Research Article
BibTex RIS Cite

Cyber Security in Material Manufacturing

Year 2020, , 149 - 159, 31.01.2020
https://doi.org/10.31202/ecjse.599325

Abstract

1.1.1          
Industry 4.0, a new industry
revolution, is happening now and several developed countries are leading the
path. Internet of things (IoT) is also encompassed by Industry 4.0. In the
future, more devices in factories are to be connected to Ethernet or Internet.
However, this makes the companies, devices and researchers vulnerable to
cyber-attacks. Recently, some cyber-attacks which have happened to some
companies or countries verify the danger. Sintering systems and furnaces are
used for research by universities and for series manufacturing by factories.
Arc furnaces and induction furnaces are also commonly used devices in metal factories.
A sintering system, an arc furnace or an induction furnace which is connected
to Internet or Ethernet may also be under cyber-attack threat. The danger may
be prevented by taking necessary precautions. In this study, these three-production
systems are first briefly introduced and then inspected assuming that they have
been connected to internet and examined with considering cyber-attack point of
view. Some basic solutions against cyber-attacks to the aforementioned devices
are suggested.

References

  • [1] U. P. D. Ani, H. (Mary) He, and A. Tiwari, Jan. 2017, “Review of cybersecurity issues in industrial critical infrastructure: manufacturing in perspective,” J. Cyber Secur. Technol., vol. 1, no. 1, pp. 32–74.
  • [2] N. Tuptuk and S. Hailes, Apr. 2018, “Security of smart manufacturing systems,” J. Manuf. Syst., vol. 47, pp. 93–106.
  • [3] J. Bullón Pérez, A. González Arrieta, A. HernándezEncinas, and A. Queiruga-Dios, “Industrial Cyber-Physical Systems in Textile Engineering,” Springer, Cham, 2017, pp. 126–135.
  • [4] “Cyber Security in Textile Manufacturing - Research and Markets,” 2018.
  • [5] T. Yener and S. Zeytin, 2017, “Production and Characterization of Niobium Toughened Ti-TiAl3 Metallic-Intermetallic Composite,” Acta Phys. Pol. A., vol. 132, no. 3–II, pp. 941–943.
  • [6] Ş. Ç. Yener and H. H. Kuntman, 2014, “Fully CMOS memristor based chaotic circuit,” Radioengineering, vol. 23, no. 4.
  • [7] R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, 2009, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng. R Reports, vol. 63, no. 4–6, pp. 127–287.
  • [8] S. C. Yener, T. Yener, and R. Mutlu, Jun. 2018, “A process control method for the electric current-activated/assisted sintering system based on the container-consumed power and temperature estimation,” J. Therm. Anal. Calorim., pp. 1–10.
  • [9] G. Weintraub and H. Rush, “Process and apparatus for sintering refractory materials,” 1913.
  • [10] B. Park, H. Lee, G. Jang, and B. Han, Jul. 2010, “A fault analysis of DC electric arc furnaces with SVC harmonic filters in a mini-mill plant,” Electr. Power Syst. Res., vol. 80, no. 7, pp. 807–814.
  • [11] L. Zimmermann, G. Avice, P.-H. Blard, B. Marty, E. Füri, and P. G. Burnard, 2018, “A new all-metal induction furnace for noble gas extraction,” Chem. Geol., vol. 480, pp. 86–92.
  • [12] Wu Ting, “A new frequency domain method for the harmonic analysis of power systems with arc furnace,” in APSCOM-97. International Conference on Advances in Power System Control, Operation and Management, 1997, vol. 1997, pp. 552–555.
  • [13] M. A. P. Alonso and M. Perez Donsion, Jan. 2004, “An Improved Time Domain Arc Furnace Model for Harmonic Analysis,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 367–373.
  • [14] S. Shyamal and C. L. E. Swartz, 2018, “Real-time energy management for electric arc furnace operation,” J. Process Control.
  • [15] A. P. Silva, A. M. Segadães, and R. A. Lopes, 2017, “Castable systems designed with powders reclaimed from dismantled steel induction furnace refractory linings,” Ceram. Int., vol. 43, pp. 5020–5031.
  • [16] C. Lanzerstorfer, 2018, “Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling,” J. Clean. Prod., vol. 174, pp. 1–6.
  • [17] E. Khodabandeh, A. Rahbari, M. A. Rosen, Z. Najafian Ashrafi, O. A. Akbari, and A. M. Anvari, Sep. 2017, “Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace,” Energy Convers. Manag., vol. 148, pp. 43–56.
  • [18] G. W. Chang, Y. J. Liu, H. M. Huang, and S. Y. Chu, “Harmonic analysis of the industrial power system with an AC electric arc furnace,” in 2006 IEEE Power Engineering Society General Meeting, 2006, p. 4 pp.
  • [19] S. R. Mendis and D. A. Gonzalez, 1992, “Harmonic and transient overvoltage analyses in arc furnace power systems,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 336–342.
  • [20] Y. E. Vatankulu, Z. Senturk, and O. Salor, May 2017, “Harmonics and Interharmonics Analysis of Electrical Arc Furnaces Based on Spectral Model Optimization With High-Resolution Windowing,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2587–2595.
  • [21] M. P. Donsion, J. A. Guemes, and F. Oliveira, “Influence of a SVC on AC Arc furnaces harmonics, flicker and unbalance measurement and analysis,” in Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, pp. 1423–1428.
  • [22] D. Gajic, I. Savic-Gajic, I. Savic, O. Georgieva, and S. Di Gennaro, Aug. 2016, “Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks,” Energy, vol. 108, pp. 132–139.
  • [23] A. T. Teklić, B. Filipović-Grčić, and I. Pavić, May 2017, “Modelling of three-phase electric arc furnace for estimation of voltage flicker in power transmission network,” Electr. Power Syst. Res., vol. 146, pp. 218–227.
  • [24] M. M. Rashid, P. Mhaskar, and C. L. E. Swartz, 2016, “Multi-rate modeling and economic model predictive control of the electric arc furnace,” J. Process Control, vol. 40, pp. 50–61.
  • [25] P. Buliński et al., 2017, “Numerical and experimental investigation of heat transfer process in electromagnetically driven flow within a vacuum induction furnace,” Appl. Therm. Eng., vol. 124, pp. 1003–1013.
  • [26] P. Bulin´ski et al., 2018, “Numerical modelling of multiphase flow and heat transfer within an induction skull melting furnace,” Int. J. Heat Mass Transf., vol. 126, pp. 980–992.
  • [27] A. Asad, C. Kratzsch, S. Dudczig, C. G. Aneziris, and R. Schwarze, 2016, “Numerical study of particle filtration in an induction crucible furnace,” Int. J. Heat Fluid Flow, vol. 62, pp. 299–312.
  • [28] E. Uz-Logoglu, O. Salor, and M. Ermis, May 2016, “Online Characterization of Interharmonics and Harmonics of AC Electric Arc Furnaces by Multiple Synchronous Reference Frame Analysis,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2673–2683.
  • [29] R. A. HOOSHMAND, M. Torabian Esfahani, and M. Torabian Esfahani, “Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems,” Leonardo Electron. J. Pract. Technol.
  • [30] S. Shyamal and C. L. E. Swartz, 2017, “Optimization-based Online Decision Support Tool for Electric Arc Furnace Operation,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10784–10789.
  • [31] E. Khodabandeh, M. Ghaderi, A. Afzalabadi, A. Rouboa, and A. Salarifard, 2017, “Parametric study of heat transfer in an electric arc furnace and cooling system,” Appl. Therm. Eng., vol. 123, pp. 1190–1200.
  • [32] T. Yener, “ECAS Yöntemiyle Üretilmiş Ti-Al Esaslı İntermetalik Kompozit Malzemelerin Geliştirilmesi,” Fen Bilimleri Enstitüsü, 2015.
  • [33] M. A. Laughton and D. F. Warne, Electrical engineer’s reference book. Newnes, 2003.
  • [34] F. C. Campbell, Metals fabrication : understanding the basics. .
  • [35] M. Bauccio and American Society for Metals., ASM metals reference book. ASM International, 1993.
  • [36] P. F. Ostwald and J. Muñoz, Manufacturing processes and systems. John Wiley & Sons, 1997.
  • [37] A. G. Robiette, 1935, “V: Coreless Induction Furnaces,” Electr. Melting Pract. Charles Griffin Co, pp. 153–252.
  • [38] N. Fujii and N. Koike, “IoT Remote Group Experiments in the Cyber Laboratory: A FPGA-based Remote Laboratory in the Hybrid Cloud,” in 2017 International Conference on Cyberworlds (CW), 2017, pp. 162–165.
  • [39] L. Da Xu, W. He, and S. Li, Nov. 2014, “Internet of Things in Industries: A Survey,” IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2233–2243.
  • [40] R. Ganti, F. Ye, and H. Lei, Nov. 2011, “Mobile crowdsensing: current state and future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39.
  • [41] J. A. Stankovic, Feb. 2014, “Research Directions for the Internet of Things,” IEEE Internet Things J., vol. 1, no. 1, pp. 3–9.
  • [42] A. Torres, M. Santos, S. Balula, J. Fortunato, and H. Fernandes, “Turning the internet of (my) things into a remote controlled laboratory,” in 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), 2016, pp. 371–374.
  • [43] G. Kortuem, A. K. Bandara, N. Smith, M. Richards, and M. Petre, Feb. 2013, “Educating the Internet-of-Things Generation,” Computer (Long. Beach. Calif)., vol. 46, no. 2, pp. 53–61.
  • [44] H. Bin, “The Design and Implementation of Laboratory Equipments Management System in University Based on Internet of Things,” in 2012 International Conference on Industrial Control and Electronics Engineering, 2012, pp. 1565–1567.
  • [45] D. Gajic, I. Savic-Gajic, I. Savic, O. Georgieva, and S. Di Gennaro, 2016, “Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks,” Energy, vol. 108, pp. 132–139.
  • [46] M. Kirschen, K. Badr, and H. Pfeifer, 2011, “Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry,” Energy, vol. 36, pp. 6146–6155.

Malzeme Üretiminde Siber Güvenlik

Year 2020, , 149 - 159, 31.01.2020
https://doi.org/10.31202/ecjse.599325

Abstract

Yeni bir endüstri devrimi olan Endüstri 4.0 günümüzde
yaşanmakta ve özellikle bazı gelişmiş ülkeler bu alanda öncü çalışmalar ortaya
koymaktadır. Nesnelerin İnterneti (IoT) Endüstri 4.0 tarafından kapsanan önemli
bir altyapıdır. Gelecekte, fabrikalardaki daha fazla cihazın Ethernet veya
İnternet üzerinden çalışmalarını sürdürmesi öngörülmektedir. Bunun kurum ve
fabrika ortamındaki cihazları ve verileri siber saldırılara karşı savunmasız bırakabileceği
açıktır. Son zamanlarda, farklı ülkelerden farklı kurumlarda yapılan bazı siber
saldırılar tehlikeyi doğrulamaktadır. Çeşitli malzeme sinterleme sistemleri ve
fırınlar üniversiteler tarafından araştırma yapmak ve fabrikalar tarafından
seri imalat yapmak için kullanılırlar. Ark fırınları ve endüksiyon fırınları da
metal fabrikalarında yaygın olarak kullanılan cihazlardır. Internet veya
ethernet'e bağlı bir sinterleme sistemi, bir ark ocağı veya bir indüksiyon
ocağı da siber saldırı tehdidi altında olabilir. Bu noktada gerekli önlemler
alınarak tehlike önlenebilir. Bu çalışmada, bu üç üretim sistemi ilk öncelikle
kısaca tanıtılmış ve daha sonra internete bağlı oldukları dikkate alınarak
siber saldırı bakış açıları ile incelenmişlerdir. Çalışmada, belirtilen
cihazlara karşı olası siber saldırılara yönelik çözümler önerilmektedir.

References

  • [1] U. P. D. Ani, H. (Mary) He, and A. Tiwari, Jan. 2017, “Review of cybersecurity issues in industrial critical infrastructure: manufacturing in perspective,” J. Cyber Secur. Technol., vol. 1, no. 1, pp. 32–74.
  • [2] N. Tuptuk and S. Hailes, Apr. 2018, “Security of smart manufacturing systems,” J. Manuf. Syst., vol. 47, pp. 93–106.
  • [3] J. Bullón Pérez, A. González Arrieta, A. HernándezEncinas, and A. Queiruga-Dios, “Industrial Cyber-Physical Systems in Textile Engineering,” Springer, Cham, 2017, pp. 126–135.
  • [4] “Cyber Security in Textile Manufacturing - Research and Markets,” 2018.
  • [5] T. Yener and S. Zeytin, 2017, “Production and Characterization of Niobium Toughened Ti-TiAl3 Metallic-Intermetallic Composite,” Acta Phys. Pol. A., vol. 132, no. 3–II, pp. 941–943.
  • [6] Ş. Ç. Yener and H. H. Kuntman, 2014, “Fully CMOS memristor based chaotic circuit,” Radioengineering, vol. 23, no. 4.
  • [7] R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, and G. Cao, 2009, “Consolidation/synthesis of materials by electric current activated/assisted sintering,” Mater. Sci. Eng. R Reports, vol. 63, no. 4–6, pp. 127–287.
  • [8] S. C. Yener, T. Yener, and R. Mutlu, Jun. 2018, “A process control method for the electric current-activated/assisted sintering system based on the container-consumed power and temperature estimation,” J. Therm. Anal. Calorim., pp. 1–10.
  • [9] G. Weintraub and H. Rush, “Process and apparatus for sintering refractory materials,” 1913.
  • [10] B. Park, H. Lee, G. Jang, and B. Han, Jul. 2010, “A fault analysis of DC electric arc furnaces with SVC harmonic filters in a mini-mill plant,” Electr. Power Syst. Res., vol. 80, no. 7, pp. 807–814.
  • [11] L. Zimmermann, G. Avice, P.-H. Blard, B. Marty, E. Füri, and P. G. Burnard, 2018, “A new all-metal induction furnace for noble gas extraction,” Chem. Geol., vol. 480, pp. 86–92.
  • [12] Wu Ting, “A new frequency domain method for the harmonic analysis of power systems with arc furnace,” in APSCOM-97. International Conference on Advances in Power System Control, Operation and Management, 1997, vol. 1997, pp. 552–555.
  • [13] M. A. P. Alonso and M. Perez Donsion, Jan. 2004, “An Improved Time Domain Arc Furnace Model for Harmonic Analysis,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 367–373.
  • [14] S. Shyamal and C. L. E. Swartz, 2018, “Real-time energy management for electric arc furnace operation,” J. Process Control.
  • [15] A. P. Silva, A. M. Segadães, and R. A. Lopes, 2017, “Castable systems designed with powders reclaimed from dismantled steel induction furnace refractory linings,” Ceram. Int., vol. 43, pp. 5020–5031.
  • [16] C. Lanzerstorfer, 2018, “Electric arc furnace (EAF) dust: Application of air classification for improved zinc enrichment in in-plant recycling,” J. Clean. Prod., vol. 174, pp. 1–6.
  • [17] E. Khodabandeh, A. Rahbari, M. A. Rosen, Z. Najafian Ashrafi, O. A. Akbari, and A. M. Anvari, Sep. 2017, “Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace,” Energy Convers. Manag., vol. 148, pp. 43–56.
  • [18] G. W. Chang, Y. J. Liu, H. M. Huang, and S. Y. Chu, “Harmonic analysis of the industrial power system with an AC electric arc furnace,” in 2006 IEEE Power Engineering Society General Meeting, 2006, p. 4 pp.
  • [19] S. R. Mendis and D. A. Gonzalez, 1992, “Harmonic and transient overvoltage analyses in arc furnace power systems,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 336–342.
  • [20] Y. E. Vatankulu, Z. Senturk, and O. Salor, May 2017, “Harmonics and Interharmonics Analysis of Electrical Arc Furnaces Based on Spectral Model Optimization With High-Resolution Windowing,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 2587–2595.
  • [21] M. P. Donsion, J. A. Guemes, and F. Oliveira, “Influence of a SVC on AC Arc furnaces harmonics, flicker and unbalance measurement and analysis,” in Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, 2010, pp. 1423–1428.
  • [22] D. Gajic, I. Savic-Gajic, I. Savic, O. Georgieva, and S. Di Gennaro, Aug. 2016, “Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks,” Energy, vol. 108, pp. 132–139.
  • [23] A. T. Teklić, B. Filipović-Grčić, and I. Pavić, May 2017, “Modelling of three-phase electric arc furnace for estimation of voltage flicker in power transmission network,” Electr. Power Syst. Res., vol. 146, pp. 218–227.
  • [24] M. M. Rashid, P. Mhaskar, and C. L. E. Swartz, 2016, “Multi-rate modeling and economic model predictive control of the electric arc furnace,” J. Process Control, vol. 40, pp. 50–61.
  • [25] P. Buliński et al., 2017, “Numerical and experimental investigation of heat transfer process in electromagnetically driven flow within a vacuum induction furnace,” Appl. Therm. Eng., vol. 124, pp. 1003–1013.
  • [26] P. Bulin´ski et al., 2018, “Numerical modelling of multiphase flow and heat transfer within an induction skull melting furnace,” Int. J. Heat Mass Transf., vol. 126, pp. 980–992.
  • [27] A. Asad, C. Kratzsch, S. Dudczig, C. G. Aneziris, and R. Schwarze, 2016, “Numerical study of particle filtration in an induction crucible furnace,” Int. J. Heat Fluid Flow, vol. 62, pp. 299–312.
  • [28] E. Uz-Logoglu, O. Salor, and M. Ermis, May 2016, “Online Characterization of Interharmonics and Harmonics of AC Electric Arc Furnaces by Multiple Synchronous Reference Frame Analysis,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2673–2683.
  • [29] R. A. HOOSHMAND, M. Torabian Esfahani, and M. Torabian Esfahani, “Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems,” Leonardo Electron. J. Pract. Technol.
  • [30] S. Shyamal and C. L. E. Swartz, 2017, “Optimization-based Online Decision Support Tool for Electric Arc Furnace Operation,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 10784–10789.
  • [31] E. Khodabandeh, M. Ghaderi, A. Afzalabadi, A. Rouboa, and A. Salarifard, 2017, “Parametric study of heat transfer in an electric arc furnace and cooling system,” Appl. Therm. Eng., vol. 123, pp. 1190–1200.
  • [32] T. Yener, “ECAS Yöntemiyle Üretilmiş Ti-Al Esaslı İntermetalik Kompozit Malzemelerin Geliştirilmesi,” Fen Bilimleri Enstitüsü, 2015.
  • [33] M. A. Laughton and D. F. Warne, Electrical engineer’s reference book. Newnes, 2003.
  • [34] F. C. Campbell, Metals fabrication : understanding the basics. .
  • [35] M. Bauccio and American Society for Metals., ASM metals reference book. ASM International, 1993.
  • [36] P. F. Ostwald and J. Muñoz, Manufacturing processes and systems. John Wiley & Sons, 1997.
  • [37] A. G. Robiette, 1935, “V: Coreless Induction Furnaces,” Electr. Melting Pract. Charles Griffin Co, pp. 153–252.
  • [38] N. Fujii and N. Koike, “IoT Remote Group Experiments in the Cyber Laboratory: A FPGA-based Remote Laboratory in the Hybrid Cloud,” in 2017 International Conference on Cyberworlds (CW), 2017, pp. 162–165.
  • [39] L. Da Xu, W. He, and S. Li, Nov. 2014, “Internet of Things in Industries: A Survey,” IEEE Trans. Ind. Informatics, vol. 10, no. 4, pp. 2233–2243.
  • [40] R. Ganti, F. Ye, and H. Lei, Nov. 2011, “Mobile crowdsensing: current state and future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39.
  • [41] J. A. Stankovic, Feb. 2014, “Research Directions for the Internet of Things,” IEEE Internet Things J., vol. 1, no. 1, pp. 3–9.
  • [42] A. Torres, M. Santos, S. Balula, J. Fortunato, and H. Fernandes, “Turning the internet of (my) things into a remote controlled laboratory,” in 2016 13th International Conference on Remote Engineering and Virtual Instrumentation (REV), 2016, pp. 371–374.
  • [43] G. Kortuem, A. K. Bandara, N. Smith, M. Richards, and M. Petre, Feb. 2013, “Educating the Internet-of-Things Generation,” Computer (Long. Beach. Calif)., vol. 46, no. 2, pp. 53–61.
  • [44] H. Bin, “The Design and Implementation of Laboratory Equipments Management System in University Based on Internet of Things,” in 2012 International Conference on Industrial Control and Electronics Engineering, 2012, pp. 1565–1567.
  • [45] D. Gajic, I. Savic-Gajic, I. Savic, O. Georgieva, and S. Di Gennaro, 2016, “Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks,” Energy, vol. 108, pp. 132–139.
  • [46] M. Kirschen, K. Badr, and H. Pfeifer, 2011, “Influence of direct reduced iron on the energy balance of the electric arc furnace in steel industry,” Energy, vol. 36, pp. 6146–6155.
There are 46 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Şuayb Çağrı Yener 0000-0002-6211-3751

Tuba Yener 0000-0002-2908-8507

Reşat Mutlu 0000-0003-0030-7136

Publication Date January 31, 2020
Submission Date July 31, 2019
Acceptance Date October 10, 2019
Published in Issue Year 2020

Cite

IEEE Ş. Ç. Yener, T. Yener, and R. Mutlu, “Cyber Security in Material Manufacturing”, ECJSE, vol. 7, no. 1, pp. 149–159, 2020, doi: 10.31202/ecjse.599325.