Research Article
BibTex RIS Cite

GWP Değeri Düşük Soğutucu Akışkanların Kullanıldığı Kaskad Soğutma Sisteminin Karşılaştırmalı Performans Analizi

Year 2020, , 338 - 345, 31.01.2020
https://doi.org/10.31202/ecjse.630262

Abstract

Bazı
endüstriyel soğutma uygulamaları için düşük sıcaklıklara ihtiyaç duyulur. Tek
kademeli soğutma sistemleri ile bu sıcaklığı elde etmek oldukça zor ve ekonomik
açıdan avantajlı değildir. Bu nedenle daha düşük sıcaklıkta soğutma
uygulamalarında kaskad soğutma sistemleri tercih edilir.



 



Bu çalışmada, yeni nesil soğutucu akışkan çiftlerinin kullanıldığı kaskad
soğutma sisteminin performans analizi yapılmıştır. Kaskad sisteminde ozon delme
potansiyeli (ODP) sıfır olan ve küresel ısınma potansiyeli (GWP) değeri düşük
R454C/ R1234ze, R454C/ R1234yf, R454C/R717, R744/R290 ve R744/R717 soğutucu
akışkan çiftleri kullanılmıştır. Yapılan analizler sonucunda en yüksek COP
değerlerine R454C/R717 akışkan çifti kullanıldığında ulaşılmıştır.

References

  • [1] Sun, Z., Wang, Q., Xie, Z., Liu, S., Su, D., Cui, Q., Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system, Energy, 2019, 170, 1170-1180.
  • [2] Kilicarslan, A., Hosoz, M., Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples, Energy Conversion and Management, 2010, 51(12), 2947-2954.
  • [3] Gupta, K., Parasad, M., Comparative optimum performance study of multi-stage cascade refrigerating systems, Mech. Eng. Bull. Heat Recov. Syst., 1983, 14(4), 124-130.
  • [4] Gami, H.M., Aijaz, M.A., Thermodynamic analysis of cascade refrigeration system using refrigerants pairs R134a-R23 and R290-R23, Int. J. Eng. Sci. Res. Technol., 2014, 3(4), 6034-6040.
  • [5] Parekh, A.D., Tailor, P.R., Thermodynamic analysis of R507A-R23 cascade refrigeration system, International Journal of Aerospace and Mechanical Engineering, 2013, 57, 1919-1923.
  • [6] Kasi, M.P., Simulation of thermodynamic analysis of cascade refrigeration system with alternative refrigerants, International Journal of Mechanical Engineering and Technology, 2015, 6(1), 71-91.
  • [7] Lee, T.S., Liu, C.H., Chen T.W., Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2 /NH3 cascade refrigeration systems, International Journal of Refrigeration, 2006, 29(7), 1100-1108.
  • [8] Chen, Y., Han, W., Jin, H., Proposal and analysis of a novel heat-driven absorptionecompression refrigeration system at low temperatures, Applied Energy, 2017, 185, 2106-2116.
  • [9] Getu, H.M., Bansal, P.K., Thermodynamic analysis of an R744-R717 cascade refrigeration system, International Journal of Refrigeration, 2008, 31(1), 45-54.
  • [10] Bingming, W., Huagen, W., Jianfeng, L., Ziwen, X., Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor, International Journal of Refrigeration, 2009, 32(6), 1358-1365.
  • [11] Dopazo, J.A., Fernández-Seara, J., Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications, International Journal of Refrigeration, 2011, 34(1), 257-267.
  • [12] Fernandez-Seara, J., Sieres, J., Vazquez, M., Compression-absorption cascade refrigeration system, Applied Thermal Engineering, 2006, 26(5-6), 502-512.
  • [13] Bhattacharyya, S., Mukhopadhyay, S., Kumar, A., Khurana, R.K., Sarkar, J., Optimization of a CO2C3H8 cascade system for refrigeration and heating, International Journal of Refrigeration, 2005, 28(8), 1284-1292.
  • [14] Bhattacharyya, S., Bose, S., Sarkar, J., Exergy maximization of cascade refrigeration cycles and its numerical verification for a transcritical CO2C3H8 system, International Journal of Refrigeration, 2007, 30(4), 624-632.
  • [15] Dubey, A.M., Kumar, S., Agrawal, G.D., Thermodynamic analysis of a transcritical CO2/Propylene (R744-R1270) cascade system for cooling and heating applications, Energy Conversion and Management., 2014, 86, 774-783.
  • [16] da Silva, A., Bandarra Filho, E.P., Antunes, A.H.P., Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets, Applied Thermal Engineering, 2012, 41, 30-35.
  • [17] Cabello, R., Sánchez, D., Llopis, R., Catalán, J., Nebot-Andrés, L., Torrella, E., Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants, Applied Thermal Engineering, 2017, 110, 972-984.
  • [18] Sánchez, D., Llopis, R., Cabello, R., Catalán-Gil, J., Nebot-Andrés, L., Conversion of direct to an indirect commercial (HFC134a/CO2) cascade refrigeration system: energy impact analysis, International Journal of Refrigeration, 2017, 73, 183-199.
  • [19] Queiroz, M.V.A., Panato, V.H., Antunes, A.H.P., Parise, J.A.R., Bandarra Filho, E.P., Experimental comparison of a cascade refrigeration system operating with R744/R134a and R744/R404a, 16th International Refrigeration and Air Conditioning Conference (Purdue Conferences), 2016, 1785-1795, USA.
  • [20] Eini, S., Shahhosseini, H., Delgarm, N., Lee, M., Bahadori, A., Multi-objective optimization of a cascade refrigeration system: exergetic, economic, environmental and inherent safety analysis, Applied Thermal Engineering, 2016, 107, 804-817.
  • [21] Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., Nebot-Andrés, L., Catalán-Gil, J., Effects caused by the internal heat exchanger at the low temperature cycle a cascade refrigeration plant, Applied Thermal Engineering, 2016, 103, 1077-1086.
  • [22] Mosaffa, A.H., Farshi, L.G., Infante Ferreira, C.A., Rosen, M.A., Exergoeconomic and environmental analyses of CO2 /NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers, Energy Conversion Management, 2016, 117, 442-453.
  • [23] Megdouli, K., Tashtoush, B.M., Nahdi, E., Elakhdar, M., Kairouani, L., Mhimid, A., Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning, International Journal of Refrigeration, 2016, 70, 108-118.
  • [24] Sanz-Kock, C., Llopis, R., Sánchez, D., Cabello, R., Torrella E., Experimental evaluation of a R134a/CO2 cascade refrigeration plant, Applied Thermal Engineering, 2014, 73(1), 41-50.
  • [25] Sholahudin, S., Giannetti, N., Optimization of a cascade refrigeration system using refrigerant C3H8 in high temperature circuits (HTC) and a mixture C2H6 /CO2 in low temperature circuits (LTC), Applied Thermal Engineering, 2016, 104, 96-103.
  • [26] Nasruddin, N., Arnas, A., Faqih, A., Giannetti, N., Thermoeconomic optimization cascade refrigeration system using mixed carbon dioxide and hydrocarbons low temperature circuit, Makara Journal of Technology, 2016, 20(3), 132-138.
  • [27] Bhattacharyya, S., Garai, A., Sarkar, J., Thermodynamic analysis and optimization of a novel N2O-CO2 cascade system for refrigeration and heating, International Journal of Refrigeration, 2009, 32(5), 1077-1084.
  • [28] Kruse, H., Rüssmann, H., The natural fluid nitrous oxidedan option as substitute for low temperature synthetic refrigerants, International Journal of Refrigeration, 2006, 29(5), 799-806.
  • [29] Megdouli, K., Ejemni, N., Nahdi E., Mhimid, A., Kairouani, L., Thermodynamic analysis of a novel ejector expansion transcritical CO2 /N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures, Energy, 2017, 128, 586-600.
  • [30] Sun, Z., Liang, Y., Liu, S., Ji, W., Zang, R., Liang, R., Guo, Z., Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A, Applied Energy, 2016, 184, 19-25.
  • [31] Kasi, M.P., Simulation of thermodynamic analysis of cascade refrigeration system with alternative refrigerants. International Journal of Mechanical Engineering and Technology, 2015, 6(1), 71-91.
  • [32] Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., Torrella, E., Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems, Applied Energy, 2015, 138, 133-42.
  • [33] Engineering Equation Solver (EES) yazılımı, 10.614 Akademik versiyon, 2019.

Comparative Performance Analysis of Cascade Refrigeration System Using Low GWP Refrigerants

Year 2020, , 338 - 345, 31.01.2020
https://doi.org/10.31202/ecjse.630262

Abstract

Some industrial
cooling applications require low temperatures. With single stage refrigeration
systems, it is difficult to obtain this temperature and is not economically
advantageous. Therefore, cascade refrigeration systems are preferred for lower
temperature cooling applications. 
In this study, the performance analysis of the
cascade refrigeration system using the new generation of refrigerant pairs was
performed. In the cascade system, GWP
R454C/
R1234ze, R454C/ R1234yf, R454C/R717, R744/R290 ve R744/R717
refrigerant pairs were used. As a result of
analyzes, the highest COP values were reached when the
R454C/R717 fluid pair was used. 

References

  • [1] Sun, Z., Wang, Q., Xie, Z., Liu, S., Su, D., Cui, Q., Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system, Energy, 2019, 170, 1170-1180.
  • [2] Kilicarslan, A., Hosoz, M., Energy and irreversibility analysis of a cascade refrigeration system for various refrigerant couples, Energy Conversion and Management, 2010, 51(12), 2947-2954.
  • [3] Gupta, K., Parasad, M., Comparative optimum performance study of multi-stage cascade refrigerating systems, Mech. Eng. Bull. Heat Recov. Syst., 1983, 14(4), 124-130.
  • [4] Gami, H.M., Aijaz, M.A., Thermodynamic analysis of cascade refrigeration system using refrigerants pairs R134a-R23 and R290-R23, Int. J. Eng. Sci. Res. Technol., 2014, 3(4), 6034-6040.
  • [5] Parekh, A.D., Tailor, P.R., Thermodynamic analysis of R507A-R23 cascade refrigeration system, International Journal of Aerospace and Mechanical Engineering, 2013, 57, 1919-1923.
  • [6] Kasi, M.P., Simulation of thermodynamic analysis of cascade refrigeration system with alternative refrigerants, International Journal of Mechanical Engineering and Technology, 2015, 6(1), 71-91.
  • [7] Lee, T.S., Liu, C.H., Chen T.W., Thermodynamic analysis of optimal condensing temperature of cascade-condenser in CO2 /NH3 cascade refrigeration systems, International Journal of Refrigeration, 2006, 29(7), 1100-1108.
  • [8] Chen, Y., Han, W., Jin, H., Proposal and analysis of a novel heat-driven absorptionecompression refrigeration system at low temperatures, Applied Energy, 2017, 185, 2106-2116.
  • [9] Getu, H.M., Bansal, P.K., Thermodynamic analysis of an R744-R717 cascade refrigeration system, International Journal of Refrigeration, 2008, 31(1), 45-54.
  • [10] Bingming, W., Huagen, W., Jianfeng, L., Ziwen, X., Experimental investigation on the performance of NH3/CO2 cascade refrigeration system with twin-screw compressor, International Journal of Refrigeration, 2009, 32(6), 1358-1365.
  • [11] Dopazo, J.A., Fernández-Seara, J., Experimental evaluation of a cascade refrigeration system prototype with CO2 and NH3 for freezing process applications, International Journal of Refrigeration, 2011, 34(1), 257-267.
  • [12] Fernandez-Seara, J., Sieres, J., Vazquez, M., Compression-absorption cascade refrigeration system, Applied Thermal Engineering, 2006, 26(5-6), 502-512.
  • [13] Bhattacharyya, S., Mukhopadhyay, S., Kumar, A., Khurana, R.K., Sarkar, J., Optimization of a CO2C3H8 cascade system for refrigeration and heating, International Journal of Refrigeration, 2005, 28(8), 1284-1292.
  • [14] Bhattacharyya, S., Bose, S., Sarkar, J., Exergy maximization of cascade refrigeration cycles and its numerical verification for a transcritical CO2C3H8 system, International Journal of Refrigeration, 2007, 30(4), 624-632.
  • [15] Dubey, A.M., Kumar, S., Agrawal, G.D., Thermodynamic analysis of a transcritical CO2/Propylene (R744-R1270) cascade system for cooling and heating applications, Energy Conversion and Management., 2014, 86, 774-783.
  • [16] da Silva, A., Bandarra Filho, E.P., Antunes, A.H.P., Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets, Applied Thermal Engineering, 2012, 41, 30-35.
  • [17] Cabello, R., Sánchez, D., Llopis, R., Catalán, J., Nebot-Andrés, L., Torrella, E., Energy evaluation of R152a as drop in replacement for R134a in cascade refrigeration plants, Applied Thermal Engineering, 2017, 110, 972-984.
  • [18] Sánchez, D., Llopis, R., Cabello, R., Catalán-Gil, J., Nebot-Andrés, L., Conversion of direct to an indirect commercial (HFC134a/CO2) cascade refrigeration system: energy impact analysis, International Journal of Refrigeration, 2017, 73, 183-199.
  • [19] Queiroz, M.V.A., Panato, V.H., Antunes, A.H.P., Parise, J.A.R., Bandarra Filho, E.P., Experimental comparison of a cascade refrigeration system operating with R744/R134a and R744/R404a, 16th International Refrigeration and Air Conditioning Conference (Purdue Conferences), 2016, 1785-1795, USA.
  • [20] Eini, S., Shahhosseini, H., Delgarm, N., Lee, M., Bahadori, A., Multi-objective optimization of a cascade refrigeration system: exergetic, economic, environmental and inherent safety analysis, Applied Thermal Engineering, 2016, 107, 804-817.
  • [21] Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., Nebot-Andrés, L., Catalán-Gil, J., Effects caused by the internal heat exchanger at the low temperature cycle a cascade refrigeration plant, Applied Thermal Engineering, 2016, 103, 1077-1086.
  • [22] Mosaffa, A.H., Farshi, L.G., Infante Ferreira, C.A., Rosen, M.A., Exergoeconomic and environmental analyses of CO2 /NH3 cascade refrigeration systems equipped with different types of flash tank intercoolers, Energy Conversion Management, 2016, 117, 442-453.
  • [23] Megdouli, K., Tashtoush, B.M., Nahdi, E., Elakhdar, M., Kairouani, L., Mhimid, A., Thermodynamic analysis of a novel ejector-cascade refrigeration cycles for freezing process applications and air-conditioning, International Journal of Refrigeration, 2016, 70, 108-118.
  • [24] Sanz-Kock, C., Llopis, R., Sánchez, D., Cabello, R., Torrella E., Experimental evaluation of a R134a/CO2 cascade refrigeration plant, Applied Thermal Engineering, 2014, 73(1), 41-50.
  • [25] Sholahudin, S., Giannetti, N., Optimization of a cascade refrigeration system using refrigerant C3H8 in high temperature circuits (HTC) and a mixture C2H6 /CO2 in low temperature circuits (LTC), Applied Thermal Engineering, 2016, 104, 96-103.
  • [26] Nasruddin, N., Arnas, A., Faqih, A., Giannetti, N., Thermoeconomic optimization cascade refrigeration system using mixed carbon dioxide and hydrocarbons low temperature circuit, Makara Journal of Technology, 2016, 20(3), 132-138.
  • [27] Bhattacharyya, S., Garai, A., Sarkar, J., Thermodynamic analysis and optimization of a novel N2O-CO2 cascade system for refrigeration and heating, International Journal of Refrigeration, 2009, 32(5), 1077-1084.
  • [28] Kruse, H., Rüssmann, H., The natural fluid nitrous oxidedan option as substitute for low temperature synthetic refrigerants, International Journal of Refrigeration, 2006, 29(5), 799-806.
  • [29] Megdouli, K., Ejemni, N., Nahdi E., Mhimid, A., Kairouani, L., Thermodynamic analysis of a novel ejector expansion transcritical CO2 /N2O cascade refrigeration (NEETCR) system for cooling applications at low temperatures, Energy, 2017, 128, 586-600.
  • [30] Sun, Z., Liang, Y., Liu, S., Ji, W., Zang, R., Liang, R., Guo, Z., Comparative analysis of thermodynamic performance of a cascade refrigeration system for refrigerant couples R41/R404A and R23/R404A, Applied Energy, 2016, 184, 19-25.
  • [31] Kasi, M.P., Simulation of thermodynamic analysis of cascade refrigeration system with alternative refrigerants. International Journal of Mechanical Engineering and Technology, 2015, 6(1), 71-91.
  • [32] Llopis, R., Sánchez, D., Sanz-Kock, C., Cabello, R., Torrella, E., Energy and environmental comparison of two-stage solutions for commercial refrigeration at low temperature: fluids and systems, Applied Energy, 2015, 138, 133-42.
  • [33] Engineering Equation Solver (EES) yazılımı, 10.614 Akademik versiyon, 2019.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Erkan Dikmen 0000-0002-6804-8612

Arzu Şencan Şahin This is me 0000-0001-8519-4788

Ömer İslam Deveci This is me 0000-0003-3737-6418

Ersin Akdağ This is me 0000-0002-1259-2723

Publication Date January 31, 2020
Submission Date October 7, 2019
Acceptance Date November 25, 2019
Published in Issue Year 2020

Cite

IEEE E. Dikmen, A. Şencan Şahin, Ö. İ. Deveci, and E. Akdağ, “GWP Değeri Düşük Soğutucu Akışkanların Kullanıldığı Kaskad Soğutma Sisteminin Karşılaştırmalı Performans Analizi”, ECJSE, vol. 7, no. 1, pp. 338–345, 2020, doi: 10.31202/ecjse.630262.