Research Article
BibTex RIS Cite

Farmasötik İlaçta İzoprenalin Tayini İçin Potansiyometrik Sensör Geliştirilmesi

Year 2020, , 211 - 222, 31.01.2020
https://doi.org/10.31202/ecjse.616663

Abstract

Bu
çalışmada, farmasötik etken madde olan izoprenalinin tayini için potansiyometrik
iyon seçici bir elektrot (İSE) geliştirildi. Bu amaçla, ilk olarak, İP-FM,
İP-TSA, İP-TPB, İP-REY, İP-FTA iyon çiftleri sentezlendi. Sentezlenen iyon
çiftleri elektrot membranının yapısında iyonofor olarak kullanıldı. Membran
optimizasyonunu sağlamak için sentezlenen iyon çiftleri kullanılarak çeşitli
bileşimlerde PVC membran elektrotlar üretildi. Bu elektrotların potansiyometrik
performans özellikleri araştırıldı. En iyi potansiyometrik performans
özelliklerinin % 3.0 İzoprenalin-Tetrafenilborat iyon çifti, % 64
Nitrofeniloktileter (NPOE), % 32.0 Polivinilklorür (PVC), % 1 Potasyum tetrakis
(4-klorofenil) borat (KTpClPB) bileşimine sahip membran kullanılarak elde
edildi. Bu elektrodun doğrusal çalışma aralığının 5.0x 10-6 M-1.0x
10-1 M ve 10 katlık konsantrasyon değişimindeki eğimi, 45,3 mV;
tayin limiti, 5.0x10-6 M; pH çalışma aralığı 2.6-3.6 ve 5.7-7.9;
cevap zamanı < 5 sn olarak belirlendi. Elektrot oldukça tekrarlanabilir bir
potansiyometrik cevap sergilemiştir. İzoprenalin içeriği, izoprenalin seçici elektrot
kullanılarak ilaçta tayin edildi.
  

Supporting Institution

van yüzüncü yıl üniversitesi bilimsel araştırma projesi başkanlığı

Project Number

FYL-2018-7184

References

  • [1] H. Beitollahi, I. Sheikhshoaie, Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode, Electrochim. Acta. 56 (2011) 10259–10263. doi:10.1016/j.electacta.2011.09.017.
  • [2] D. Voet, J.G. Voet, Pyruvate Dehydrogenase Multienzyme Complex, Biochem. 2nd Ed. 269 (1995) 541.
  • [3] K.O. Lupetti, I.C. Vieira, O. Fatibello-Filho, Flow injection spectrophotometric determination of isoproterenol using an avocado (Persea americana) crude extract immobilized on controlled-pore silica reactor, Talanta. 57 (2002) 135–143. doi:10.1016/S0039-9140(01)00681-6.
  • [4] P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation, J. Pharm. Biomed. Anal. 22 (2000) 781–789. doi:10.1016/S0731-7085(00)00291-0.
  • [5] J.J.B. Nevado, J.M.L. Gallego, P.B. Laguna, Spectrophotometric determination of catecholamines with metaperiodate by flow-injection analysis, Anal. Chim. Acta. 300 (1995) 293–297. doi:10.1016/0003-2670(94)00395-3.
  • [6] L. Gámiz-Gracia, A.M. García-Campaña, J.F. Huertas-Pérez, F.J. Lara, Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis-A review, Anal. Chim. Acta. 640 (2009) 7–28. doi:10.1016/j.aca.2009.03.017.
  • [7] H. yang Zhang, X. Chen, P. Hu, Q. lin Liang, X. ping Liang, Y. ming Wang, G. an Luo, Metabolomic profiling of rat serum associated with isoproterenol-induced myocardial infarction using ultra-performance liquid chromatography/time-of-flight mass spectrometry and multivariate analysis, Talanta. 79 (2009) 254–259. doi:10.1016/j.talanta.2009.03.045.
  • [8] M.E. Hadwiger, S. Park, S.R. Torchia, C.E. Lunte, Simultaneous determination of the elimination profiles of the individual enantiomers of racemic isoproterenol using capillary electrophoresis and microdialysis sampling, J. Pharm. Biomed. Anal. 15 (1997) 621–629. doi:10.1016/S0731-7085(96)01896-1.
  • [9] V.G. Bonifácio, L.H. Marcolino, M.F.S. Teixeira, O. Fatibello-Filho, Voltammetric determination of isoprenaline in pharmaceutical preparations using a copper(II) hexacyanoferrate(III) modified carbon paste electrode, Microchem. J. 78 (2004) 55–59. doi:10.1016/j.microc.2004.03.010.
  • [10] A. Kutluay, M. Aslanoglu, Electrocatalytic oxidation of isoproterenol and its voltammetric determination in pharmaceuticals and urine samples using a poly(1-methylpyrrole) -DNA modified electrode, Acta Chim. Slov. 57 (2010) 157–162.
  • [11] F. Mashige, Y. Matsushima, C. Miyata, R. Yamada, H. Kanazawa, I. Sakuma, N. Takai, N. Shinozuka, A. Ohkubo, K. Nakahara, Simultaneous determination of catecholamines, their basic metabolites and serotonin in urine by high‐performance liquid chromatography using A mixed‐mode column and an eight‐channel electrochemical detector, Biomed. Chromatogr. 9 (1995) 221–225. doi:10.1002/bmc.1130090506.
  • [12] A.A. Ensafi, M. Dadkhah, H. Karimi-Maleh, Determination of isoproterenol and uric acid by voltammetric method using carbon nanotubes paste electrode and p-chloranil, Colloids Surfaces B Biointerfaces. 84 (2011) 148–154. doi:10.1016/j.colsurfb.2010.12.028.
  • [13] A.A. Ensafi, H.K. Maleh, A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol, Int. J. Electrochem. Sci. 5 (2010) 1484–1495.
  • [14] E. Pretsch, The new wave of ion-selective electrodes, TrAC - Trends Anal. Chem. 26 (2007) 46–51. doi:10.1016/j.trac.2006.10.006.
  • [15] A.A. Ensafi, A. Allafchian, B. Rezaei, PVC membrane selective electrode for determination of isoproterenol based on naphthylethylenediamine dihydrochloride–tetraphenyl boranuide, Anal. Bioanal. Electrochem. 7 (2015) 569–581.
  • [16] R.P. Buck, E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem. 66 (2007) 2527–2536. doi:10.1351/pac199466122527.
  • [17] Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report), Pure Appl. Chem. 72 (2000) 1851–2082. doi:10.1351/pac200072101851.

Development of Potentiometric Sensor for Determination of Isoprenaline in Pharmaceutical Drug

Year 2020, , 211 - 222, 31.01.2020
https://doi.org/10.31202/ecjse.616663

Abstract

In this study, a potentiometric
ion-selective electrode (ISE) was developed for the determination of isoprenaline,
a pharmaceutical active substance. For this purpose, initially, IP-PM, IP-TCA,
IP-TPB, IP-REY, IP-PTA ion pairs were synthesized. The synthesized ion pairs
were used as the ionophore in the structure of the electrode membrane. In order
to ensure membrane optimization, PVC membrane ion selective electrodes were
produced in various compositions using the synthesized ion pair and the
potentiometric performance characteristics of these electrodes were
investigated. It was determined that the best potentiometric performance
characteristics were obtained with the PVC membrane electrode in the composition
of 3.0% isoprenaline-tetrafenylborate ion pair, %64.0 nitrophenyloctylether,
32.0% polyvinylchloride and %1.0 Tetrakis (4-chlorophenyl) boron potassium
compound. The linear operating range of this electrode is 5.0x 10-6
M - 1.0x 10-1 M and the slope at the 10-fold concentration change is
45.3 mV; determination limit, 5.0x10-6 M, pH working range, 2.6-3.6
and 5.7-7.9; response time < 5s. The electrode exhibited a reproducible
potentiometric response. Isoprenaline content was determined in drug by using
the isoprenaline selective electrode.
 

Project Number

FYL-2018-7184

References

  • [1] H. Beitollahi, I. Sheikhshoaie, Electrocatalytic and simultaneous determination of isoproterenol, uric acid and folic acid at molybdenum (VI) complex-carbon nanotube paste electrode, Electrochim. Acta. 56 (2011) 10259–10263. doi:10.1016/j.electacta.2011.09.017.
  • [2] D. Voet, J.G. Voet, Pyruvate Dehydrogenase Multienzyme Complex, Biochem. 2nd Ed. 269 (1995) 541.
  • [3] K.O. Lupetti, I.C. Vieira, O. Fatibello-Filho, Flow injection spectrophotometric determination of isoproterenol using an avocado (Persea americana) crude extract immobilized on controlled-pore silica reactor, Talanta. 57 (2002) 135–143. doi:10.1016/S0039-9140(01)00681-6.
  • [4] P. Solich, C.K. Polydorou, M.A. Koupparis, C.E. Efstathiou, Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation, J. Pharm. Biomed. Anal. 22 (2000) 781–789. doi:10.1016/S0731-7085(00)00291-0.
  • [5] J.J.B. Nevado, J.M.L. Gallego, P.B. Laguna, Spectrophotometric determination of catecholamines with metaperiodate by flow-injection analysis, Anal. Chim. Acta. 300 (1995) 293–297. doi:10.1016/0003-2670(94)00395-3.
  • [6] L. Gámiz-Gracia, A.M. García-Campaña, J.F. Huertas-Pérez, F.J. Lara, Chemiluminescence detection in liquid chromatography: Applications to clinical, pharmaceutical, environmental and food analysis-A review, Anal. Chim. Acta. 640 (2009) 7–28. doi:10.1016/j.aca.2009.03.017.
  • [7] H. yang Zhang, X. Chen, P. Hu, Q. lin Liang, X. ping Liang, Y. ming Wang, G. an Luo, Metabolomic profiling of rat serum associated with isoproterenol-induced myocardial infarction using ultra-performance liquid chromatography/time-of-flight mass spectrometry and multivariate analysis, Talanta. 79 (2009) 254–259. doi:10.1016/j.talanta.2009.03.045.
  • [8] M.E. Hadwiger, S. Park, S.R. Torchia, C.E. Lunte, Simultaneous determination of the elimination profiles of the individual enantiomers of racemic isoproterenol using capillary electrophoresis and microdialysis sampling, J. Pharm. Biomed. Anal. 15 (1997) 621–629. doi:10.1016/S0731-7085(96)01896-1.
  • [9] V.G. Bonifácio, L.H. Marcolino, M.F.S. Teixeira, O. Fatibello-Filho, Voltammetric determination of isoprenaline in pharmaceutical preparations using a copper(II) hexacyanoferrate(III) modified carbon paste electrode, Microchem. J. 78 (2004) 55–59. doi:10.1016/j.microc.2004.03.010.
  • [10] A. Kutluay, M. Aslanoglu, Electrocatalytic oxidation of isoproterenol and its voltammetric determination in pharmaceuticals and urine samples using a poly(1-methylpyrrole) -DNA modified electrode, Acta Chim. Slov. 57 (2010) 157–162.
  • [11] F. Mashige, Y. Matsushima, C. Miyata, R. Yamada, H. Kanazawa, I. Sakuma, N. Takai, N. Shinozuka, A. Ohkubo, K. Nakahara, Simultaneous determination of catecholamines, their basic metabolites and serotonin in urine by high‐performance liquid chromatography using A mixed‐mode column and an eight‐channel electrochemical detector, Biomed. Chromatogr. 9 (1995) 221–225. doi:10.1002/bmc.1130090506.
  • [12] A.A. Ensafi, M. Dadkhah, H. Karimi-Maleh, Determination of isoproterenol and uric acid by voltammetric method using carbon nanotubes paste electrode and p-chloranil, Colloids Surfaces B Biointerfaces. 84 (2011) 148–154. doi:10.1016/j.colsurfb.2010.12.028.
  • [13] A.A. Ensafi, H.K. Maleh, A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol, Int. J. Electrochem. Sci. 5 (2010) 1484–1495.
  • [14] E. Pretsch, The new wave of ion-selective electrodes, TrAC - Trends Anal. Chem. 26 (2007) 46–51. doi:10.1016/j.trac.2006.10.006.
  • [15] A.A. Ensafi, A. Allafchian, B. Rezaei, PVC membrane selective electrode for determination of isoproterenol based on naphthylethylenediamine dihydrochloride–tetraphenyl boranuide, Anal. Bioanal. Electrochem. 7 (2015) 569–581.
  • [16] R.P. Buck, E. Lindner, Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994), Pure Appl. Chem. 66 (2007) 2527–2536. doi:10.1351/pac199466122527.
  • [17] Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report), Pure Appl. Chem. 72 (2000) 1851–2082. doi:10.1351/pac200072101851.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Gülşah Saydan Kanberoğlu 0000-0003-4231-6217

Oktay Özarslan This is me

Project Number FYL-2018-7184
Publication Date January 31, 2020
Submission Date September 6, 2019
Acceptance Date January 2, 2020
Published in Issue Year 2020

Cite

IEEE G. Saydan Kanberoğlu and O. Özarslan, “Development of Potentiometric Sensor for Determination of Isoprenaline in Pharmaceutical Drug”, ECJSE, vol. 7, no. 1, pp. 211–222, 2020, doi: 10.31202/ecjse.616663.