Research Article
BibTex RIS Cite

Siltli Kumlarda Gerilme Kontrollü ve Deformasyon Kontrollü Sıvılaşma Testlerinin Karşılaştırılması

Year 2020, , 322 - 337, 31.01.2020
https://doi.org/10.31202/ecjse.621605

Abstract

Deprem esnasında farklı tane
çaplarında ve ince tane içeriğindeki siltli kumların sıvılaşma davranışı aynı
olmayıp bu tür zeminlerin sıvılaşma mekanizmasını anlamak geoteknik deprem
mühendisliğinin önemli konularından biri olmaya devam etmektedir. Bu amaçla, bu
çalışmada iki farklı gradasyondaki 20/30 ve 30/50 kumlarına, %5 ve %30 oranında
silt karıştırılarak hazırlanan siltli-kum numuneleri üzerinde, dinamik basit
kesme test cihazı kullanılarak deformasyon kontrollü ve gerilme kontrollü
testler gerçekleştirilmiştir. Sonuçlar deformasyon kontrollü ve gerilme
kontrollü testlerin sonuçları arasında anlamlı bir fark olmadığını
göstermiştir. Ancak silt içeriğinin artışı ile hem 20/30 kumu ve hem de 30/50
kumuna ait siltli-kum numunelerinin sıvılaşmaya karşı dirençleri azalmıştır.
Ayrıca rölatif sıkılığın artışı ile tüm numunelerin sıvılaşmaya karşı direnci
artmıştır.

References

  • [1] Bray J. D., Sancio R. B., Reimer M. F., Durgunoglu T., “Liquefaction susceptibility of fine-grained soils”, Liquefaction Susceptibility of fine-grained soils. proc., 11th Int. Conf. On Soil Dynamics and Earthquake Engineering and 3rd Int. Conf. On Earthquake Geotechnical Engineering, 2004, 1: 655-662. Berkeley, California, USA.
  • [2] Arab A., Belkhatir M., “Fines content and cyclic preloading effect on liquefaction potential of silty sand: a laboratory study”, Acta Polytech Hung J, 2012, 9(4):47–64.
  • [3] Yassine B., Bouafia A., Canou J., Dupla J. C., “Liquefaction susceptibility study of sandy soils: effect of low-plastic fines”, Arab J Geosci, 2014, 8:605–618.
  • [4] Amini F., Qi G. Z., “Liquefaction testing of stratified silty sands”, J Geotech Geoenviron Eng, 2000, 126(3):208–217.
  • [5] Chien L. K., Oh Y. N., Chang C. H., “Effect of fines content on liquefaction strength and dynamic settlement of reclaimed soil”, Can Geotech J, 2002, 39:254–265.
  • [6] Xenaki V. C., Athanasopoulos G. A., “Liquefaction resistance of sand–silt mixtures: an experimental investigation of the effects of fines”, Soil Dyn Earthq Eng, 2003, 23:183–194.
  • [7] Papadopoulou A., Tika T., “The effect of fines on critical state and liquefaction resistance characteristics of nonplastic silty sands. Soils Found, 2008, 48:713–725.
  • [8] Dash H. K., Sitharam T. G., “Undrained cyclic pore pressure response of sand–silt mixtures: effect of non-plastic fines and other parameters”, J Geotech Geol Eng, 2009, 27:501–517.
  • [9] Sitharam T. G., Dash H. K., Jakka R. S., “Post liquefaction undrained shear behavior of sand silt mixtures at constant void ratio”, ASCE Int J Geomech, 2013, 13(4):421–429.
  • [10] Mominul H. M., Alam M. J., Ansary M. A., Karim M. E., Dynamic properties and liquefaction potential of a sandy soil containing silt. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris, 2013, 1539–1542.
  • [11] Emdadul K. M., Jahangir A. M., “Effect of nonplastic silt content on the liquefaction behaviour of sand–silt mixture” Soil Dyn Earthq Eng, 2014, 65:142–150.
  • [12] Herna´ndez Y. A., Towhata I., Gunji K., Yamada S., “Laboratory tests on cyclic undrained behaviour of loose sand with cohesionless silt and its application to assessment of seismic performance of subsoil” Soil Dyn Earthq Eng, 2015, 79:365–378.
  • [13] Yassine B., Bouafia A., Canou J., Dupla J. C., “Liquefaction susceptibility study of sandy soils: effect of low-plastic fines”, Arab J Geosci, 2014, 8:605–618.
  • [14] Seed H. B., Idriss, I. M., "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. and Found. Div., 1971, 97(SM9): 1249-1273.
  • [15] Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., Powell, D. "Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method." NBS Building Science Series 138, National Bureuau of Standards, 1982, Gainthersburg, MD, 152.
  • [16] Nemat-Nasser S., Shokooh A., “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing”, Canadian Geotech. J., 1979, 16 (4): 659-678.
  • [17] Ishihara, K., Yasuda, S. “Sand liquefaction due to irregular excitation”, Soils and Foundations, 1972, 12(4): 65-77.
  • [18] Green R. A., Terri G. A., "Number of equivalent cycles concept for liquefaction evaluations―Revisited." J. Geotechnical and Geoenvironmental Eng., 2005, 131(4): 477-488.
  • [19] Nemat-Nasser S., Shokooh A., “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing”, Canadian Geotechnical Journal, 1979, 16(4): 659–678.
  • [20] Berrill J. B., Davis R. O., “Energy dissipation and seismic liquefaction of sands: revised model. Soils and Foundations”, 1985, 25(2): 106–118.
  • [21] Figueroa J., Saada A., Liang L., Dahisaria, N. “Evaluation of soil liquefaction by energy principles”, Journal of Geotechnical Engineering, 1994, 120(9):1554–1569.
  • [22] Kokusho T. “Liquefaction potential evaluation: energy-based method comparedto stress-based method” In Proceedings of the Seventh International Conference on Case Histories in Geotechnical Engineering, 2013, Chicago.
  • [23] Green R. A., “Energy-based Evaluation and Remediation of Liquefiable Soils” (PhD dissertation), Virginia Polytechnic Institute and State University, 2001, Blacksburg, VA.
  • [24] Aminia P. F., Noorzad R., “Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic simple shear test”, Soil Dynamics and Earthquake Engineering, 2018, 104 45-53
  • [25] Simcock J, Davis R. O., Berrill J. B., Mallenger G., “Cyclic triaxial tests with continuous measurement of dissipated energy”, Geotech Test J, 1983, 6(1):35–39.
  • [26] Polito C., Green R. A., Dillon E., Sohn C., “Effect of load shape on relationship between dissipated energy” Can. Geotech. J., 2013, 50: 1118-1128.
  • [27] Ostadan F., Deng N., Arango I. “Energy-based method for liquefaction potential evaluation - Phase I, feasibility study”, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 1996, Building and Fire Research Laboratory.
  • [28] Zhang W, Goh A. T. C., Zhang Y., Chen Y., Xiao Y., “Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines”, Engineering Geology, 2015, 188: 29-37.
  • [29] Alavi A. H., Gandomi A. H., “Energy-based numerical models for assessment of soil liquefaction”, Geoscience Frontiers, 2012, 3(4): 541-555.
  • [30] Xin Kang S. M., Louis Ge M., Kuang-Tsung C., Annie On-Lei K., “Strain-Controlled Cyclic Simple Shear Tests on Sand with Radial Strain Measurements”, J. Mater. Civ. Eng., 2016, 28(4): 25-40.
  • [31] ASTM D6913 “Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis”, Annual book of ASTM standards, 2018, Vol.04-09.
  • [32] ASTM D854-14 “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer”, Annual book of ASTM standards, 2018, Vol.04-08.
  • [33] Lade P. V., Liggio C. D., Yamamuro, J. A., “Effects of nonplastic fines on minimum and maximum void ratios of sand” Geotechnical Testing Journal, 1998, 21(4): 336-347.
  • [34] Ladd R. S., “Preparing test specimens using under compaction”, Geotech Test J., 1978, 1(1):16–23.
  • [35] Bjerrum L, Landva A., “Direct simple shear tests on a Norwegian quick clay”, Geotechnique, 1966, 16(1): 1–20.
  • [36] Sadrekarimi A., Olson S. M. “A new ring shear device to measure the large displacement shearing behavior of sands”, Geotech. Test J ASTM, 2009, 32:197–208.
  • [37] Finn W. D. L., Ledbetter R. H., Wu G., “Liquefaction in silty soils: design and analysis”, In: Prakash S,Dakoulas P, editors. Ground failures under seismic conditions, geotechnical special publication ASCE, 1994, 44, 51–76.
  • [38] Dyvick R., Berre T., Lacasse S. “Comparison of truly undrained and constant volume direct simple shear tests”, Geotechnique, 1987, 37:3–10.
  • [39] Zhou J., Lee W., Zhou K., “Dynamic properties sand liquefaction potential of silts”, In: K. Ishihara (Ed.), International conference on earthquake geotechnical engineering, Tokyo, 1995, 833–838.
  • [40] Kammerer A., Pestana, J. M., “Undrained Response of Monterey 0/30 Sand Under Multidirectional Cyclic Simple Shear Loading Conditions”, Technical report, 2002, University of California, Berkeley.
  • [41] Kokusho, T. “Liquefaction strengths of poorly-graded and well-graded granular soils investigated by lab tests”, 4th Int. Conf. on Eartquake Geotechnical Engineering―Invited Lectures, D.P. Kyriazis, ed., Springer, Yhe Netherlands, 2007, 159-184.
  • [42] Erten, D., Maher, M. H., “Cyclic undrained behavior of silty sand”, Soil Dyn. and Earthquake Engrg. 1995, 14(2): 115-123.
  • [43] Carraro J. A. H., Bandini P., Salgado R., “Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance”, J. Geotechnical and Geoenvironmental Engrg, 2003, 129(11): 965-976.
  • [44] Hazirbaba K., Rathje E. M., “Pore pressure generation of silty sands due to induced cyclic shear strains”, J. Geotechnical and Geoenvironmental Engrg. 2009, 135(12): 1892-1905.
  • [45] Thevanayagam S., “Intergrain contact density indices for granular mixes―I: Framework”, Earthquake Engrg. and Engrg. Vibration, 2007a, 6(2): 123-134.
  • [46] Thevanayagam S. "Intergrain contact density indices for granular mixes―II: Liquefaction resistance”, Earthquake Engrg. and Engrg. Vibration, 2007b, 6(2): 135-146.
  • [47] Carraro J. A. H., Prezzi M., Salgado R., “Shear strength and stiffness of sands containing plastic or nonplastic fines”, J Geotech Geoenviron Eng ASCE, 2009, 135(9):1167–1178.

Comparison of Stress Control and Deformation Controlled Liquefaction Tests in Silty Sands

Year 2020, , 322 - 337, 31.01.2020
https://doi.org/10.31202/ecjse.621605

Abstract

The
liquefaction behavior of silty sands with different grain diameters and fine
grain content during the earthquake is not the same and understanding the
liquefaction mechanism of such soils continues to be one of the important
subjects of geotechnical earthquake engineering. For this purpose, deformation
controlled and stress-controlled tests were performed on silty-sand samples
prepared by mixing 5% and 30% silt to 20/30 and 30/50 sands of two different
grades using cyclic simple shear tester.
The results showed that there was no significant
difference between the results of deformation controlled and stress-controlled
tests. However, with the increase of silt content, the resistance to
liquefaction of silty-sand samples of both 20/30 sand and 30/50 sand decreased.
In addition, the resistance to liquefaction of all samples increased with
increasing relative density.

References

  • [1] Bray J. D., Sancio R. B., Reimer M. F., Durgunoglu T., “Liquefaction susceptibility of fine-grained soils”, Liquefaction Susceptibility of fine-grained soils. proc., 11th Int. Conf. On Soil Dynamics and Earthquake Engineering and 3rd Int. Conf. On Earthquake Geotechnical Engineering, 2004, 1: 655-662. Berkeley, California, USA.
  • [2] Arab A., Belkhatir M., “Fines content and cyclic preloading effect on liquefaction potential of silty sand: a laboratory study”, Acta Polytech Hung J, 2012, 9(4):47–64.
  • [3] Yassine B., Bouafia A., Canou J., Dupla J. C., “Liquefaction susceptibility study of sandy soils: effect of low-plastic fines”, Arab J Geosci, 2014, 8:605–618.
  • [4] Amini F., Qi G. Z., “Liquefaction testing of stratified silty sands”, J Geotech Geoenviron Eng, 2000, 126(3):208–217.
  • [5] Chien L. K., Oh Y. N., Chang C. H., “Effect of fines content on liquefaction strength and dynamic settlement of reclaimed soil”, Can Geotech J, 2002, 39:254–265.
  • [6] Xenaki V. C., Athanasopoulos G. A., “Liquefaction resistance of sand–silt mixtures: an experimental investigation of the effects of fines”, Soil Dyn Earthq Eng, 2003, 23:183–194.
  • [7] Papadopoulou A., Tika T., “The effect of fines on critical state and liquefaction resistance characteristics of nonplastic silty sands. Soils Found, 2008, 48:713–725.
  • [8] Dash H. K., Sitharam T. G., “Undrained cyclic pore pressure response of sand–silt mixtures: effect of non-plastic fines and other parameters”, J Geotech Geol Eng, 2009, 27:501–517.
  • [9] Sitharam T. G., Dash H. K., Jakka R. S., “Post liquefaction undrained shear behavior of sand silt mixtures at constant void ratio”, ASCE Int J Geomech, 2013, 13(4):421–429.
  • [10] Mominul H. M., Alam M. J., Ansary M. A., Karim M. E., Dynamic properties and liquefaction potential of a sandy soil containing silt. In: Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris, 2013, 1539–1542.
  • [11] Emdadul K. M., Jahangir A. M., “Effect of nonplastic silt content on the liquefaction behaviour of sand–silt mixture” Soil Dyn Earthq Eng, 2014, 65:142–150.
  • [12] Herna´ndez Y. A., Towhata I., Gunji K., Yamada S., “Laboratory tests on cyclic undrained behaviour of loose sand with cohesionless silt and its application to assessment of seismic performance of subsoil” Soil Dyn Earthq Eng, 2015, 79:365–378.
  • [13] Yassine B., Bouafia A., Canou J., Dupla J. C., “Liquefaction susceptibility study of sandy soils: effect of low-plastic fines”, Arab J Geosci, 2014, 8:605–618.
  • [14] Seed H. B., Idriss, I. M., "Simplified procedure for evaluating soil liquefaction potential", J. Soil Mech. and Found. Div., 1971, 97(SM9): 1249-1273.
  • [15] Dobry, R., Ladd, R. S., Yokel, F. Y., Chung, R. M., Powell, D. "Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method." NBS Building Science Series 138, National Bureuau of Standards, 1982, Gainthersburg, MD, 152.
  • [16] Nemat-Nasser S., Shokooh A., “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing”, Canadian Geotech. J., 1979, 16 (4): 659-678.
  • [17] Ishihara, K., Yasuda, S. “Sand liquefaction due to irregular excitation”, Soils and Foundations, 1972, 12(4): 65-77.
  • [18] Green R. A., Terri G. A., "Number of equivalent cycles concept for liquefaction evaluations―Revisited." J. Geotechnical and Geoenvironmental Eng., 2005, 131(4): 477-488.
  • [19] Nemat-Nasser S., Shokooh A., “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing”, Canadian Geotechnical Journal, 1979, 16(4): 659–678.
  • [20] Berrill J. B., Davis R. O., “Energy dissipation and seismic liquefaction of sands: revised model. Soils and Foundations”, 1985, 25(2): 106–118.
  • [21] Figueroa J., Saada A., Liang L., Dahisaria, N. “Evaluation of soil liquefaction by energy principles”, Journal of Geotechnical Engineering, 1994, 120(9):1554–1569.
  • [22] Kokusho T. “Liquefaction potential evaluation: energy-based method comparedto stress-based method” In Proceedings of the Seventh International Conference on Case Histories in Geotechnical Engineering, 2013, Chicago.
  • [23] Green R. A., “Energy-based Evaluation and Remediation of Liquefiable Soils” (PhD dissertation), Virginia Polytechnic Institute and State University, 2001, Blacksburg, VA.
  • [24] Aminia P. F., Noorzad R., “Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic simple shear test”, Soil Dynamics and Earthquake Engineering, 2018, 104 45-53
  • [25] Simcock J, Davis R. O., Berrill J. B., Mallenger G., “Cyclic triaxial tests with continuous measurement of dissipated energy”, Geotech Test J, 1983, 6(1):35–39.
  • [26] Polito C., Green R. A., Dillon E., Sohn C., “Effect of load shape on relationship between dissipated energy” Can. Geotech. J., 2013, 50: 1118-1128.
  • [27] Ostadan F., Deng N., Arango I. “Energy-based method for liquefaction potential evaluation - Phase I, feasibility study”, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, 1996, Building and Fire Research Laboratory.
  • [28] Zhang W, Goh A. T. C., Zhang Y., Chen Y., Xiao Y., “Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines”, Engineering Geology, 2015, 188: 29-37.
  • [29] Alavi A. H., Gandomi A. H., “Energy-based numerical models for assessment of soil liquefaction”, Geoscience Frontiers, 2012, 3(4): 541-555.
  • [30] Xin Kang S. M., Louis Ge M., Kuang-Tsung C., Annie On-Lei K., “Strain-Controlled Cyclic Simple Shear Tests on Sand with Radial Strain Measurements”, J. Mater. Civ. Eng., 2016, 28(4): 25-40.
  • [31] ASTM D6913 “Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis”, Annual book of ASTM standards, 2018, Vol.04-09.
  • [32] ASTM D854-14 “Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer”, Annual book of ASTM standards, 2018, Vol.04-08.
  • [33] Lade P. V., Liggio C. D., Yamamuro, J. A., “Effects of nonplastic fines on minimum and maximum void ratios of sand” Geotechnical Testing Journal, 1998, 21(4): 336-347.
  • [34] Ladd R. S., “Preparing test specimens using under compaction”, Geotech Test J., 1978, 1(1):16–23.
  • [35] Bjerrum L, Landva A., “Direct simple shear tests on a Norwegian quick clay”, Geotechnique, 1966, 16(1): 1–20.
  • [36] Sadrekarimi A., Olson S. M. “A new ring shear device to measure the large displacement shearing behavior of sands”, Geotech. Test J ASTM, 2009, 32:197–208.
  • [37] Finn W. D. L., Ledbetter R. H., Wu G., “Liquefaction in silty soils: design and analysis”, In: Prakash S,Dakoulas P, editors. Ground failures under seismic conditions, geotechnical special publication ASCE, 1994, 44, 51–76.
  • [38] Dyvick R., Berre T., Lacasse S. “Comparison of truly undrained and constant volume direct simple shear tests”, Geotechnique, 1987, 37:3–10.
  • [39] Zhou J., Lee W., Zhou K., “Dynamic properties sand liquefaction potential of silts”, In: K. Ishihara (Ed.), International conference on earthquake geotechnical engineering, Tokyo, 1995, 833–838.
  • [40] Kammerer A., Pestana, J. M., “Undrained Response of Monterey 0/30 Sand Under Multidirectional Cyclic Simple Shear Loading Conditions”, Technical report, 2002, University of California, Berkeley.
  • [41] Kokusho, T. “Liquefaction strengths of poorly-graded and well-graded granular soils investigated by lab tests”, 4th Int. Conf. on Eartquake Geotechnical Engineering―Invited Lectures, D.P. Kyriazis, ed., Springer, Yhe Netherlands, 2007, 159-184.
  • [42] Erten, D., Maher, M. H., “Cyclic undrained behavior of silty sand”, Soil Dyn. and Earthquake Engrg. 1995, 14(2): 115-123.
  • [43] Carraro J. A. H., Bandini P., Salgado R., “Liquefaction resistance of clean and nonplastic silty sands based on cone penetration resistance”, J. Geotechnical and Geoenvironmental Engrg, 2003, 129(11): 965-976.
  • [44] Hazirbaba K., Rathje E. M., “Pore pressure generation of silty sands due to induced cyclic shear strains”, J. Geotechnical and Geoenvironmental Engrg. 2009, 135(12): 1892-1905.
  • [45] Thevanayagam S., “Intergrain contact density indices for granular mixes―I: Framework”, Earthquake Engrg. and Engrg. Vibration, 2007a, 6(2): 123-134.
  • [46] Thevanayagam S. "Intergrain contact density indices for granular mixes―II: Liquefaction resistance”, Earthquake Engrg. and Engrg. Vibration, 2007b, 6(2): 135-146.
  • [47] Carraro J. A. H., Prezzi M., Salgado R., “Shear strength and stiffness of sands containing plastic or nonplastic fines”, J Geotech Geoenviron Eng ASCE, 2009, 135(9):1167–1178.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Yetiş Bülent Sönmezer 0000-0002-2058-343X

Publication Date January 31, 2020
Submission Date September 18, 2019
Acceptance Date November 25, 2019
Published in Issue Year 2020

Cite

IEEE Y. B. Sönmezer, “Siltli Kumlarda Gerilme Kontrollü ve Deformasyon Kontrollü Sıvılaşma Testlerinin Karşılaştırılması”, ECJSE, vol. 7, no. 1, pp. 322–337, 2020, doi: 10.31202/ecjse.621605.