Research Article
BibTex RIS Cite

Ti6Al4V Alaşımı ve Saf Titanyumun (Cp-Ti) Oksidasyon Kinetiği

Year 2020, , 402 - 409, 31.05.2020
https://doi.org/10.31202/ecjse.648678

Abstract

Ti6Al4V alaşımı ve Saf Titanyumun  (Cp-Ti) açık atmosferde 600, 650 ve 700 °C
için,  1, 2, 4, 8, 16, 24, 48, 72 saat
sürelerinde oksidasyon kinetiği davranışları incelenmiştir. Oksidasyon işlemi
sonrası numune yüzeyleri X-ray difraksiyonu (XRD), taramalı elektron mikroskobu
(SEM) ve enerji dispersive spektroskopisi (EDS) yardımı ile
incelenmiştir. Ti6Al4V alaşımı ve saf
Ti oksidasyon işlemi sonrasında başarı ile kaplanmıştır. Oksidasyona uğratılan
numunelerin aktivasyon enerjileri hesaplanmıştır. Ti6Al4V için aktivasyon
enerjisi 201.3kJ/mol, Cp-Ti için ise 269.4kJ/mol hesaplanmıştır.

Supporting Institution

Sakarya Üniversitesi

Thanks

Çalışma sırasında laboratuvar imkânlarından yararlandığımız Sakarya Üniversitesi, Mühendislik Fakültesi, Metalurji ve Malzeme Mühendisliği Bölümüne teşekkürü bir borç biliriz.

References

  • [1] Aniołek K., Kupka M. (2019). Mechanical, tribological and adhesive properties of oxide layers obtained on the surface of the Ti–6Al–7Nb alloy in the thermal oxidation process, Wear, 432-433, 202-929.
  • [2] Ayday A. (2018). Coatings of Bioactive TiO2 Films on TI6AL4V Alloy by Micro Arc Oxidation, Acta Physica Polonica A, Vol. 134, 412-414.
  • [3] Astinchap B., Moradian R., Gholami K. (2017). Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers, Materials Science in Semiconductor Processing 63, 169–175.
  • [4] Sartale S.D., Ansari A.A., Rezvani S.-J. (2013). Influence of Ti film thickness and oxidation temperature on TiO2 thin film formation via thermal oxidation of sputtered Ti film, Materials Science in Semiconductor Processing, 16, 2005–2012.
  • [5] Özkan O., MındıvanH., An Electrodeposition Method of Nickel–Graphene Composite Coatings on Ti–6Al–4V alloy, Bilge International Journal of Science and Technology Research, 2018, 2 (Special Issue), pp. 47-52.
  • [6] Li L., Yu, K., Zhang K., Liu Y. (2016). Study of Ti–6Al–4V alloy spectral emissivity characteristics during thermal oxidation process, International Journal of Heat and Mass Transfer, 101, 699–706.
  • [7] Byun J. M., Choi H. R., Kim S. H., Suk M.-J, Kim Y. D. (2017). Formation of nanostructured rutile TiO2 synthesized on Ti powder via thermal oxidation, Applied Surface Science, 415, 43–48.
  • [8] Yang W., Xu D., Guo Q., Chen T., Chen J. (2018). Influence of electrolyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation, Surface and Coatings Technology, 349, 522–528.
  • [9] Aniołek K., Kupka M., Dercz G., Cyclic oxidation of Ti–6Al–7Nb alloy, Vacuum,168, (2019) 108859.
  • [10] Krnel K., Sciti D., Landi E., Bellosi A., Surface modification and oxidation kinetics of hot-pressed AlN–SiC–MoSi2 electroconductive ceramic composite, Applied Surface Science 210 (2003) 274–285.
  • [11] Rajabi A., Mashreghi A.R., Hasani S., Non-isothermal kinetic analysis of high temperature oxidation of Ti–6Al–4V alloy, Journal of Alloys and Compounds, (2019), doi: https:// doi.org/10.1016/j.jallcom.2019.151948.
  • [12] Ostrovskaya O., Badini C., Baudana G., Padovano E., Biamino S. (2018). Thermogravimetric investigation on oxidation kinetics of complex Ti-Al alloys, Intermetallics, 93, 244–250.
  • [13] Aniołek K., Kupka M., Barylski A., Dercz G. (2015). Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process, Applied Surface Science, 357, 1419–1426.
  • [14] Rahimi N., Pax R. A., Gray E. M. A. (2016). Review of functional titanium oxides. I: TiO2and its modifications, Progress in Solid State Chemistry, 44, 86-105.
  • [15] Liu Z., Wang W., Liu H., Wang T., Qi M. (2013). Formation and characterization of titania coatings with cortex-like slots formed on Ti by micro-arc oxidation treatment, Applied Surface Science, 266, 250–255.

Oxidation Kinetics of Ti6Al4V Alloy and Pure Titanium (Cp-Ti)

Year 2020, , 402 - 409, 31.05.2020
https://doi.org/10.31202/ecjse.648678

Abstract

The oxidation kinetics behavior of Ti6Al4V alloy and pure Ti (Cp-Ti) were investigated under air atmosphere at temperatures of 600, 650 and 700 °C for 1, 2, 4, 8, 16, 24, 48, 72 h have been identified in the study. The oxidized samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM). After thermal oxidation, a thin oxide layer was formed on the surfaces and oxygen diffusion took place into the metal. The oxide layer formed rutile and anatase (TiO2) form. The thickness of the oxide layer increased with increasing the oxidation temperature and time The activation energies for oxidation were estimated for Ti6Al4V alloys and Cp-Ti, 201.3kJ/mol for Ti6Al4V and 269.4kJ/mol for Cp-Ti were found, respectively. 

References

  • [1] Aniołek K., Kupka M. (2019). Mechanical, tribological and adhesive properties of oxide layers obtained on the surface of the Ti–6Al–7Nb alloy in the thermal oxidation process, Wear, 432-433, 202-929.
  • [2] Ayday A. (2018). Coatings of Bioactive TiO2 Films on TI6AL4V Alloy by Micro Arc Oxidation, Acta Physica Polonica A, Vol. 134, 412-414.
  • [3] Astinchap B., Moradian R., Gholami K. (2017). Effect of sputtering power on optical properties of prepared TiO2 thin films by thermal oxidation of sputtered Ti layers, Materials Science in Semiconductor Processing 63, 169–175.
  • [4] Sartale S.D., Ansari A.A., Rezvani S.-J. (2013). Influence of Ti film thickness and oxidation temperature on TiO2 thin film formation via thermal oxidation of sputtered Ti film, Materials Science in Semiconductor Processing, 16, 2005–2012.
  • [5] Özkan O., MındıvanH., An Electrodeposition Method of Nickel–Graphene Composite Coatings on Ti–6Al–4V alloy, Bilge International Journal of Science and Technology Research, 2018, 2 (Special Issue), pp. 47-52.
  • [6] Li L., Yu, K., Zhang K., Liu Y. (2016). Study of Ti–6Al–4V alloy spectral emissivity characteristics during thermal oxidation process, International Journal of Heat and Mass Transfer, 101, 699–706.
  • [7] Byun J. M., Choi H. R., Kim S. H., Suk M.-J, Kim Y. D. (2017). Formation of nanostructured rutile TiO2 synthesized on Ti powder via thermal oxidation, Applied Surface Science, 415, 43–48.
  • [8] Yang W., Xu D., Guo Q., Chen T., Chen J. (2018). Influence of electrolyte composition on microstructure and properties of coatings formed on pure Ti substrate by micro arc oxidation, Surface and Coatings Technology, 349, 522–528.
  • [9] Aniołek K., Kupka M., Dercz G., Cyclic oxidation of Ti–6Al–7Nb alloy, Vacuum,168, (2019) 108859.
  • [10] Krnel K., Sciti D., Landi E., Bellosi A., Surface modification and oxidation kinetics of hot-pressed AlN–SiC–MoSi2 electroconductive ceramic composite, Applied Surface Science 210 (2003) 274–285.
  • [11] Rajabi A., Mashreghi A.R., Hasani S., Non-isothermal kinetic analysis of high temperature oxidation of Ti–6Al–4V alloy, Journal of Alloys and Compounds, (2019), doi: https:// doi.org/10.1016/j.jallcom.2019.151948.
  • [12] Ostrovskaya O., Badini C., Baudana G., Padovano E., Biamino S. (2018). Thermogravimetric investigation on oxidation kinetics of complex Ti-Al alloys, Intermetallics, 93, 244–250.
  • [13] Aniołek K., Kupka M., Barylski A., Dercz G. (2015). Mechanical and tribological properties of oxide layers obtained on titanium in the thermal oxidation process, Applied Surface Science, 357, 1419–1426.
  • [14] Rahimi N., Pax R. A., Gray E. M. A. (2016). Review of functional titanium oxides. I: TiO2and its modifications, Progress in Solid State Chemistry, 44, 86-105.
  • [15] Liu Z., Wang W., Liu H., Wang T., Qi M. (2013). Formation and characterization of titania coatings with cortex-like slots formed on Ti by micro-arc oxidation treatment, Applied Surface Science, 266, 250–255.
There are 15 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Aysun Ayday 0000-0003-3719-7006

Publication Date May 31, 2020
Submission Date November 19, 2019
Acceptance Date February 13, 2020
Published in Issue Year 2020

Cite

IEEE A. Ayday, “Ti6Al4V Alaşımı ve Saf Titanyumun (Cp-Ti) Oksidasyon Kinetiği”, ECJSE, vol. 7, no. 2, pp. 402–409, 2020, doi: 10.31202/ecjse.648678.