Research Article
BibTex RIS Cite

Constant Current/Voltage Charging of A 250W E-Bike with Wireless Power Transfer

Year 2020, , 189 - 197, 31.01.2020
https://doi.org/10.31202/ecjse.612105

Abstract

Practical and safely
charge of the electric vehicle become important as their use increases. In
Turkey, the use of electric bicycles (less than 250 W), which do not require
special driving licenses, has increased remarkably in recent years. In this
study, a system for wireless charging has been developed to practice the
charging of e-bikes. The charging of the 36V battery bank on the e-bike is
achieved with 72% overall system (DC/DC) efficiency. The air gap is 75 mm due
to the wheel diameter and the bicycle chassis. The switching frequency on the
transmitter side is selected as 20 kHz for inductive power transfer. On the
secondary side, a charge regulator is designed to charge the battery according
to its characteristic.  The constant
current and constant voltage modes can be performed according to battery
characteristic. Besides being practical and reliable, the overall performance
of the developed system can compete with the conventional cable charging
system.

Thanks

We would like to thank Volta Motor A.Ş. for their uninterrupted support during the study.

References

  • Kim, H., Song, C., Kim, D.Y., Jung, D.H., Kim, I.M., Kim, Y., Kim, J., Ahn, S., Kim, J., Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage, in IEEE Transactions on Microwave Theory and Techniques, 2016, 64(2), 383-400.
  • Hao, H., Covic, G. A., Boys, J. T., An Approximate Dynamic Model of LCL-T-Based Inductive Power Transfer Power Supplies, in IEEE Transactions on Power Electronics, 2014, 29(10), 5554-5567.
  • Lanzuzi, D., Rubino, L., Noia, L.P.D., Rubino, G., Marino, P., Resonant Inductive Power Pransfer for An E-bike Charging Station, Electric Power Systems Research, 2016, 140, 631-642.
  • Buja, G., Bertoluzzo, M., Mude, K. N., Design and Experimentation of WPT Charger for Electric City Car, in IEEE Transactions on Industrial Electronics, 2015, 62(12), 7436-7447.
  • Li, Z., Zhu, C., Jiang, J., Song, K., Wei, G., A 3-kW Wireless Power Transfer System for Sightseeing Car Super capacitor Charge, in IEEE Transactions on Power Electronics, 2017, 32(5), 3301-3316.
  • Sallan, J., Villa, J. L., Llombart, A., Sanz, J. F., Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge, in IEEE Transactions on Industrial Electronics, 56(6), 2009, 2140-2149.
  • Stielau, O. H., Covic, G. A., Design of Loosely Coupled Inductive Power Transfer Systems, International Conference on Power System Technology (PowerCon 2000). 4-7 Dec. 2000, Perth, WA, Australia, Australia, vol. 1, pp. 85-90.
  • Dieckerhoff, S., Ruan, M. J., De Doncker, R. W., Design of an IGBT-based LCL-resonant Inverter for High- Frequency Induction Heating," IEEE Industry Applications Conference. 3-7 Oct. 1999, Phoenix, AZ, USA, USA, vol. 3, pp. 2039-2045.
  • Keeling, N. A., Covic, G. A., Boys, J. T., A Unity- Power-Factor IPT Pickup for High-Power Applications, in IEEE Transactions on Industrial Electronics, 2010, 57(2), 744-751.
  • Huang, Z., Wong, S. C., Tse, C. K., Design Methodology of A Series-Series Inductive Power Transfer System for Electric Vehicle Battery Charger Application, IEEE Energy Conversion Congress and Exposition (ECCE), 14-18 Sept. 2014, Pittsburgh, PA, USA, pp. 1778-1782.
  • Mai, R., Chen, Y., Li, Y., Zhang, Y., Cao, G., He, Z., Inductive Power Transfer for Massive Electric Bicycles Charging Based on Hybrid Topology Switching With a Single Inverter, in IEEE Transactions on Power Electronics, 2017, 32(8), 5897-5906.
  • Covic, G. A., Boys, J. T., Inductive Power Transfer, in Proceedings of the IEEE, 2013, 101(6), 1276-1289. Wang, C.S., Covic, G. A., Stielau, O. H., General Stability Criterions for Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer Systems, Industrial Electronics Society, (IECON '01). 29 Nov.-2 Dec. 2001, Denver, CO, USA, USA, vol. 2, pp. 1049-1054.
  • Wang, C.S., Covic, G. A., Stielau, O. H., General Stability Criterions for Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer Systems, Industrial Electronics Society, (IECON '01). 29 Nov.-2 Dec. 2001, Denver, CO, USA, USA, vol. 2, pp. 1049-1054.
  • Aming, F., Haihong, Q., Zhixin, M., Pingyan, P., Analysis of Bifurcation Phenomena Based on Optimized Transformer in Loosely Coupled Inductive Power Transfer System, International Conference on Electrical and Control Engineering, 25-27 June 2010, Wuhan, China. pp. 3324-3327.
  • Budhia, M., Boys, J. T., Covic, G. A., Huang, C. Y., Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems, in IEEE Transactions on Industrial Electronics, 2013, 60(1), 318-328.

250W Elektrikli Bisikletin Kablosuz Güç Aktarımı ile Sabit Akım/Gerilim Modunda Şarjı

Year 2020, , 189 - 197, 31.01.2020
https://doi.org/10.31202/ecjse.612105

Abstract

Elektrikli araçların
kullanımı arttıkça; bu araçların pratik ve güvenli şekilde şarj edilmesi,
önemli bir araştırma konusu olmuştur. Türkiye'de özel ehliyet gerektirmeyen
elektrikli bisiklet kullanımı (250 W'tan daha az), son yıllarda önemli ölçüde
artmıştır. Bu çalışmada elektrikli bisikletler için kablosuz şarj sistemi
geliştirilmiştir. E-bisiklet üzerindeki 36V’luk batarya bankı, %72 genel sistem
verimiyle (DC-DC) kablosuz olarak şarj edilmiştir.   Temassız güç aktarım hava aralığı, tekerlek
çapı ve bisiklet şasesi dikkate alınarak 7.5 cm olarak belirlenmiştir. Primer
tarafındaki anahtarlama frekansı, endüktif güç aktarımını sağlamak için 20 kHz
olarak seçilmiştir. Sekonder tarafta ise batarya karakteristiğine uygun olarak
çalışan bir şarj regülatörü geliştirilmiştir. Bu regülatör ile batarya karakteristiğine
uygun olarak, sabit akım ve sabit gerilim kipinde şarj yapılabilmektedir.
Böylece geliştirilen kablosuz şarj sistemi; pratik ve güvenilir olmasının yanı
sıra, performans olarak da geleneksel kablolu şarj sistemi ile rekabet edebilir
seviyededir.

References

  • Kim, H., Song, C., Kim, D.Y., Jung, D.H., Kim, I.M., Kim, Y., Kim, J., Ahn, S., Kim, J., Coil Design and Measurements of Automotive Magnetic Resonant Wireless Charging System for High-Efficiency and Low Magnetic Field Leakage, in IEEE Transactions on Microwave Theory and Techniques, 2016, 64(2), 383-400.
  • Hao, H., Covic, G. A., Boys, J. T., An Approximate Dynamic Model of LCL-T-Based Inductive Power Transfer Power Supplies, in IEEE Transactions on Power Electronics, 2014, 29(10), 5554-5567.
  • Lanzuzi, D., Rubino, L., Noia, L.P.D., Rubino, G., Marino, P., Resonant Inductive Power Pransfer for An E-bike Charging Station, Electric Power Systems Research, 2016, 140, 631-642.
  • Buja, G., Bertoluzzo, M., Mude, K. N., Design and Experimentation of WPT Charger for Electric City Car, in IEEE Transactions on Industrial Electronics, 2015, 62(12), 7436-7447.
  • Li, Z., Zhu, C., Jiang, J., Song, K., Wei, G., A 3-kW Wireless Power Transfer System for Sightseeing Car Super capacitor Charge, in IEEE Transactions on Power Electronics, 2017, 32(5), 3301-3316.
  • Sallan, J., Villa, J. L., Llombart, A., Sanz, J. F., Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge, in IEEE Transactions on Industrial Electronics, 56(6), 2009, 2140-2149.
  • Stielau, O. H., Covic, G. A., Design of Loosely Coupled Inductive Power Transfer Systems, International Conference on Power System Technology (PowerCon 2000). 4-7 Dec. 2000, Perth, WA, Australia, Australia, vol. 1, pp. 85-90.
  • Dieckerhoff, S., Ruan, M. J., De Doncker, R. W., Design of an IGBT-based LCL-resonant Inverter for High- Frequency Induction Heating," IEEE Industry Applications Conference. 3-7 Oct. 1999, Phoenix, AZ, USA, USA, vol. 3, pp. 2039-2045.
  • Keeling, N. A., Covic, G. A., Boys, J. T., A Unity- Power-Factor IPT Pickup for High-Power Applications, in IEEE Transactions on Industrial Electronics, 2010, 57(2), 744-751.
  • Huang, Z., Wong, S. C., Tse, C. K., Design Methodology of A Series-Series Inductive Power Transfer System for Electric Vehicle Battery Charger Application, IEEE Energy Conversion Congress and Exposition (ECCE), 14-18 Sept. 2014, Pittsburgh, PA, USA, pp. 1778-1782.
  • Mai, R., Chen, Y., Li, Y., Zhang, Y., Cao, G., He, Z., Inductive Power Transfer for Massive Electric Bicycles Charging Based on Hybrid Topology Switching With a Single Inverter, in IEEE Transactions on Power Electronics, 2017, 32(8), 5897-5906.
  • Covic, G. A., Boys, J. T., Inductive Power Transfer, in Proceedings of the IEEE, 2013, 101(6), 1276-1289. Wang, C.S., Covic, G. A., Stielau, O. H., General Stability Criterions for Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer Systems, Industrial Electronics Society, (IECON '01). 29 Nov.-2 Dec. 2001, Denver, CO, USA, USA, vol. 2, pp. 1049-1054.
  • Wang, C.S., Covic, G. A., Stielau, O. H., General Stability Criterions for Zero Phase Angle Controlled Loosely Coupled Inductive Power Transfer Systems, Industrial Electronics Society, (IECON '01). 29 Nov.-2 Dec. 2001, Denver, CO, USA, USA, vol. 2, pp. 1049-1054.
  • Aming, F., Haihong, Q., Zhixin, M., Pingyan, P., Analysis of Bifurcation Phenomena Based on Optimized Transformer in Loosely Coupled Inductive Power Transfer System, International Conference on Electrical and Control Engineering, 25-27 June 2010, Wuhan, China. pp. 3324-3327.
  • Budhia, M., Boys, J. T., Covic, G. A., Huang, C. Y., Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems, in IEEE Transactions on Industrial Electronics, 2013, 60(1), 318-328.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Murat Bayraktar This is me 0000-0002-8444-9862

Emin Yıldırız 0000-0002-6003-6780

Publication Date January 31, 2020
Submission Date August 27, 2019
Acceptance Date October 28, 2019
Published in Issue Year 2020

Cite

IEEE M. Bayraktar and E. Yıldırız, “Constant Current/Voltage Charging of A 250W E-Bike with Wireless Power Transfer”, ECJSE, vol. 7, no. 1, pp. 189–197, 2020, doi: 10.31202/ecjse.612105.