Research Article
BibTex RIS Cite

Biomonitoring of Heavy Metal Levels in Izmit Gulf in Marmara Sea with Biofilm Formation in Plexiglass Substrate

Year 2020, , 20 - 30, 31.01.2020
https://doi.org/10.31202/ecjse.590315

Abstract

In this study, plexiglas substrates were used for biofilm formation
to observe short-term variations in heavy metals in Izmit Gulf. The substrates
were inserted and collected in a two-week period as three times in the autumn
season. The averaged accumulation values of metals were decreased in the order
of Fe>Mn>Zn>Cu>Pb>Cr>Ni>Cd. The same trend was observed in
the first and third samples of the autumn without any exception in the
sequence. The order for the second sample was as
Fe>Mn>Zn>Pb>Cr>Cu>Ni>Cd. Among the 37 species found, 22
belonged to Bacillariophyceae, 2 species to Cyanophyceae and 13 species to
Dinophyceae taxa. While Bacillariophyceae consisted of about 55 % of total colony,
38 %  and 7 % comsosed of species of
Dinophyceae and Cyanophyceae taxa, respectively. Total biodensity values are
22362, 23513 and 21348 cell/ml. For various incubation days (15, 30 and 45), it
was seen that increasing incubation time would not always result in the increase
in densities of all species and total density of biofilms. Metal levels did not
show big variations. Low correlations were observed in relative abundances of
first three dominant species occupying around 85 % of total algal community
with some metals, though the variations are not much significant. 

References

  • [1] Mustafa, S., Hashmi, M.I., Tariq, S.A., 2002. Heavy metal concentrations in water and tiger prawn (Penaeus monodon) from grow-out farms in Sabah, North Borneo. Food Chemistry 79, 151–156.
  • [2] Phillips D.J.H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments_ a review. Environmental Pollution 13, 281-317.
  • [3] Campanella L., Conti M.E., Cubadda F., Sucapane C., 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution 111, 117-126.
  • [4] Binelli, A., Provini, A., 2003. The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web. Chemosphere 53, 143–151.
  • [5] Fialkowski W., Calosi P., Dahlke S., Dietrich A., Moore P.G., Olenin S., Persson L.E., Smith B.D., Špegys M., Rainbow P.S., 2009. The sandhopper Talitrus saltator (Crustacea: Amphipoda) as a biomonitor of trace metal bioavailabilities in European coastal waters. Marine Pollution Bulletin 58, 39–44.
  • [6] Cairns J., van der Schalie, W.H., 1980. Biological monitoring, Part I—Early warning systems. Water Res. 14, 1179–1196.
  • [7] Landner L, Blanck H, Heyman U, Lundgren A, Notini M, Rosemarin A, Sundelin B, 1989. Community testing, microcosm and mesocosm experiments. Ecotoxicological tools with high ecological realism. Springer Ser. ENVIRON. MANAGE, 216-254.
  • [8] Newman M.C., McIntosh A.W., 1989. Appropriateness of aufwuchs as a monitor of bioaccumulation. Environ. Pollut. 60, 83–100.
  • [9] Sekar R., Nair K.V.K., Rao V.N.R., Venugopalan V.P., 2002. Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshwater Biol. 47, 1893–1907.
  • [10] Burkholder J.M., 1996. Interactions of benthic algae with their substrata. In: Stevenson R.J., Bothwell M.L., Lowe R.L. (Eds.), Algal Ecology of Freshwater Benthic Ecosystems, Aquatic Ecology Series. Academic Press, Boston, pp. 253–298.
  • [11] Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedw. 64, 285-304.
  • [12] Steinberg, C., Schiefele, S., 1988. Biological indication of trophy and pollution of running waters. Z. Wasser Abwasser Forsch 21, 227e234.
  • [13] Van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 28, 117e133.
  • [14] Kröpfl K., Vladár P., Szabó K., Acs E., Borsodi AK., Szikora S., Caroli S., Záray G., 2006. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144(2), 626-631.
  • [15] McCormick P.V., Cairns J., 1994. Algae as indicators of environmentalchange. Journal of Applied Phycology 6, 509-526.
  • [16] Nocker A, Lepo JE, Martin LL, Snyder RA. Response of Estuarine Biofilm Microbial Community Development to Changes in Dissolved Oxygen and Nutrient Concentrations. Microbial Ecology ; 2007, 54(3):532-542.
  • [17] Porsbring T, Arrhenius, Backhaus T, Kuylenstierna M, Scholze M, Blanck H. The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology ; 2007, 349(2):299-312.
  • [18] Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fu¨er Theoretische und Angewandte Limnologie 9, 1-38.
  • [19] Lund JWG., Kipling C, Le Cren ED. (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:2, pp. 143-170.
  • [20] Krammer, K., Lange-Bertalot, H., 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. – G. Fischer Verlag.
  • [21] Ivorra N., Hettelaar J., Tubbing G.M.J., Kraak M.H.S., Sabater S., Admiraal W., 1999. Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Archives of Environmental Contamination and Toxicology 37, 19-28.
  • [22] Newman, M.C., Alberts, J.J., Greenhut, V.A., 1985. Geochemical factors complicating the use of aufwuchs to monitor bioaccumulation of arsenic, cadmium, chromium, copper and zinc. Water Res. 19, 1157-1165.
  • [23] Hill, W.R., Bednarek, A.T., Larsen, I.L., 2000b. Cadmium sorption and toxicity in autotrophic biofilms. Can. J. Fish. Aquat. Sci. 57, 530-537.
  • [24] Foster PL. Species associations and metal contents of algae from river polluted by heavy metals. Freshwat Biol, 2, 17–39.
  • [25] Behra, R., Landwehrjohann, R., Vogel, K.,Wagner, B., Sigg, L., 2002. Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquat. Sci. 64, 300–306.
  • [26] Novis P.M., Harding J.S., 2007. Extreme Acidophiles: freshwater algae associated with acid mine drainage. In: Seckbach, J. (Ed.), Algae And Cyanobacteria In Extreme Environment. Springer, The Netherlands, pp. 443–463.
  • [27] Elbaz-Poulichet F., Dupuy C., Cruzado A., Velasqaez Z., Achterberg E.P., Braungardt C.B., 2000. Influence of sorption process by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Water Research 34, 3222–3230.
  • [28] Brake S.S., Hasiotis S.T., Dannely H.K., 2004. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiology Journal 21, 331–340.
  • [29] Aksu Z., Açikel U., 1999. A single-staged bioseparation process for simultaneous removal of copper(II) and chromium(VI) by using C. vulgaris. Process Biochem. 34, 589–599.
  • [30] Yaşar D., Aksu A.E., Uslu O., 2001. Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish Journal of Engineering and Environmental Sciences 25, 299–313.
  • [31] Blanco, S., Becares, E., 2010. Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79, 18–25. [32] Coste, M., Duong, T.T., Feurtet-Mazel, A., Dang, D.K., Boudou, A., 2007. Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecological Indicators 7, 839–851. [33] Ivorra, N., Barranguet, C., Johker, M., Kraak, M.H.S., Admiraal,W., 2002. Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ. Pollut. 116, 147–157.
  • [34] Gustavson, K., Wängberg, S.A., 1995. Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquat. Toxicol. 32, 283–302.
  • [35] De Jonge, M., Van de Vijver, B., Blust, R., Bervoets, L., 2008. Responses of aquatic organisms to metal pollution in a lowland river in Flanders: a comparison of diatoms and macroinvertebrates. Sci. Total Environ. 407, 615–629.
  • [36] Chen, C.S., Tien, C-J., Wu, W-H., Chuang, T-L., 2009. Development of river biofilms on artificial substrates and their potential for biomonitoring water quality. Chemosphere 76, 1288–1295.
  • [37] Biggs, B.J.F., 1988. Artificial substrate expose times for periphyton biomass estimates in rivers. NZ J. Mar. Freshwater. Res. 22, 507–515.
  • [38] Hoagland, K.D., Roemer, S.C., Rosowski, J.R., 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69, 188–213.
  • [39] Ivorra, N., Bremer, S., Guasch, H., Kraak, MHS., Admiraal, W., 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxic Chem 19(5), 1332–9.
  • [40] Freeman, C., Lock, MA., 1995. The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40(2), 273–8.

Marmara Denizi'nde İzmit Körfezinde Ağır Metal Toksisitesinin, Pleksiglas Substratta Biyofilm Oluşumu ile Biyoizlenmesi

Year 2020, , 20 - 30, 31.01.2020
https://doi.org/10.31202/ecjse.590315

Abstract

Bu çalışmada, Biyofilm oluşumu
ile İzmit Körfezi'ndeki ağır metallerde kısa süreli değişimleri gözlemlemek
için pleksiglas substratlar kullanılmıştır. Substratlar sonbahar mevsiminde
yerleştirildi ve üç defada iki haftalık periyot ile toplandı. Metallerin
ortalama birikim değerleri, Fe>Mn>Zn>Cu>Pb>Cr>Ni>Cd
sırasına göre azalmıştır.  Aynı eğilim,
istisnasız olarak sonbaharın ilk ve üçüncü örneklerinde de gözlenmiştir. İkinci
numunenin sırası, Fe> Mn> Zn> Pb> Cr> Cu> Ni> Cd
şeklindeydi. Bulunan 37 türün 22'si Bacillariophyceae'ye, 2'si Cyanophyceae'ye
ve 13 türü Dinophyceae taxa'ya aittir. Bacillariophyceae toplam koloninin
yaklaşık % 55'ini oluştururken,% 38 Dinophyceae ve % 7'si Cyanophyceae taxa
türlerinden oluşmuştur. Toplam biyolojik yoğunluk değerleri 22362, 23513 ve
21348 hücre/ml'dir. Çeşitli inkübasyon günlerinde (15, 30 ve 45), artan
inkübasyon süresinin her zaman tüm türlerin yoğunluklarında ve biyofilmlerin
toplam yoğunluğunda bir artışa yol açmadığı görülmüştür. Metal seviyeleri büyük
değişiklikler göstermedi. Varyasyonlar çok anlamlı olmamakla birlikte, bazı
metallerle toplam alg topluluğunun% 85'ini kaplayan ilk üç baskın türün
göreceli bolluğunda düşük korelasyonlar gözlenmiştir.

References

  • [1] Mustafa, S., Hashmi, M.I., Tariq, S.A., 2002. Heavy metal concentrations in water and tiger prawn (Penaeus monodon) from grow-out farms in Sabah, North Borneo. Food Chemistry 79, 151–156.
  • [2] Phillips D.J.H., 1977. The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments_ a review. Environmental Pollution 13, 281-317.
  • [3] Campanella L., Conti M.E., Cubadda F., Sucapane C., 2001. Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean. Environmental Pollution 111, 117-126.
  • [4] Binelli, A., Provini, A., 2003. The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web. Chemosphere 53, 143–151.
  • [5] Fialkowski W., Calosi P., Dahlke S., Dietrich A., Moore P.G., Olenin S., Persson L.E., Smith B.D., Špegys M., Rainbow P.S., 2009. The sandhopper Talitrus saltator (Crustacea: Amphipoda) as a biomonitor of trace metal bioavailabilities in European coastal waters. Marine Pollution Bulletin 58, 39–44.
  • [6] Cairns J., van der Schalie, W.H., 1980. Biological monitoring, Part I—Early warning systems. Water Res. 14, 1179–1196.
  • [7] Landner L, Blanck H, Heyman U, Lundgren A, Notini M, Rosemarin A, Sundelin B, 1989. Community testing, microcosm and mesocosm experiments. Ecotoxicological tools with high ecological realism. Springer Ser. ENVIRON. MANAGE, 216-254.
  • [8] Newman M.C., McIntosh A.W., 1989. Appropriateness of aufwuchs as a monitor of bioaccumulation. Environ. Pollut. 60, 83–100.
  • [9] Sekar R., Nair K.V.K., Rao V.N.R., Venugopalan V.P., 2002. Nutrient dynamics and successional changes in a lentic freshwater biofilm. Freshwater Biol. 47, 1893–1907.
  • [10] Burkholder J.M., 1996. Interactions of benthic algae with their substrata. In: Stevenson R.J., Bothwell M.L., Lowe R.L. (Eds.), Algal Ecology of Freshwater Benthic Ecosystems, Aquatic Ecology Series. Academic Press, Boston, pp. 253–298.
  • [11] Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedw. 64, 285-304.
  • [12] Steinberg, C., Schiefele, S., 1988. Biological indication of trophy and pollution of running waters. Z. Wasser Abwasser Forsch 21, 227e234.
  • [13] Van Dam, H., Mertens, A., Sinkeldam, J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth. J. Aquat. Ecol. 28, 117e133.
  • [14] Kröpfl K., Vladár P., Szabó K., Acs E., Borsodi AK., Szikora S., Caroli S., Záray G., 2006. Chemical and biological characterisation of biofilms formed on different substrata in Tisza river (Hungary). Environmental Pollution, 144(2), 626-631.
  • [15] McCormick P.V., Cairns J., 1994. Algae as indicators of environmentalchange. Journal of Applied Phycology 6, 509-526.
  • [16] Nocker A, Lepo JE, Martin LL, Snyder RA. Response of Estuarine Biofilm Microbial Community Development to Changes in Dissolved Oxygen and Nutrient Concentrations. Microbial Ecology ; 2007, 54(3):532-542.
  • [17] Porsbring T, Arrhenius, Backhaus T, Kuylenstierna M, Scholze M, Blanck H. The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology ; 2007, 349(2):299-312.
  • [18] Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung fu¨er Theoretische und Angewandte Limnologie 9, 1-38.
  • [19] Lund JWG., Kipling C, Le Cren ED. (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:2, pp. 143-170.
  • [20] Krammer, K., Lange-Bertalot, H., 1986–1991. Bacillariophyceae 1. Teil: Naviculaceae. 876 p.; 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae, 596 p.; 3. Teil: Centrales, Fragilariaceae, Eunotiaceae, 576 p.; 4. Teil: Achnanthaceae. Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema. 437 p. – G. Fischer Verlag.
  • [21] Ivorra N., Hettelaar J., Tubbing G.M.J., Kraak M.H.S., Sabater S., Admiraal W., 1999. Translocation of microbenthic algal assemblages used for in situ analysis of metal pollution in rivers. Archives of Environmental Contamination and Toxicology 37, 19-28.
  • [22] Newman, M.C., Alberts, J.J., Greenhut, V.A., 1985. Geochemical factors complicating the use of aufwuchs to monitor bioaccumulation of arsenic, cadmium, chromium, copper and zinc. Water Res. 19, 1157-1165.
  • [23] Hill, W.R., Bednarek, A.T., Larsen, I.L., 2000b. Cadmium sorption and toxicity in autotrophic biofilms. Can. J. Fish. Aquat. Sci. 57, 530-537.
  • [24] Foster PL. Species associations and metal contents of algae from river polluted by heavy metals. Freshwat Biol, 2, 17–39.
  • [25] Behra, R., Landwehrjohann, R., Vogel, K.,Wagner, B., Sigg, L., 2002. Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquat. Sci. 64, 300–306.
  • [26] Novis P.M., Harding J.S., 2007. Extreme Acidophiles: freshwater algae associated with acid mine drainage. In: Seckbach, J. (Ed.), Algae And Cyanobacteria In Extreme Environment. Springer, The Netherlands, pp. 443–463.
  • [27] Elbaz-Poulichet F., Dupuy C., Cruzado A., Velasqaez Z., Achterberg E.P., Braungardt C.B., 2000. Influence of sorption process by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Water Research 34, 3222–3230.
  • [28] Brake S.S., Hasiotis S.T., Dannely H.K., 2004. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites. Geomicrobiology Journal 21, 331–340.
  • [29] Aksu Z., Açikel U., 1999. A single-staged bioseparation process for simultaneous removal of copper(II) and chromium(VI) by using C. vulgaris. Process Biochem. 34, 589–599.
  • [30] Yaşar D., Aksu A.E., Uslu O., 2001. Anthropogenic pollution in Izmit Bay: heavy metal concentrations in surface sediments. Turkish Journal of Engineering and Environmental Sciences 25, 299–313.
  • [31] Blanco, S., Becares, E., 2010. Are biotic indices sensitive to river toxicants? A comparison of metrics based on diatoms and macro-invertebrates. Chemosphere 79, 18–25. [32] Coste, M., Duong, T.T., Feurtet-Mazel, A., Dang, D.K., Boudou, A., 2007. Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecological Indicators 7, 839–851. [33] Ivorra, N., Barranguet, C., Johker, M., Kraak, M.H.S., Admiraal,W., 2002. Metal-induced tolerance in the freshwater microbenthic diatom Gomphonema parvulum. Environ. Pollut. 116, 147–157.
  • [34] Gustavson, K., Wängberg, S.A., 1995. Tolerance induction and succession in microalgae communities exposed to copper and atrazine. Aquat. Toxicol. 32, 283–302.
  • [35] De Jonge, M., Van de Vijver, B., Blust, R., Bervoets, L., 2008. Responses of aquatic organisms to metal pollution in a lowland river in Flanders: a comparison of diatoms and macroinvertebrates. Sci. Total Environ. 407, 615–629.
  • [36] Chen, C.S., Tien, C-J., Wu, W-H., Chuang, T-L., 2009. Development of river biofilms on artificial substrates and their potential for biomonitoring water quality. Chemosphere 76, 1288–1295.
  • [37] Biggs, B.J.F., 1988. Artificial substrate expose times for periphyton biomass estimates in rivers. NZ J. Mar. Freshwater. Res. 22, 507–515.
  • [38] Hoagland, K.D., Roemer, S.C., Rosowski, J.R., 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). Am. J. Bot. 69, 188–213.
  • [39] Ivorra, N., Bremer, S., Guasch, H., Kraak, MHS., Admiraal, W., 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ Toxic Chem 19(5), 1332–9.
  • [40] Freeman, C., Lock, MA., 1995. The biofilm polysaccharide matrix: a buffer against changing organic substrate supply? Limnol Oceanogr 40(2), 273–8.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Sedat Sürdem 0000-0001-8220-7934

Mehmet Doğan This is me

Publication Date January 31, 2020
Submission Date July 10, 2019
Acceptance Date October 15, 2019
Published in Issue Year 2020

Cite

IEEE S. Sürdem and M. Doğan, “Biomonitoring of Heavy Metal Levels in Izmit Gulf in Marmara Sea with Biofilm Formation in Plexiglass Substrate”, ECJSE, vol. 7, no. 1, pp. 20–30, 2020, doi: 10.31202/ecjse.590315.