Wear Characteristics of Carbon Nanotube Reinforced Al2024 Composites
Year 2020,
, 1008 - 1016, 30.09.2020
Engin Ergül
,
Halil Kurt
,
Can Çivi
,
Gökhan Eyici
Abstract
Composite materials have high specific strength and modulus of elasticity compared to traditional materials, thus, the demand for these materials have increased nowadays. This means that, the weight of the machine component produced from these materials can be reduced. In this study, the mold casting method was used in the production of Al 2024 matrix composite materials. In sample production, 50% MgO and 50% MWCNT are mixed by weight and added to the matrix material in the ratio of 0.2% - 0.5% - 1% - 2%. The hardness and wear behaviors of Al 2024 composites with MgO / MWCNT additive were investigated using Rockwell tester and a ball-on-disc wear tester. The effects of composite materials on the wear properties have been investigated by determining the wear weight loss. 5N load and 250 m distance were chosen as the wear test parameters and percent wear amounts of the samples were examined. It was observed that Hardness values of samples increased and the wear percentage of specimens decreased with addition of reinforcement. The best ratio for the composite design is the mixing of 50 wt.% + MgO 50 wt.% CNT with 1 wt.%.
Project Number
TUBITAK-217M084
Thanks
I would like to express my deepest appreciation to organizing committee of TICMET19 in the selection of my study which was presented in the conference organized on 10-12 October, 2019 in Gaziantep University.
References
- [1] R. Pérez-Bustamante, F. Pérez-Bustamante, M. C. Maldonado-Orozco, and R. Martínez-Sánchez, “The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying,” Mater. Charact., vol. 126, pp. 28–34, Apr. 2017.
- [2] R. Pérez-Bustamante et al., “Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling,” Mater. Sci. Eng. A, vol. 502, no. 1, pp. 159–163, 2009.
- [3] H. SEZER, “Solid Particle Erosion Effects on Surface Plastic Deformation of Alüminum Alloy,” El-Cezeri Fen ve Mühendislik Derg., vol. 5, no. 1, pp. 243–250, Jan. 2018.
- [4] M. Narayan, M. K. Surappa, and B. N. Pramila Bai, “Dry sliding wear of Al alloy 2024-Al203 particle metal matrix composites,” Wear, vol. 181, pp. 563–570, 1995.
- [5] C. S. Ramesh and M. Safiulla, “Wear behavior of hot extruded Al6061 based composites,” 2007.
- [6] İ. TOPCU, H. O. GULSOY, and A. N. GULLUOGLU, “Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads,” Gazi Univ. J. Sci., vol. 32, no. 1, pp. 286–298, Mar. 2019.
- [7] L. Y. Jiang et al., “Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting,” Mater. Sci. Eng. A, vol. 734, pp. 171–177, Sep. 2018.
- [8] V. KOÇ and M. DEMİREL, “Epoksi Reçine-MgO Polimer Matrisli Kompozit Malzemelerin Üretilmesi ve Pin On Disk Abrasiv Aşınma Özelliklerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilim. Derg., vol. 31, no. 1, pp. 1–10, Mar. 2019.
- [9] R. Casati, J. Fiocchi, A. Fabrizi, N. Lecis, F. Bonollo, and M. Vedani, “Effect of ball milling on the ageing response of Al2618 composites reinforced with SiC and oxide nanoparticles,” J. Alloys Compd., vol. 693, pp. 909–920, Feb. 2017.
- [10] T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, and M. Seki, “Carbon Nanotube/Aluminium Composites with Uniform Dispersion,” Mater. Trans., vol. 45, no. 2, pp. 602–604, 2004.
- [11] R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, “Strengthening in carbon nanotube/aluminium (CNT/Al) composites,” Scr. Mater., vol. 53, no. 10, pp. 1159–1163, 2005.
- [12] S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites - a review,” Int. Mater. Rev., vol. 55, no. 1, pp. 41–64, Jan. 2010.
- [13] A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,” Compos. Sci. Technol., vol. 70, no. 16, pp. 2237–2241, 2010.
- [14] V. N. Popov, “Carbon nanotubes: properties and application,” Mater. Sci. Eng. R Reports, vol. 43, no. 3, pp. 61–102, 2004.
- [15] A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” 2007.
- [16] A. M. Al-Qutub, A. Khalil, N. Saheb, and A. S. Hakeem, “Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes,” Wear, vol. 297, no. 1, pp. 752–761, 2013.
- [17] D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, and H. Jang, “Effect of CNT distribution on tribological behavior of alumina–CNT composites,” Wear, vol. 259, no. 1, pp. 539–544, 2005.
- [18] S. Zhou, X. Zhang, Z. Ding, C. Min, G. Xu, and W. Zhu, “Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 2, pp. 301–306, 2007.
- [19] H. J. Choi, S. M. Lee, and D. H. Bae, “Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes,” Wear, vol. 270, no. 1–2, pp. 12–18, Dec. 2010.
- [20] M. EKREM, “Mechanical Properties of MWCNT Reinforced Polyvinyl Alcohol Nanofiber Mats by Electrospinnig Method,” El-Cezeri Fen ve Mühendislik Derg., vol. 4, no. 2, pp. 190–200, May 2017.
- [21] M. COŞKUN and S. YILMAZ, “Synthesis of an ABC Type Triblock Copolymer on MWCNT Surface: Structural, Thermal, Electrical and SEM Characterization,” El-Cezeri Fen ve Mühendislik Derg., vol. 4, no. 2, pp. 177–189, May 2017.
- [22] C. F. Deng, D. Z. Wang, X. X. Zhang, and A. B. Li, “Processing and properties of carbon nanotubes reinforced aluminum composites,” Mater. Sci. Eng. A, vol. 444, no. 1, pp. 138–145, 2007.
- [23] B. Venkataraman and G. Sundararajan, “Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs,” Wear, vol. 245, no. 1, pp. 22–38, 2000.
- [24] M. Pul and muharrem pul, “Karbon Nanotüp (CNT) Ve Nano Grafen (G) Takviyeli Al 2024 Kompozitlerin Vorteks Yöntemiyle Üretilerek Aşınma Ve İşlenebilme Özelliklerinin İncelenmesi,” Uluslararası Muhendis. Arastirma ve Gelistirme Derg., vol. 11, no. 1, pp. 370–382, Jan. 2019.
- [25] M. R. Akbarpour, S. Alipour, and M. Najafi, “Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method,” Diam. Relat. Mater., vol. 90, pp. 93–100, Nov. 2018.
- [26] H. I. KURT, M. ODUNCUOGLU, and R. ASMATULU, “Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process,” J. Iron Steel Res. Int., vol. 23, no. 10, pp. 1119–1126, Oct. 2016.
- [27] M. Anthony Xavior, H. G. Prashantha Kumar, and K. Ajith Kumar, “Tribological studies on AA 2024 –Graphene/CNT Nanocomposites processed through Powder Metallurgy,” Mater. Today Proc., vol. 5, no. 2, pp. 6588–6596, Jan. 2018.
- [28] F. Rikhtegar, S. G. Shabestari, and H. Saghafian, “Microstructural evaluation and mechanical properties of Al-CNT nanocomposites produced by different processing methods,” J. Alloys Compd., vol. 723, pp. 633–641, Nov. 2017.
AL2024 Kompozitlerin Aşınma Karakteristiği
Year 2020,
, 1008 - 1016, 30.09.2020
Engin Ergül
,
Halil Kurt
,
Can Çivi
,
Gökhan Eyici
Abstract
Kompozit malzemelerin geleneksel malzemelerle karşılaştırıldığında dayanıma bağlı olarak yoğunluk ve elastisite modülü özelliklerinin yüksek olması bu malzemelere talebi arttırmıştır. Ek olarak bu malzemelerin daha yüksek dayanım ve rijitliğe sahip olması, makine elamanının ağırlığının azalması anlamına gelmektedir. AL 2024 matrisli kompozit malzemelerin üretiminde kokil kalıba döküm yöntemi kullanılmış olup deneylerdeki aşınma ağırlık kaybı olarak ele alınmıştır. Bu çalışmada ağırlıkça %50 MgO ve %50 MWCNT karıştırılmış ve %0,2 - %0,5 - %1 - %2 oranlarında matris malzemesine ilave edilmiştir. MgO/MWCNT katkılı Al 2024 kompozitlerin sertlik ve aşınma davranışı Rockwell sertlik testiyle ball-on-disk aşınma test cihazı kullanılarak incelenmiştir. Elde edilen değerler karşılaştırılarak kompozit malzemelerin aşınma özellikleri üzerindeki etkileri ortaya konulmuştur. 5N yük etkisi altında 250 m mesafede aşınma deneyine tabi tutulan kompozit malzemenin ağırlık kaybı göz önünde bulundurularak yüzde aşınma miktarları incelenmiştir. Güçlendirici ilavasi ile kompozitlerin sertlik değerleri doğrusal olarak arttığı ve aşınma yüzdesi de aynı şekilde azaldığı gözlemlenmiştir. Güçlendirici ilavesi için en iyi oran ağırlıkça % 1 (50% MgO +50% CNT) karışımıdır.
Project Number
TUBITAK-217M084
References
- [1] R. Pérez-Bustamante, F. Pérez-Bustamante, M. C. Maldonado-Orozco, and R. Martínez-Sánchez, “The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying,” Mater. Charact., vol. 126, pp. 28–34, Apr. 2017.
- [2] R. Pérez-Bustamante et al., “Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling,” Mater. Sci. Eng. A, vol. 502, no. 1, pp. 159–163, 2009.
- [3] H. SEZER, “Solid Particle Erosion Effects on Surface Plastic Deformation of Alüminum Alloy,” El-Cezeri Fen ve Mühendislik Derg., vol. 5, no. 1, pp. 243–250, Jan. 2018.
- [4] M. Narayan, M. K. Surappa, and B. N. Pramila Bai, “Dry sliding wear of Al alloy 2024-Al203 particle metal matrix composites,” Wear, vol. 181, pp. 563–570, 1995.
- [5] C. S. Ramesh and M. Safiulla, “Wear behavior of hot extruded Al6061 based composites,” 2007.
- [6] İ. TOPCU, H. O. GULSOY, and A. N. GULLUOGLU, “Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads,” Gazi Univ. J. Sci., vol. 32, no. 1, pp. 286–298, Mar. 2019.
- [7] L. Y. Jiang et al., “Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting,” Mater. Sci. Eng. A, vol. 734, pp. 171–177, Sep. 2018.
- [8] V. KOÇ and M. DEMİREL, “Epoksi Reçine-MgO Polimer Matrisli Kompozit Malzemelerin Üretilmesi ve Pin On Disk Abrasiv Aşınma Özelliklerinin İncelenmesi,” Fırat Üniversitesi Mühendislik Bilim. Derg., vol. 31, no. 1, pp. 1–10, Mar. 2019.
- [9] R. Casati, J. Fiocchi, A. Fabrizi, N. Lecis, F. Bonollo, and M. Vedani, “Effect of ball milling on the ageing response of Al2618 composites reinforced with SiC and oxide nanoparticles,” J. Alloys Compd., vol. 693, pp. 909–920, Feb. 2017.
- [10] T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu, and M. Seki, “Carbon Nanotube/Aluminium Composites with Uniform Dispersion,” Mater. Trans., vol. 45, no. 2, pp. 602–604, 2004.
- [11] R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, “Strengthening in carbon nanotube/aluminium (CNT/Al) composites,” Scr. Mater., vol. 53, no. 10, pp. 1159–1163, 2005.
- [12] S. R. Bakshi, D. Lahiri, and A. Agarwal, “Carbon nanotube reinforced metal matrix composites - a review,” Int. Mater. Rev., vol. 55, no. 1, pp. 41–64, Jan. 2010.
- [13] A. M. K. Esawi, K. Morsi, A. Sayed, M. Taher, and S. Lanka, “Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites,” Compos. Sci. Technol., vol. 70, no. 16, pp. 2237–2241, 2010.
- [14] V. N. Popov, “Carbon nanotubes: properties and application,” Mater. Sci. Eng. R Reports, vol. 43, no. 3, pp. 61–102, 2004.
- [15] A. Esawi and K. Morsi, “Dispersion of carbon nanotubes (CNTs) in aluminum powder,” 2007.
- [16] A. M. Al-Qutub, A. Khalil, N. Saheb, and A. S. Hakeem, “Wear and friction behavior of Al6061 alloy reinforced with carbon nanotubes,” Wear, vol. 297, no. 1, pp. 752–761, 2013.
- [17] D.-S. Lim, D.-H. You, H.-J. Choi, S.-H. Lim, and H. Jang, “Effect of CNT distribution on tribological behavior of alumina–CNT composites,” Wear, vol. 259, no. 1, pp. 539–544, 2005.
- [18] S. Zhou, X. Zhang, Z. Ding, C. Min, G. Xu, and W. Zhu, “Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique,” Compos. Part A Appl. Sci. Manuf., vol. 38, no. 2, pp. 301–306, 2007.
- [19] H. J. Choi, S. M. Lee, and D. H. Bae, “Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes,” Wear, vol. 270, no. 1–2, pp. 12–18, Dec. 2010.
- [20] M. EKREM, “Mechanical Properties of MWCNT Reinforced Polyvinyl Alcohol Nanofiber Mats by Electrospinnig Method,” El-Cezeri Fen ve Mühendislik Derg., vol. 4, no. 2, pp. 190–200, May 2017.
- [21] M. COŞKUN and S. YILMAZ, “Synthesis of an ABC Type Triblock Copolymer on MWCNT Surface: Structural, Thermal, Electrical and SEM Characterization,” El-Cezeri Fen ve Mühendislik Derg., vol. 4, no. 2, pp. 177–189, May 2017.
- [22] C. F. Deng, D. Z. Wang, X. X. Zhang, and A. B. Li, “Processing and properties of carbon nanotubes reinforced aluminum composites,” Mater. Sci. Eng. A, vol. 444, no. 1, pp. 138–145, 2007.
- [23] B. Venkataraman and G. Sundararajan, “Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs,” Wear, vol. 245, no. 1, pp. 22–38, 2000.
- [24] M. Pul and muharrem pul, “Karbon Nanotüp (CNT) Ve Nano Grafen (G) Takviyeli Al 2024 Kompozitlerin Vorteks Yöntemiyle Üretilerek Aşınma Ve İşlenebilme Özelliklerinin İncelenmesi,” Uluslararası Muhendis. Arastirma ve Gelistirme Derg., vol. 11, no. 1, pp. 370–382, Jan. 2019.
- [25] M. R. Akbarpour, S. Alipour, and M. Najafi, “Tribological characteristics of self-lubricating nanostructured aluminum reinforced with multi-wall CNTs processed by flake powder metallurgy and hot pressing method,” Diam. Relat. Mater., vol. 90, pp. 93–100, Nov. 2018.
- [26] H. I. KURT, M. ODUNCUOGLU, and R. ASMATULU, “Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process,” J. Iron Steel Res. Int., vol. 23, no. 10, pp. 1119–1126, Oct. 2016.
- [27] M. Anthony Xavior, H. G. Prashantha Kumar, and K. Ajith Kumar, “Tribological studies on AA 2024 –Graphene/CNT Nanocomposites processed through Powder Metallurgy,” Mater. Today Proc., vol. 5, no. 2, pp. 6588–6596, Jan. 2018.
- [28] F. Rikhtegar, S. G. Shabestari, and H. Saghafian, “Microstructural evaluation and mechanical properties of Al-CNT nanocomposites produced by different processing methods,” J. Alloys Compd., vol. 723, pp. 633–641, Nov. 2017.