P., Fowler, M., Avsec, J., “Clean hydrogen production with the Cu-Cl cycle - Progress of international consortium, II: Simulations, thermochemical data and materials”, International Journal of Hydrogen Energy 2011, 36(24), 15486-15501.
  • Naterer, G. F., Suppiah, S., Stolberg, L., Lewis, M., Ferrandon, M., Wang, Z., Dincer, I., Gabriel, K., Rosen, M. A., Secnik, E., Easton, E. B., Trevani, L., Pioro, I., Tremaine, P., Lvov, S., Jiang, J., Rizvi, G., Ikeda, B. M., Lu, L., Kaye, M., Smith, W. R., Mostaghimi, J., Spekkens, P., Fowler, M., Avsec, J., “Clean hydrogen production with the Cu-Cl cycle – Progress of international consortium, I: Experimental unit operations”, International Journal of Hydrogen Energy 2011, 36(24), 15472-15485.
  • Ratlamwala, T. A. H., Dincer, I., “Energy and exergy analysis of a Cu-Cl cycle based integrated system for hydrogen production”, Chemical Engineering Science 2012, 84, 564-73.
  • Balta, M. T., Dincer, I., Hepbasli, A., “Energy and exergy analyses of magnesium-chlorine (Mg-Cl) thermochemical cycle”, International Journal of Hydrogen Energy, 2012, 37(6), 4855-4862.
  • Balta, M. T., Dincer, I., Hepbasli, A., “Performance assessment of solar-driven integrated Mg–Cl cycle for hydrogen production”, International Journal of Hydrogen Energy, 2014, 39(35), 20652-20661.
  • Mawdsley, J. R., Carter, J. D., Myers, D. J., Lewis, M. A., Krause, T. R., “Sulfur trioxide electrolysis studies: Implications for the sulfur–iodine thermochemical cycle for hydrogen production”, International Journal of Hydrogen Energy, 2012, 37(15), 11004-11011.
  • Orhan, M. F., Dincer, I., Rosen, M. A., “The oxygen production step of a copper–chlorine thermochemical water decomposition cycle for hydrogen production: energy and exergy analyses”, Chemical Engineering Science, 2009, 64(5), 860-869.
  • Naterer, G. F., Gabriel, K., Wang, Z. L., Daggupati, V. N., Gravelsins, R., “Thermochemical hydrogen production with a copper–chlorine cycle. I: oxygen release from copper oxychloride decomposition”, International Journal of Hydrogen Energy, 2008, 33(20), 5439-5450.
  • Dokiya, M., Kotera, Y., “Hybrid cycle with electrolysis using CuCl system”, International Journal of Hydrogen Energy, 1976, 1(2), 117-121.
  • Gupta, A. K., Parker, R. Z., Hanrahan, R. J., “Gas phase formation of hydrogen chloride by thermal chlorine-steam reaction”, International journal of hydrogen energy, 1991, 16(10), 677-682.
  • National Institute of Standards and Technology (NIST), 2018, https://webbook.nist.gov/chemistry/
  • Exergoecology Portal (EP), 2018, http://www.exergoecology.com/excalc/
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Vahit Çorumlu 0000-0003-2838-6497

Murat Öztürk 0000-0003-1585-0449

Publication Date January 31, 2020
Submission Date July 2, 2019
Acceptance Date October 14, 2019
Published in Issue Year 2020

Cite

IEEE V. Çorumlu and M. Öztürk, “Hidrojen Üretimi için Üç Adımlı Cu-Cl Termokimyasal Sistemin Enerji ve Ekserji Analizi”, ECJSE, vol. 7, no. 1, pp. 79–92, 2020, doi: 10.31202/ecjse.585881.